ArcticNet PPD%C%JF% JProd%nrc

2010 | Expedition Report

CCGS Amundsen

LEG 1A ArcticNet Hud<u>son Bay</u>

LEG 1B ArcticNet Coast of Baffin Island and Canadian Arctic Archipelago

LEG 2A ArcticNet/BP Beaufort Sea

LEG 2B ArcticNet/BP Beaufort Sea

LEG 3A ArcticNet/BP Beaufort Sea

LEG 3B ArcticNet Canadian Arctic Archipelago and Baffin Bay

Leg 3C ArcticNet Labrador fjords

2010 Expedition Report CCGS Amundsen

Edited by Anissa Merzouk and Keith Lévesque

<u>ArcticNet</u> ⊳פסייסרי ספרססיט∩רׂי

Table of Content

TABLE OF CONTENT	Ш	
LIST OF FIGURES	VI	
LIST OF TABLES	XIII	
2010 EXPEDITION REPORT		1
PART I – OVERVIEW AND SYNOPSIS OF OPERATIONS		2
1 OVERVIEW OF THE 2010 ARCTICNET EXPEDITION	2	
1.1 Introduction	-	2
1.2 ArcticNet-Industry Collaborations		2
1.3 2010 Expedition Plan		3
2 LEG 1A – ARCTICNET – 01 JULY TO 02 AUGUST 2010 – HUDSON BAY	6	
2.1 Introduction and objectives	Ū	6
2.2 Synopsis of operations		6
3 Leg 1b – ArcticNet – 02 August to 12 August 2010 – Baffin Island and Cana		-
Archipelago	8	
3.1 Introduction and objectives	U	8
3.2 Synopsis of operations		8
4 Leg 2a – ArcticNet/BP – 12 August to 26 August 2010 – Beaufort Sea	13	0
4.1 Introduction and objectives	15	13
4.2 Synopsis of operations		13
5 Leg 2b – ArcticNet/BP – 26 August to 23 September 2010 – Beaufort Sea	16	15
	16	16
5.1 Introduction and objectives5.2 Synopsis of operations		16
6 Leg 3a – ArcticNet/BP – 23 September to 7 October 2010 – Beaufort Sea	10	10
	19	10
6.1 Introduction and objectives		19
6.2 Synopsis of operations		19
7 LEG 3B – ARCTICNET – 7 OCTOBER TO 22 OCTOBER 2010 – CANADIAN ARCTIC ARCH		AND
BAFFIN BAY	22	22
7.1 Introduction and objectives		22
7.2 Synopsis of operations		22
8 Leg 3c – ArcticNet – 22 October to 31 October 2010 – Northern Labrador	FJORDS	26
8.1 Introduction and objectives		26
8.2 Synopsis of operations		28
PART II – PROJECT REPORTS		31
1 MERCURY BEHAVIOR AND TRANSFORMATION IN THE ARCTIC WATER AND LOWER ATMOS		<u> </u>
 MERCURY BEHAVIOR AND TRANSFORMATION IN THE ARCTIC WATER AND LOWER ATMOS 1A, LEG 1B 	31 SPHERE – L	-20
•	51	24
		31
1.2 Methodology		32 34
1.3 Preliminary results	1. 1- 0:	-
2 SURFACE CLIMATE, AIR-SURFACE FLUXES AND CARBON EXCHANGE DYNAMICS – LEGS ' 3A, 3B	1а, 1в, 2а, 35	2В,
2.1 Introduction		35
2.2 Methodology		35

		40
2.3 Preliminary results		43
2.4 Comments and recommendations		46
3 OCEAN – SEA ICE – ATMOSPHERE PROCESSES – LEGS 2A, 2B, 3A AND 3B	47	
3.1 Introduction		47
3.2 Methodology – Sea ice		48
3.3 Methodology – Air-sea heat and momentum exchange (Leg 2)		54
3.4 Methodology – Atmosphere and meteorology		54
3.5 Preliminary results		59
3.6 Comments and recommendations		61
4 INTEGRITY OF BEAUFORT SEA ICE IN THE FALL SEASON – LEG 3A	63	
4.1 Introduction		63
4.2 Methodology		63
4.3 Preliminary results		63
4.4 Comments and recommendations		64
5 MOORING PROGRAM – LEGS 1A, 1B, 2A, 2B & 3A	65	
5.1 Introduction		65
5.2 Methodology – Mooring design and instrumentation		70
5.3 Methodology – Mooring equipment calibration		72
5.4 Methodology – Mooring operations		82
5.5 Methodology – Mooring operations procedures		93
5.6 Comments and recommendations		97
6 WATER COLUMN STRUCTURE AND OCEAN CIRCULATION (CTD-ROSETTE, MVP AND	ADCP	
OPERATIONS) – LEGS 1A, 1B, 2A, 2B, 3A, 3B AND 3C	99	
6.1 Introduction		99
6.2 Methodology – CTD-Rosette		101
6.3 Methodology – Ship-mounted ADCP (SM-ADCP)		111
6.4 Methodology – Moving Vessel Profiler (MVP)		112
6.5 Preliminary results		114
6.6 Comments and recommendations		119
7 REMOTE SENSING AND MARINE OPTICS IN HUDSON BAY – LEG 1A	121	
7.1 Introduction		121
7.2 Methodology		121
7.3 Preliminary results		123
7.4 Comments and recommendations		123
8 FRESHWATER-MARINE INTERACTIONS IN HUDSON BAY – LEG1A	124	
8.1 Introduction		124
8.2 Methodology		126
8.3 Preliminary results		133
8.4 Comments and recommendations		135
9 INORGANIC CARBON SYSTEM ANALYSIS – LEGS 1A	136	
9.1 Methodology	100	136
10 CARBON AND NUTRIENTS FLUXES AND MARINE PRODUCTIVITY – LEGS 1A, 1B, 2A, 2E	2 3 4 3 8 1	
138	, JA, JD A	
10.1 Introduction		138
10.2 Methodology		130
	146	171
11 MOLECULAR MICROBIAL DIVERSITY IN THE CANADIAN ARCTIC – LEGS 1A, 3A AND 3B	146	146
11.1 Introduction		146 147
11.2 Methodology		
11.3 Preliminary results		152 152
11.4 Comments and recommendations (Leg 1)	0.450	152
12 PHYTOPLANKTON BIOMASS AND PRIMARY PRODUCTION – LEGS 1A, 1B, 3A, 3B AND 3	SC 153	450
12.1 Introduction		153
12.2 Methodology		153
12.3 Preliminary results		156

12.4 Comments and recommendations		159
13 ZOOPLANKTON AND ICHTYOPLANKTON – LEGS 1A, 1B, 3A, 3B AND 3C	160	
13.1 Introduction		160
13.2 Methodology		161
13.3 Preliminary results		166
13.4 Comments and recommendations		168
14 MARINE WILDLIFE OBSERVER PROGRAM – LEGS 2A AND 2B	169	
14.1 Introduction		169
14.2 Methodology		169
14.3 Preliminary results		174
15 BIOACOUSTICS RESEARCH PROGRAM – LEGS 2A AND 3A	179	
15.1 Introduction		179
15.2 Methodology		180
16 CONTAMINANTS SAMPLING PROGRAM – LEGS 1A AND 2A	186	
16.1 Introduction		186
16.2 Methodology		187
16.3 Preliminary results		192
16.4 Comments and recommendations		192
17 BP CONTAMINANTS SAMPLING PROGRAM –LEG 2A	193	
17.1 Introduction		193
17.2 Methodology		194
18 MERCURY CYCLING IN THE ARCTIC – LEGS 1B	203	
18.1 Introduction	200	203
18.2 Methodology		200
18.3 Preliminary Results		204
19 PERSISTENT ORGANIC POLLUTANTS IN THE ARCTIC – LEG 1B	205	
19.1 Introduction	200	205
19.2 Methodology		205
19.3 Preliminary Results:		203
20 SEABED MAPPING – LEGS 1A, 1B, 2A, 2B, 3A, 3B AND 3C	208	201
20 Seabed MAPPING - Legs TA, TB, ZA, ZB, SA, SB AND SC 20.1 Introduction	200	208
20.2 Methodology		200
20.3 Preliminary results		225
20.4 Comments and recommendations		239
21 REMOTELY OPERATED VEHICLE (ROV) OPERATIONS – LEG 2B	240	200
21.1 Introduction	240	240
21.2 Methodology		240
21.3 System performance and recommendations		240
	246	277
22 SEABED GEOLOGICAL MAPPING AND GEOTECHNICAL SAMPLING – LEGS 2B, 3A AND 3B 22.1 Introduction	240	246
22.1 Mitoduction 22.2 Methodology – Study areas and equipment		240 246
22.3 Methodology – Procedures		240
22.4 Preliminary results		259
22.5 Comments and recommendations		264
23 BP GEOTECHNICAL AND GEOPHYSICAL PROGRAM – LEG 2B	267	204
23 BP GEOTECHNICAL AND GEOPHYSICAL PROGRAM – LEG 28 23.1 Introduction	267	267
		267
23.2 Methodology		
23.3 Comments and recommendations	070	271
24 BENTHIC HABITAT MAPPING AND BIODIVERSITY – LEGS 1A, 1B, 2A, 3B AND 3C	272	070
24.1 Introduction		272
24.2 Methodology		276
24.3 Preliminary results		285
24.4 Comment and recommendations	000	286
25 MODERN SEDIMENTATION AND PALEO-RIVER DISCHARGE – LEG 1A	288	

25.1 Introduction25.2 Methodology25.3 Preliminary Results	288 289 290
Appendix 1 – List of stations sampled during the 2010 ArcticNet Expedition291	
Appendix 2 – Scientific log of activities conducted during the 2010 ArcticNet Expedition	
Appendix 3 – CTD logbook for the 2010 ArcticNet Expedition	
Appendix 4 – List of science participants on the 2010 ArcticNet Expedition	

List of Figures

Part I – Overview and synopsis of operations

Part II – Project reports

Figure 1.1. Left: GEM Flux measurement over water; Right: Sampling inlets for GEM concentrations measurement in the lower atmosphere	33
Figure 2.1. Flux and meteorological sensors on the foredeck tower. 1-RM Young 05106 2D anemometer, 2-Kipp & Zonen Par-Lite, 3-Gill Wind Master Pro 3D sonic	
anemometer, 4-Licor LI-7500 open path IRGA, 5-Vaisala HMP45C212 T/RH probe, 6-sample inlet for Licor LI-7000 closed path IRGA, 7-All Sensors BARO-4V-PRIME-	
MINI pressure transducer.	37
Figure 2.2. Radiation sensors on the roof of the wheelhouse. 1-Eppley PSP Pyrgeometer, 2-Kipp & Zonen UVS-AB-T Radiometer, 3-Kipp & Zonen PAR-Lite, 4- Eppley PIR Pyranometer.	37
Figure 2.3. LI7000 gas analyzer enclosure at the base of the flux tower.	39
Figure 2.4. The on-track pCO ₂ system located in the engine room of the CCGS	
Amundsen. The equilibration chamber is the clear cylinder (left, vertical with black	
top) and the gas analyzer is the green box behind the computer display. Figure 2.5. Time series comparison of the two PAR sensors during Leg 1a (15-19 July	41
2010).	43
Figure 2.6. pCO ₂ values from the on-track (underway) system and the CACS stations at	
the Great Whale River in Hudson Bay on 13 July 2010 during Leg 1a.	44
Figure 2.7. CO ₂ concentrations from the closed-path system on the foredeck meteorological tower and the on-track system in the engine room for 19 August	
2010 during Leg 2a.	45
Figure 2.8. Comparison of CO ₂ concentrations from the closed-path system on the	
foredeck meteorological tower and the on-track system in the engine room for 15	45
September 2010 during Leg 2b. Figure 2.9. Comparison of surface skin temperature from the foredeck meteorological	45
tower, and water temperatures (equilibrator and inlet) from the on-track pCO ₂	
system for 15 September 2010 during Leg 2b.	46
Figure 3.1. Helicopter with IcePic taking off from CCGS Amundsen on 18 Aug 2010	
during Leg 2a.	48
Figure 3.2. [Top left] Radarsat-2 geotiff showing the position of the sea ice and the flight lines made on 18 Aug 2010 during Leg 2a, noting the position of Cape Bathurst in	
the bottom right corner (R2 Scene shows only uncalibrated DN's). [Top right] A	
blow-up of the top left image – approximate distance from side to side is 45 nm.	
[Bottom] Photo of the area taken from the helicopter during flight. Note the amount	
of water at the ice surface (D. Babb).	49
Figure 3.3. Canadian Ice Service digital analysis for the 'Alaska' region on 18 August 2010. The area in which the helicopter flew with the IcePic is approximately	
denoted by the black square.	50
Figure 3.4. Canadian Ice Service digital analysis for the 'Alaska' region on 28	
September 2010. The general area CCGS Amundsen operated in on 27, 28, 29	- -
September is denoted by the black square.	51

Figure 3.5. Ice mass balance system (CEOS IMB04) installed in the Beaufort Sea on 27	
September 2010 during Leg 3a. Figure 3.6. [Left] JFE ALEC [©] compact CT sensor. [Middle] Aquadopp current profiler.	53
[Right] JFE ALEC [©] PAR sensor (Photo: E. Stainton).	54
Figure 3.7. All sky camera (Nikon D-90) with fisheye lenses attached in a weatherproof	01
enclosure.	55
Figure 3.8. The ceilometer (Vaisala CT25K) mounted at 90°.	55
Figure 3.9. The temperature and water vapour profiling radiometer (TP/WVP 3000A)	50
mounted on the roof of the MetOcean Container.	56
Figure 3.10. A weather balloon with attached radiosonde and the launch from the helicopter deck (Photos: M. Gervais).	58
Figure 3.11. A sample of raw (not quality checked, completely unfiltered) HEMI data for	00
surface roughness (top) and ice thickness (bottom).	59
Figure 3.12. Ship-based EM measurements of VV and HH polarized scans of a late-	
summer multi-year floe recorded in the Beaufort Sea during Leg 2a. The scan	
parameters were: Azimuth: 0° to 60°, Elevation: 20° to 60°, and Step/Interval: 5°.	60
Figure 3.13. A sample of raw (Not quality checked, completely unfiltered) HEMI data for surface roughness (top) and ice thickness (bottom) conducted in the Beaufort Sea	
during Leg 3a.	60
Figure 3.14. Temperature (left), salinity (center) profiles from the top 60cm of a MY ice	
floe sampled in the Beaufort Sea on 29 September during Leg 3a, along results	
from the C-band scatterometer from the same floe (right).	61
Figure 3.15. Sea ice extent on 20 September 2010 during Leg 2b (NSIDC website).	62
Figure 4.1. CIS daily ice chart showing ice conditions in the area where icebreaking tests were conducted on 27-29 September 2010 during Leg 3a.	64
Figure 5.1. Overview of ArcticNet mooring operations conducted in 2010 in Hudson	01
Bay, Beaufort Sea (top left inset map for the Beaufort Sea moorings locations),	
Lancaster Sound and Viscount Melville Sound.	66
Figure 5.2. Illustration of general ArcticNet mooring designs. Left: Taut-line	74
configuration and Right: MMP mooring setup. Figure 5.3. Benthic frame design of mooring C-09 deployed in the IOL Ajurak lease	71
block in the Beaufort Sea in 2009 and recovered in 2010 (not redeployed in 2010).	72
Figure 5.4. ArcticNet and BREA mooring equipment compass calibration sites for 2010	
operations in Hudson Bay (3x), Lancaster Sound and the Beaufort Sea (Inuvik, NT	
and Sachs Harbour, NT)	74
Figure 5.5. Two sites of compass calibration conducted in Hudson Bay during Leg 1.	
Left: near Punngaviapik, QC (SE Hudson Bay), 12 July 2010 18:38 UTC, 56°09.2946' N, 76°38.4941' W, mag. decl. 17°. Right: Marble Island (NW Hudson	
Bay), 18 July 2010, 62°39.2688' N, 90°58.2629' W, mag. decl. 10°.	75
Figure 5.6. Analog compass used for magnetic declination verification during the	10
compass calibrations in the field.	76
Figure 5.7. Aquadopp instrument head with indicating mark for instrument's zero	
heading, Lancaster Sound, Devon Island.	76
Figure 5.8. WHS ADCP in older model ArcticNet calibration table. Figure 5.9. Mooring instrument compass calibration performed in Inuvik, NWT using a	77
jig with a RDI WHS (left) and a RDI DVS750 (right) (Golder Cruise Report Leg 2,	
2010).	79
Figure 5.10. Left: Reading stabilizer for Aanderaa instruments. Right; RCM-Seaguard	
#30 with water current simulator affixed. Photos from ADCP compass calibration	

site in Churchill River (causeway), Hudson Bay, on 20 July 2010: 74° 34.3367' N, 80° 43.7241' W – Mag. Decl. 2°. Figure 5.11. Cruise track of the Amundsen in Hudson Bay during Leg 1a with the	82
locations of mooring sites: Station 707 = AN01, 706 = AN02, 702 = AN03, 705 = AN04.	83
Figure 5.12. Sampling grid around Station 705 at Nelson River, MB, in Hudson Bay during Leg 1a. Mooring AN04 is labeled as 705(M).	84
Figure 5.13. <i>Amundsen</i> ship track through the Canadian Arctic Archipelago during Leg 1b. The mooring in Lancaster Sound is labeled LS01-10.	85
Figure 5.14. Locations of IOL-BP mooring sites with respect to Oil Company Exploration Licenses (EL) in the Beaufort Sea. Operations were carried out by Golder and	
ArcticNet during Legs 2a & 2b. Figure 5.15. Corrosion of the CART tandem frame components (left) and tension rod	87
thread (right) from Mooring B-09 recovered in the Beaufort Sea during Leg 2b. Figure 5.16. Photos of corrosion on DVS 750 transducer heads for Mooring F-09.	89 90
Figure 5.17. ArcticNet moorings recovered and redeployed in the Beaufort Sea/Amundsen Gulf region in 2010 (CA05, CA05-MMP, CA16, CA16-MMP) (Map:	
INRS QA-QC Report 2009-2010). Figure 5.18. Multibeam water column imagery identifying orientation and instrument	92
depths for deployed moorings (Screenshot courtesy of ArcticNet multibeam processing team).	95
Figure 5.19. Example of a CTD-Rosette temperature and salinity profile (BS2-14). Figure 5.20. Triangulation plot from BS1-14 using Art's Acoustic Survey Matlab Script.	96 96
Figure 6.1. CTD-Rosette system used on the <i>Amundsen</i> to characterize water column properties and collect seawater samples. Photo on the right shows the different	00
sensors located below the bottles	101
	103
	104
Figure 6.4. Comparison between salinity measurements obtained from the Ctd sensor on the Rosette and from calibration samples analyzed onboard. Example is from	
Leg1. Figure 6.5. Bottles used to collect samples (left) for oxygen calibration and the Mettler	104
Figure 6.6. Comparison between oxygen measurements obtained from the CTD sensor	105
	105
Figure 6.7. Locations of CTD-Rosette casts conducted in Hudson Bay, Hudson Strait and Foxe Basin during Leg 1a.	106
Figure 6.8. Locations of CTD-Rosette casts conducted in the Canadian Arctic Archipelago (Northwest Passage) during Leg 1b.	106
Figure 6.9. Left: Location of CTD-Rosette casts conducted during Leg 2a, with BP section indicated in red. Right: CTD-Rosette casts (red dots) identified by cast	
	107
Figure 6.10. Location of the CTD-Rosette casts (red stars) and MVP casts (black dots) performed in the BP and IOL lease blocks in the southern Beaufort Sea during	
Legs 2a and 2b.	108

Figure 6.11. Locations of CTD-Ropsette casts conducted during Leg 3a (top), Leg 3b (center) and Leg 3c (bottom).	110
Figure 6.12. Moving Vessel Profiler used on the Amundsen. To conduct continuous	
	112
	113
Figure 6.14. Salinity profiles from MVP Transect 2 in Hudson Bay (upper panel) and MVP Transect 3 in Hudson Strait (middle) during Leg 1a, and for MVP Transect 4	
Figure 6.15. T-S diagrams constructed with data from Leg 2a in August-September 2010 (left) and Malina in August 2009 (right). Note the much warmer surface water in 2010. In 2009, the warmer waters (upper left corner) were found only very close	115 116
Figure 6.16. Dissolved Organic Matter (CDOM; above) and transmissivity (below) along	110
the BP section. The BP section made up of Stations, from northwest to southwest,	116
Figure 6.17. Potential temperature against salinity recorded with the CTD-Rosette	
profiler for all stations (all depths) located in the BP/IOL blocks and sampled during Leg 2. The color of each dot provides the 1-m bin average depth of each T/S	
signature. The isopycnals (sigma-theta, kg m ⁻³) are given in the background (grey	
	117
Figure 6.18. Time-series of relative and uncorrected chlorophyll fluorescence	
concentration (μ g Chl <i>a</i> L ⁻¹) recorded in the study area throughout the entire Leg 2 with the fluoremeter probe attached to the CTD Parente profiler. The x exists is given	
with the fluorometer probe attached to the CTD-Rosette profiler. The x-axis is given in day-of-year (DOY) with number 1 being January 1st, 2010. Note the weak	
fluorescence (<1 µg Chl a L-1) detected in the surface layer. Sampling was	
	117
Figure 6.19. Physical-chemical properties of the water column acquired during the	
cross-shelf MVP transect (line 7) carried out on 03 September during Leg 2b. Thirteen other cross-shelf or along-shelf transects were performed during Leg 2b	
	118
	122
Figure 8.1. Stations sampled in the Hayes-Nelson Rivers region in Hudson Bay during	
Leg 1a. Lines indicate tracks of either the Amundsen or its barge or Zodiac boats.	128
Figure 8.2. HyperSAS radiometer measuring above-water irradiance deployed on bow	
	130
	130
Figure 8.4. HyperSAS radiometer mounted 7.6 m above water surface to measure	
0 0	131
	132
	133
Figure 8.7. Longitudinal sections of salinity collected in the Hayes-Nelson Rivers plume following the 20 m isobath (left panel) and the 10 m isobath (right panel) in Hudson	400
	133
Figure 8.8. Transverse sections of salinity collected in the Hayes-Nelson Rivers plume 40 km from the mouth (left panel) and 80 km from the mouth (right panel) in	
	134
Figure 8.9. Map showing sites where optical data were collected in Hudson Bay during Leg 1a.	134

Figure 12.1. Surface cholorophyll a in Hudson Bay, Hudson Strait and Lancaster Sound measured during Legs 1a and 1b.	157
Figure 12.2. Chlorophyll <i>a</i> concentrations in the Canadian Arctic Ocean. Concentrations were integrated over the upper 100 m, except at Station 418 where they were integrated over 55 m.	158
Figure 12.3. Chlorophyll <i>a</i> concentrations in the four fiords of Nunatsiavut visited during Leg 3c. Concentrations were integrated over the upper 100 m, except at Station 630, 620 and 624 where they were integrated over 38 m, 69 m and 53 m,	100
respectively. Figure 13.1. Zooplankton and fish sampling gear used during Leg 1. Left: 2 x 1-m ²	158
Tucker net and Right: 4 x 1-m ² Monster net. (Photos were taken during previous ArcticNet expeditions).	162
Figure 13.2. Size-frequency distribution of the Arctic cod (<i>Boreogadus saida</i>) larvae measured during Leg 1.	166
Figure 13.3. Size-frequency distribution of young-of-the-year Arctic cod (<i>Boreogadus saida</i>) measured during leg 2a 2010, compared to that of individuals captured	
during the same period in 2009. Figure 13.4. Distribution of Arctic cod juveniles (<i>Boreogadus saida</i>) in the BP Pokak sampling grid. Surface of bubbles is proportional to abundance (number 100 m ⁻³).	166
Maximum abundance (St. BP10-001): 5.3 juveniles 100 m ⁻³ ; minimum abundance (St. BP10-009): 0.1 juvenile 100 m ⁻³ .	167
Figure 13.5. Size-frequency distribution of the Arctic cod (<i>Boreogadus saida</i>) larvae measured during Legs 3a and 3b.	167
Figure 14.3. S and U scanning techniques used by marine Wildlife Observers during marine mammal observations.	173
Figure 14.4. Seabird observations conducted by Marine Wildlife Observers on a moving vessel using a 90° scan, covering a 300 m transect from a moving vessel.	173
Figure 15.1. Marine Autonomous Recording Unit deployed in the Beaufort Sea during Leg 2a.	180
Figure 15.2. Synchronizing the MARUs on the deck of the <i>Amundsen</i> before deployment on 15 August 2010 in Leg 2a.	181
Figure 15.3. MARU deployment from the CCGS <i>Amundsen</i> (photo: J. Barrette, ArcticNet).	182
Figure 15.4. MARU array configuration over BP lease blocks EL 449 and EL 451 in the Beaufort Sea.	182
Figure 15.5. Retrieval plan for the MARUs deployed in the Beaufort sea during Leg 2a and recovered in Leg 3a on 25-26 September.Figure 17.1. Leg 2a biophysical sampling stations located in Exploration Licences 449	184
and 451 in the Beaufort Sea. Figure 19.1. Air sampler for organic pollutants located at the bow of the <i>Amundsen</i> .	194 205
Figure 19.2. Left: Deployment of the high volume pump for large volume surface sampling and Right: filtration setup for high and medium volume samples.	206
Figure 20.1. The <i>Amundsen</i> 's barge used to conduct seabed mapping and sub-bottom surveys.	211
Figure 20.2. Barge setup to conduct multibeam mapping surveys: EM302 operator station (upper left), Positioning and motion antennas (upper right), Pole mount with	
multibeam and surface sound speed probe (bottom left) and Server rack (bottom right).	212
Figure 20.3. MVP cast distribution used in sound speed profile in the BP Pokak block during Leg 2b.	216
N .	

Figure 20.4. <i>Amundsen</i> navigation track during the dedicated seabed mapping surveys conducted in the BP Pokak block in the Beaufort Sea during Leg 2b (JD 245 to 249).	220
Figure 20.5. <i>Amundsen</i> navigation track during the dedicated seabed mapping surveys conducted in the BP Pokak block in the Beaufort Sea during Leg 2b (JD 250 to	220
Figure 20.6. <i>Amundsen</i> navigation track during the dedicated seabed mapping surveys conducted in the BP Pokak block in the Beaufort Sea during Leg 2b (JD 255 to	220
Figure 20.7. <i>Amundsen</i> navigation track during the dedicated seabed mapping surveys conducted in the BP Pokak block in the Beaufort Sea during Leg 2b (JD 260 to	221
Figure 20.8. Deploying the barge for seabed mapping in Okak Bay, Nunatsiavut. Figure 20.9. View of the modern delta at the mouth of Nachvak Brook. Flat terraces on either side of the river represent the ancient delta surface when sea level was	223
higher at the end of the last glaciation, roughly 8000 years ago. Figure 20.10. Acquisition of multibeam sonar data (bathymetry and backscatter) over Nachvak Brook delta, Saglek Fiord, using the EM3002 pole-mounted on the barge. 2	223 224
Figure 20.11. (left) Bathymetry of Mansel Island moraine features surveyed at the entrance to Hudson Bay during Leg 1a, (right) bathymetry collected during a survey	226
	227
Figure 20.14. Bathymetry collected (left) during a survey near Iqaluit during Leg 1a, (right) near Bergesen Island on the coast of northern Baffin Island during Leg 1a. Figure 20.16. Leg 2a multibeam data coverage in the BP lease block in the Beaufort	227
	228
Figure 20.18. Multibeam water column data showing Mooring J at Station J-09 in the BP	229 220
Figure 20.19. Multibeam water column data showing Mooring I-9 in the BP lease area	230 230
Figure 20.20. Multibeam water column data showing Mooring G-9 in the BP lease area	231
Figure 20.21. Multibeam water column data showing Mooring H in the BP lease area during Leg 2a.	231
5 5	232
Figure 20.23. Bathymetry maps of the Priority Zone 2 Coverage within the BP lease area in the Beaufort Sea as of 23 September (left) and 06 October (right) conducted during Leg 3a.	232
Figure 20.24. Bathymetry maps of the Pokak Coverage in the BP lease area in the Beaufort Sea as of 23 September (left) and 06 October (right) conducted during	
Figure 20.25. Multibeam water column data showing Mooring CA 16 MMP-0 in the BP	233
Figure 20.26. Multibeam water column data showing Mooring CA05-MMP-10 in the BP	233 234

Figure 20.27. Multibeam water column data showing Mooring CA05-10 in the BP lease area during Leg 3a.	234
Figure 20.28. Multibeam water column data showing Mooring CA08-10 in the BP lease	
area during Leg 3a. Figure 20.29. Seabed mapping at Station 405 during Leg 3b. Red region outlines	235
coverage completed in 2010. Figure 20.30. Seabed mapping conducted in Barrow Strait during Leg 3b.	236 236
Figure 20.31. Multibeam water column data showing the mooring at Station 308:	
74.09703 N 108.41523 W Water depth = 536 m Figure 20.32. Seabed mapping coverage acquired during Leg 3c in Nachvak Fiord. The	237
red and purple lines represent barge and CCGS Amundsen vessel navigation in surveyed areas, respectively.	237
Figure 20.33. Seabed mapping coverage acquired during Leg 3c in Saglek Fiord. The	201
red and purple lines represent barge and <i>Amundsen</i> vessel navigation in surveyed areas, respectively.	238
Figure 20.34. Seabed mapping coverage acquired during Leg 3c in Okak Bay. The blue lines represent barge vessel navigation in surveyed areas.	238
Figure 20.35. Seabed mapping coverage acquired during Leg 3c in Anaktalak Bay. The	
red lines represent barge vessel navigation in surveyed areas. Figure 22.1. Beaufort Shelf Outer Shelf/Upper Slope Regional Study Area where	239
geotechnical sampling was conducted during Leg 2b. Figure 22.2. CCGS Amundsen ship track lines surveyed during Leg 3a, 23 September	247
to 07 October.	247
Figure 22.3. CCGS <i>Amundsen</i> ship track lines surveyed during Leg 3b, 07 October to 19 October.	248
Figure 22.4. USBL transducer deployed in the acoustic well. Figure 22.5. Piston coring operations (Photo: C. Breton)	251 253
Figure 22.6. Left: Taking a Torvane measurement on one of the cores. Right: Inserting	
a constant volume sampler. (Photos: K. Jarrett) Figure 22.7. Box core deployment and sub-sampling (Photos: C. Breton and J.Buis).	255 256
Figure 22.8. The ROV SuperMohawk next to the moonpool where it is deployed (Photo:	
C. Breton). Figure 22.9. The ROV control room (Photo: C. Breton).	258 259
Figure 22.10. Raw 3.5kHz sub-bottom record showing GSC core locations for Leg 2b in the BP lease block.	260
Figure 22.11. An example of a well-defined deep water relict ice scour observed in 300-	
350m of water in the BP lease block in the Beaufort Sea during Leg 2b. Figure 22.12. Raw 3.5 kHz sub-bottom transect showing a relict ice scour in 300m-	261
350m water depth in the BP lease block in the Beaufort Sea during Leg 2b. Figure 22.13. Pingo-like features recorded on the Beaufort Shelf during Leg 2b.	261 262
Figure 22.14. Example of heavy ice scouring in the Beaufort Sea.	263
Figure 22.15. Extent of seabed mapping completed during the Barrow Strait repeat survey in 2010.	264
Figure 24.1. Left: Recovery of the box corer. Right: Recovery of the Agassiz Trawl. Figure 24.2. Box core with lower half for diversity/abundance sieving and upper half for	277
OC/OM cores, pigment concentration cores and particle size grain cores (white	070
syringes). Figure 25.1. Left: Crew of CCGS <i>Amundsen</i> deploying a box-core. Right: Deployment	278
of the gravity core.	289

List of Tables

Part I – Overview and synopsis of operations

Part II – Project reports

Table 1.1. Spiking rate for enriched isotopes of Hg species for Hg methylation and	
demethylation rate investigation by incubation.	34
Table 2.1. Inventory and application of ship-based variables monitored during the 2010	
ArcticNet Expedition onboard the Amundsen.	35
Table 2.2. Locations of estuary sampling in the Great Whale River (GWR), Nelson River	
(NR) and Hayes River (HR) in Hudson Bay during Leg 1a.	42
Table 3.1. Coordinates of the three ice motion beacons deployed during Leg 2a in the	
Beaufort Sea.	51
Table 3.2. Summary of POB deployments carried out during Leg 3a giving Oceanetics	
Iridium serial number, date and location for each (datum is NAD83).	52
Table 3.3. Summary of ice beacon deployments carried out during Leg 3b giving	
Oceanetics Iridium serial number, date and location for each (datum is NAD83).	52
Table 3.4. Summary of weather balloons launched during Leg 3a.	58
Table 3.5. Summary of weather balloons launched during Leg 3b.	59
Table 5.1. Summary of mooring operations conducted onboard the Amundsen in 2010	
in Hudson Bay, the Beaufort Sea, Lancaster Sound and Viscount Melville Sound,	
including recovery of 2009 moorings (-09), deployment of 2010 moorings and	~~
recovery results in 2011 (-10).	66
Table 5.2. ArcticNet mooring equipment compass calibrations conducted during Leg 1	70
in Hudson Bay (HB) and Lancaster Sound (LS).	78
Table 5.3. Summary of data record and clock drift for each moored instrument deployed	
on ASL/IOL-BP moorings in the Beaufort Sea in 2009 and recovered on Legs 2a and 2b in 2010.	87
	101
	102
Table 10.1. List of sampling stations visited and measurements carried out for carbon	102
	142
Table 10.2. List of sampling stations and measurements for carbon and nutrient fluxes	172
	143
Table 10.3. List of sampling stations and measurements for carbon and nutrients during	110
	144
Table 10.4. List of sampling stations and measurements for carbon and nutrients during	
	145
Table 11.1. Summary of stations sampled for molecular microbial diversity in Hudson	
	149
Table 11.2. Summary of stations sampled for molecular microbial diversity during Legs	
	150
Table 12.1. Sampling operations conducted for phytoplankton biomass and primary	
	155
Table 12.2. Sampling operations conducted for phytoplankton biomass and primary	
production during Legs 3a, 3b and 3c.	156

Table 13.1 Summary of sampling activities and field experiments of the zooplankton	
group in Hudson Bay during Leg 1.	163
Table 13.2. Summary table of the sample sets remaining with the zooplankton group.	164
Table 13.3. Summary of sampling activities and field experiments of the zooplankton	
group during Leg3 a and b.	165
Table 13.4. Zooplankton sampling stations using the Tucker trawl, vertical Monster and	405
Hydrobios nets during Leg 3c.	165
Table 14.1. Marine Wildlife Observers schedule for Leg 2a.	170
Table 14.2. Marine Wildlife Observers schedule for Leg 2b.	171
Table 14.3. Summary of wildlife observed in the Beaufort Sea during Leg 3a.	176
Table 14.4. Selected environmental variables recorded during mid-day observations	4 7 7
during Leg 3a.	177
Table 15.1. Summary of MARU deployments in the BP lease blocks in the Beaufort Sea	400
during Leg 2a.	183
Table 15.2. Summary of MARUs deployments and retrievals in the Beaufort Sea.	185
Table 15.3. MARU release times during recovery operations in the Beaufort Sea during Leg 3a.	185
Table 16.1. Zooplankton sampling for contaminants analyses conducted in Hudson Bay	100
and river systems during Leg 1a.	188
Table 16.2. Box core sediments sampling for contaminants analyses conducted in	100
Hudson Bay and river systems during Leg 1a.	189
Table 16.3. Benthic sampling stations used for mercury analysis during Leg 2a.	189
Table 16.4. Water sampling for contaminants analyses conducted in Hudson Bay and	100
river systems during Leg 1a.	190
Table 16.5. Stations sampled for total Hg during Leg 2a.	191
Table 16.6. Permafrost and river water sampling for contaminants analyses conducted	
in Hudson Bay river systems during Leg 1a.	191
Table 17.1. Stations where the water column was sampled for the BP contaminant	
program during Leg 2a.	196
Table 17.2. Parameters measured in the water column for the BP contaminant sampling	
program in Leg 2a.	197
Table 17.3. Stations where the sediments and benthic fauna were sampled for the BP	
contaminant program during Leg 2a.	199
Table 17.4. Parameters measured in the sediments for the BP contaminant sampling	
	201
Table 17.5. Parameters measured in benthos for the BP contaminant sampling program	
0	202
Table 18.1. Summary of stations sampled for mercury cycling measurements during	004
0	204
Table 20.1. Locations of completed seabed mapping targets in each of the Nunatsiavut	225
0 0	225
,	242
Table 22.1. Piston and Box Core locations (coordinates converted from as-taken	257
NAD83) for geotechnical sampling conducted during Leg 2b. Table 23.1. Cores samples collected for Pokak 2010 Geotechnical Data Collection	201
·	268
Table 23.2. Core location number, core type, water depth and location for the 2010	200
GSC Regional Data Collection in the Beaufort Sea during Leg 2b (WGS84, UTM	
	268
·	

Table 24.1. Benthic sampling stations during leg 1a-1b, with numbers of samples or	070
cores collected for ArcticNet (AN) and CHONe projects.	278
Table 24.2. List of stations visited and sampling activities conducted in the BP lease	
block in the Beaufort Sea during Leg 2a.	281
Table 24.3. Benthic sampling stations during Leg 3b, with numbers of samples or cores	
collected for ArcticNet and CHONe projects.	282
Table 24.4. Benthic sampling stations during Leg 3c, with numbers of samples or cores	
collected for ArcticNet and CHONe projects.	284
Table 25.1. Summary of long cores taken in the Great Whake and Nelson River	
systems in Hudson Bay during Leg 1a.	289
Table 25.2. Summary of box cores taken in in Hudson Bay during Leg 1a.	290

2010 Expedition Report

The 2010 Expedition Report is a collection of all the participating research teams' Cruise Reports assembled by the Chief Scientists at the end of the two Legs of the CCGS *Amundsen*'s Expedition. The 2010 Expedition Report is divided into two parts:

Part I gives an overview of the Expedition, shows the cruise track and the stations visited and provides a synopsis of operations conducted during each of the three legs, as well as for the BaySys cruise on the CCGS *Pierre Radisson*.

Part II contains the reports submitted by participating science teams or researchers, with details on the specific objectives of their project, the field operations conducted and methodology used, and in some cases, preliminary results. When results are presented, they show the data as they were submitted at the end of the Legs in 2010. The data presented in this report are illustrative only and have not been quality checked, thus parties interested in the results should contact the project leader or the researchers who collected the data.

The four Appendices provide information about the location, date, time and type of sampling performed at each station visited by the ship, as well as a list of science participants onboard during each Leg.

The core oceanographic data generated by the CTD-Rosette operations, as well as meteorological information (AAVOS) and data collected using the Moving Vessel Profiler (MVP), the hull mounted current meters (ADCPs) and the thermosalinograph (TSG) are available in the Polar Data Catalogue (PDC) at <u>https://www.polardata.ca</u>. Following ArcticNet's data policy, research teams must also submit their data on the PDC.

Part I – Overview and synopsis of operations

1 Overview of the 2010 ArcticNet Expedition

1.1 Introduction

Following a very successful 168-d expedition in 2009 in support of the Malina, GEOTRACES and ArcticNet research programs, the CCGS *Amundsen* travelled to Hudson Bay, the Beaufort Sea, the Northwest Passage, Baffin Bay, and northern Labrador for the 2010 Expedition. ArcticNet researchers and their collaborators pursued their sampling efforts to help understand and predict the impacts of climate change on the Canadian Arctic marine environment.

Taking full advantage of its operational season this year, the Vessel left its homeport of Quebec City on 2 July and headed to Hudson Bay in support of the ArcticNet marine-based research program. The *Amundsen* then continued on through the Northwest Passage, carrying out sampling operations along the way. A first crew change took place on 12 August in Kugluktuk. From 12 August to 7 October, ArcticNet researchers and their Industry collaborators collected data in the Beaufort Sea focusing on the recently awarded offshore exploration licenses by the Government of Canada (see Section 1.2: ArcticNet-Industry Collaborations).

Once work in the Beaufort Sea was completed in early October, the vessel headed back to the Atlantic through the Northwest Passage in support of ArcticNet's marine-based research program in the Northwest Passage, northern Baffin Bay and northern Labrador. Having traveled over 22 000 nautical miles, the CCGS *Amundsen* concluded its 124-d annual voyage in Quebec City on 2 November 2010.

1.2 ArcticNet-Industry Collaborations

Although major inshore research activities were conducted in the 1970s and 1980s in large part due to the Oil & Gas interest in the Beaufort Sea region, much less is known about the offshore region of the Mackenzie Shelf, shelf slope and Beaufort Sea. Beginning in 2007, the Government of Canada through its Department of Indian and Northern Affairs Canada (INAC, now Aboriginal Affairs and Northern Development Canada, AANDC) awarded exploration licenses in the offshore Beaufort Sea, a region extensively studied by ArcticNet researchers and their affiliates since 2002.

An important part of ArcticNet's mandate is to provide Inuit and other northern communities and organizations, as well as federal departments and the private sector with the scientific knowledge needed to make decisions and formulate strategies to minimize the negative impacts and maximize the benefits of climate change and industrialization in the Canadian Arctic.

Building on successful research partnerships with several corporations operating in the Arctic, new research collaborations were developed with Imperial Oil and BP in the Beaufort Sea in 2009 and 2010, respectively. Through this new collaboration with BP in 2010, ArcticNet researchers and their private sector collaborators collected sea-ice, bathymetric, geophysical and biophysical data in the Beaufort Sea/Mackenzie Shelf/Amundsen Gulf region with a particular focus on the exploration licenses recently awarded by the Government of Canada. As an independent, academically-led network, ArcticNet ensures that all data collected through its collaborations is made available to all stakeholders including the public, private industry, government regulators, and northern communities.

The research components for the 2010 collaborative BP-ArcticNet program in Legs 2a, 2b and 3a were as follows:

1) Met/Ocean & Sea Ice Component: The overarching goal of this component was to provide data that describe the variability of met/ocean and sea ice variables within the exploration blocks relative to the larger area of the southern Beaufort Sea continental shelf. The objective was to provide data on the ocean-sea ice-atmosphere (OSA) interface over a range of time and space scales, focusing on spatial and temporal variability over diurnal, seasonal and interannual time scales.

2) Environment & Marine Resources Component: The general goal of this component was to quantify and map the summer-fall distribution and contamination of the main components of the pelagic and benthic food webs along on the Mackenzie Shelf with a special focus in the Exploration Licence areas EL449 and EL451.

3) Geology/ Bathymetry Component: The major goal of this component was to conduct an investigation of seabed stability conditions to meet engineering design and regulatory requirements for exploration drilling. Seabed mapping and bottom sediment characterization research is required to investigate seafloor stability conditions at the outer shelf/upper slope area of the central Beaufort Sea with special focus on specific areas in the exploration block. Foundation conditions, slope stability, seabed features and ice scouring are also key issues to be addressed.

1.3 2010 Expedition Plan

1.3.1 General schedule

On 2 July 2010, the CCGS *Amundsen* left its homeport of Quebec City for a 4-month expedition to Hudson Bay and the Canadian High Arctic. Despite a one-day delay in departure and the loss of 5 days for the Search & Rescue of the *Clipper Adventurer* during

Leg 2b (see below), all priority activities for the 2010 Expedition were completed as planned.

1.3.2 Leg 1a – ArcticNet – 2 July to 2 August 2010 – Hudson Bay

Leaving Quebec City on 02 July, the ship sailed towards Hudson Bay, entering Hudson Strait on 07 July. From 07 July to 02 August, the vessel conducted mooring and oceanographic sampling operations along sampling transects in Hudson Strait, Foxe Basin and Hudson Bay. Sampling included bottom mapping, measurements of the physicochemical properties of the water column and meteorological variables and the sampling of seawater, sediment, benthic organisms, plankton and larval fish. The vessel sailed to Iqaluit for the science crew change on 02 August.

1.3.3 Leg 1b – ArcticNet – 2 August to 12 August 2010 – Baffin Island and Canadian Arctic Archipelago

Starting in Iqaluit on 02 August, the ship transited west towards Kugluktuk while carrying out mooring and oceanographic sampling operations in the Parry Channel and Northwest Passage. In addition to ArcticNet sampling operations, the Vessel welcomed aboard the 2010 Schools on Board program. The vessel dropped anchor off Kugluktuk on 12 August for a full crew change and the end of Leg 1.

1.3.4 Leg 2a - ArcticNet/BP - 12 August to 26 August 2010 - Beaufort Sea

Leg 2a started from Kugluktuk on 12 August. Between 12 and 26 August, the *Amundsen* carried out oceanographic sampling operations in the EL449 and EL451 exploration acreages (BP lease blocks). ArcticNet and BP researchers sampled the planktonic and benthic ecosystems at 18 stations distributed in the BP acreages, and deployed 12 bottom-anchored Marine Autonomous Recording Units. Oceanographic operations also included servicing and redeploying 4 subsurface moorings deployed in EL449 and EL451 in 2009 as well as recovering one ArcticNet mooring deployed in 2008. The ship sailed back to Sachs Harbour for the mid-Leg science crew change of 26 August.

1.3.5 Leg 2b - ArcticNet/BP - 26 August to 23 September 2010 - Beaufort Sea

As part of the ArcticNet/BP work, Leg 2b was spent in the industry exploration acreages (EL446, EL449 & EL451) to conduct geotechnical work (piston and box coring) and a bathymetric and sub-bottom survey. Mooring operations were also carried out and included servicing and redeploying the 4 subsurface moorings deployed in EL 446 in 2009 and deploying one ArcticNet mooring recovered in the previous leg. The Vessel returned to Sachs Harbour for a full crew change on 22 & 23 September.

1.3.6 Leg 3a – ArcticNet/BP – 23 September to 7 October 2010 – Beaufort Sea

From 23 September to 7 October, the ship carried out mooring and oceanographic sampling operations in Amundsen Gulf and on the Mackenzie Shelf. In the BP Pokak lease block, 11 out of the 12 bottom-anchored hydrophones were retrieved and a bathymetric and subbottom survey was conducted. The vessel also conducted ice related sampling operations (EM surveys and on-ice buoy deployments) northwest of Banks Island. The Vessel was back in Sachs Harbour for a science crew change on 7 October.

1.3.7 Leg 3b – ArcticNet – 7 October to 22 October 2010 – Canadian Arctic Archipelago and Baffin Bay

Leaving Sachs Harbour on 7 October, the ship headed north and then east to conduct sampling operations in Prince of Whales Strait, Viscount-Melville Sound, Barrow Strait, Lancaster Sound and Baffin Bay. The Vessel made a stop in Iqaluit for a last science crew change on 22 October.

1.3.8 Leg 3c – ArcticNet – 22 October to 31 October 2010 – Northern Labrador fjords

Leaving Iqaluit on 22 October, the Vessel sampled the fjords of Northern Labrador as part of the ArcticNet Nunatsiavut Nuluak project. The ship returned to Quebec City on 2 November.

2 Leg 1a – ArcticNet – 01 July to 02 August 2010 – Hudson Bay

Chief Scientist: Gary Stern^{1,2} (Gary.Stern@dfo-mpo.gc.ca)

¹ Fisheries and Oceans Canada (DFO), Freshwater Institute (FWI), 501 University Crescent, Winnipeg, MB, R3T 2N6, Canada.

² University of Manitoba, Centre for Earth Observation Science (CEOS), Wallace Building, 125 Dysart Rd, Winnipeg, MB, R3T 2N2, Canada.

2.1 Introduction and objectives

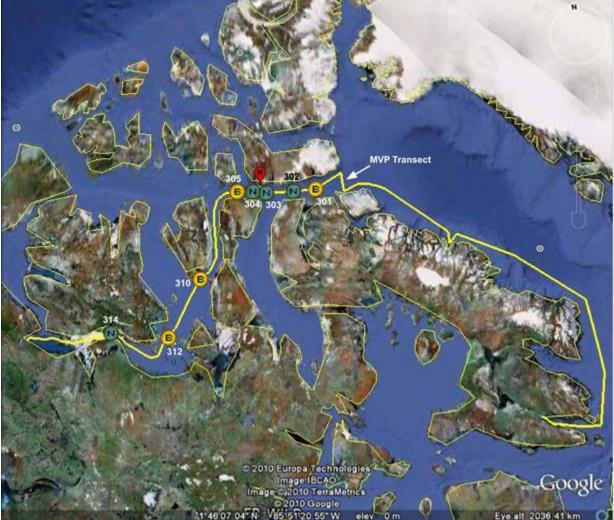

The objectives of Leg 1a were to conduct mooring and oceanographic sampling operations along sampling transects in Hudson Strait, Foxe Basin and Hudson Bay. Opportunistic sampling included bottom mapping, measurements of the physico-chemical properties of the water column and meteorological variables and the sampling of seawater, sediment, benthic organisms, plankton and larval fish.

2.2 Synopsis of operations

Leaving Quebec City on 02 July, the ship sailed towards Hudson Bay, entering Hudson Strait on 07 July. Scientific activities were conducted from 07 July to 02 August, before sailing to Iqaluit for a scientific crew change

Final cruise track and sampling stations for Leg 1a.

Nelson River estuary sampling


3 Leg 1b – ArcticNet – 02 August to 12 August 2010 – Baffin Island and Canadian Arctic Archipelago

Chief Scientist: André Rochon¹ (<u>andre_rochon@uqar.qc.ca</u>) ¹ Université du Québec à Rimouski (UQAR), Institut des sciences de la mer de Rimouski (ISMER), 310 allée des Ursulines, Rimouski, QC, G5L 3A1, Canada.

3.1 Introduction and objectives

The objectives of Leg 1b were to conduct mooring and oceanographic sampling operations in the Parry Channel and Northwest Passage. In addition to ArcticNet sampling operations, the Vessel welcomed aboard the 2010 Schools on Board program.

3.2 Synopsis of operations

Final cruise track and sampling stations for Leg 1b.

August 02, 2010

The crew change in Iqaluit began around 9am. There were very little changes from the originally planned schedule. Lucette Barber (Schools on Board), Steven Kaslowski (ArcticNet photographer), Wayne Rivers (APTN network) and André Rochon (chief scientist) were on the first helicopter flight out of Iqaluit. Sea bottom mapping of the narrow and shallow areas near Iqaluit took place the night before on August 1st after the ship dropped the anchor, so most of the day was spent disembarking scientists, embarking new scientific personnel and fresh produce. The early afternoon was used for a presentation about life on board to the new students and scientists. This was followed by a familiarization tour on the security features of the ship. Departure was at 16:00 sharp at ~15knots. The Fisheries and Oceans engineers are planning a presentation about the new icebreaker Diefenbaker tomorrow afternoon and they plan to interview scientists about the laboratory facilities onboard.

August 03, 2003

I was awaken around 6 am this morning with the sun shining in my face, which meant that the ship was not facing the right direction... Indeed, the captain had stopped the ship to investigate a floating yellow buoy along the Hall Peninsula (Baffin Island). It turned out to be a single floating buoy without anything attached to it. The weather is nice, there are almost no clouds, and we are sailing at 13 knots. There were also two polar bear sightings, both of which were swimming several miles off the coasts. At 13:00 the engineer team of the new icebreaker project will be doing a presentation to the scientific staff and discuss with scientists about the working aspects in the laboratories. The weather has been foggy since the early afternoon, but it is a light fog and sunny above us, so visibility is relatively good.

August 4, 2010

We are still in fog, but somewhat thicker than yesterday (still sunny above us), and we are still sailing at ~14 knots. At 08:45 we entered in a patch of sea ice, all of it relatively broken up. There will be a helicopter safety training session at 13:00 today, and a fire drill at 15:00. The fire drill went smooth, except that some scientist were improperly dressed, which resulted in an additional exercise, this time with the proper clothes. We have settled on Isbjorn Strait and Patterson Inlet for the fjord visit tomorrow. Isbjorn Strait is the fjord immediately north of Gibbs Fjord. We should arrive at the entrance of Isbjorn Strait around 10 am tomorrow morning. We entered an area of about 7/10 of ice in early afternoon and came out of it around 23:00.

August 5, 2010

The fog cleared up around 6:30 and we could see the spectacular mountains and glaciers of Baffin Island. At around 8:15, a polar bear on an ice patch was at minimum 30-40 meters from the ship. Great photo opportunity. We should be at the entrance of Isbjorn Strait around 10:00. At 8:40 we entered another small patch of ice. The schools on board program is going very well. Several scientists are giving presentations everyday on various aspects of the scientific operations that are carried onboard (contaminants, nutrients, sea bottom mapping, etc.). The evenings are complemented with various activities and general interest talks. The fjord visit was in Paterson Inlet and Dexterity Fjord. We had to struggle with shallow seamounts to get out of Paterson Inlet and were on our way towards the MVP transect area.

August 6, 2010

We made excellent time during the night, so we arrived on the MVP transect at 12:00 and started collecting data around 12:15. The initiation for the Arctic Circle is happening today and most of the afternoon will be used for that purpose. After analyzing the bottom at station 301, we noticed that the bottom was all rocks. It was decided to move the station 10 miles to the west at the position 44°10.958 N and 83°56.559W. That way everyone is happy, including those doing the bottom sledge, boxcore and gravity core. Fog prevented us from sending the helicopter ashore to allow the mooring technicians to calibrate their instruments in prevision of the mooring in a couple of days. Instead, the helicopter left at 18:00 and we will be waiting for its return while doing some mapping. The technicians returned earlier than expected because they could not calibrate their instruments. We will give it another try tomorrow. We arrived on station on time at 23:30, and should leave sometimes around 10 or 10:30 tomorrow morning.

August 7, 2010

The weather is almost perfect for sampling today and Lancaster Sound is totally free of ice. The only thing missing is the sun, but otherwise the temperature is nice, and most importantly, there is no wind. We arrived on station on time last night and all operations are on time. The station was finished one hour early. The mooring will be installed later today even though the instruments could not be calibrated. The calibration based on other moorings installed this year will be applied to the data collected throughout the year when the mooring is retrieved next year. After looking at the schedule and considering the large amount of ice in the NW Passage on our way to Kugluktuk and the fact that we were a few hours behind schedule, we took the following decisions during a scientific meeting this afternoon:

The mooring station (BIO) will be only for mooring deployment, followed by a CTD rosette;

The mooring will be deployed, even though the equipment could not be calibrated:

All further Nutrient stations will be limited to 1 rosette only;

The basic station 305 will remained untouched

Because station 312 (Basic station) is located within the heaviest concentration of sea ice (based on August 5 sea ice chart) we will probably turn it into a nutrient station and only do a rosette;

If we manage to maintain a good speed in Peel Sound, which is doubtful, we may change station 310 (a Nutrient station) into a basic.

The visit to Beechey Island is now off the schedule. The deployment of the mooring went as planed and relatively fast. It was all over within 50 minutes, from start to finish. Impressive!

August 8, 2010

The weather is foggy and rainy, and quite cold. We are at station 305 and all operations went on schedule, we are even ahead of time. The bottom here is mostly rocks with a sandy clay matrix, with lots of benthos on it. The first boxcore came back empty, and a second attempt brought back about 20 cm of rocks and sediment. We left station 305 at 9:15 and are making relatively good speed, between 8.5 and 10 knots. We are now in heavy ice 8-9/10 but still going at 9-10 knots. Anne Fontaine hurt her shoulder while trying to prevent a fall. She saw the nurse and there is nothing too serious about it. A report has been filled.

August 9, 2010

The ice conditions that were apparently bad on satellite pictures and on ice maps have improved dramatically. We are now ahead of schedule since we did such good speed yesterday, 14 knots instead of 8. Consequently, we have transformed Station 310 from a nutrient to a Basic station. Sampling went according to plan with the exception of the cancelled rosette and boxcore. The latter was cancelled due to the absence of sediment at the bottom. We are now into Larsen Sound in approximately +9/10 of ice, some of which is multiyear and our speed is ~5 knots. We stopped next to a multiyear piece of ice for measuring ice temperature and water temperature below the ice (70 21.218N, 98 57.57W) following a request from Dave Barber. Originally we were supposed to collect an ice core and keep drilling to measure temperature and salinity below the ice. Because the drilling

operation takes so long (drill by hand), we will only take one corer-length of ice and keep moving after that. We were once again making good speed after we left the sea ice station, so we will be able to turn station 312 into a basic as originally planned. 19:25 sunny and a sea of oil!!!

August 10, 2010

We arrived on station late because of fog and ice. The second rosette was cancelled due to a problem with the splice, which will have to be re-done, hopefully in time for tonight Nutrient station 314. The weather is nice and sunny, with a bit of fog. Joannie Ferland hit her head on the bow thrusters room while opening the door. A report has been filled Steeve Gagné managed to repair the rosette. He replaced the connectors on the rosette itself but there was still a communication problem, which turned out to be in the conductive wire itself. One of the small wires inside the main cable was broken, probably due to the way the rosette is handled during operations. Steeve will write a note about it in his report. In the mean time he had to cut 10 m of conductive wire, and the problem is now fixed. We left the last station at 20:30, Kugluktuk time.

August 11, 2010

We arrived in Kugluktuk at 11:30 and everyone is getting busy packing, cleaning, storing, writing. At 13:00 local time, the helicopter went to the airport to pick up some of the mooring material that was shipped earlier by Keith Levesque. A total of X trips were required to get everything aboard. The students from Schools on Board will make a slide and music presentation of their last 10 days aboard the ship tonight at 19:00.

4 Leg 2a – ArcticNet/BP – 12 August to 26 August 2010 – Beaufort Sea

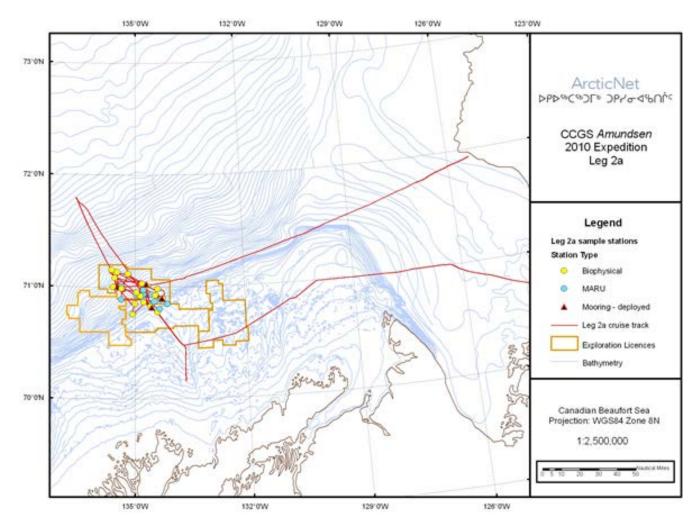
Chief Scientist: Martin Fortier¹ (Martin.Fortier@arcticnet.ulaval.ca)

¹ ArcticNet, Pavillon Alexandre-Vachon local 4081, 1045 Avenue de la Médecine, Université Laval, Québec, QC, G1V 0A6, Canada.

4.1 Introduction and objectives

The science program during Leg 2a of the 2010 CCGS *Amundsen* Expedition was a collaboration between ArcticNet and its industry partner BP. The region of study was centered around BP's exploration acreages, EL449 and EL451, which lie north of the Tuktoyaktuk peninsula in the southern Beaufort Sea, Northwest Territories. The main focus of Leg 2a was to complete the Environment and Marine Resources component of the ArcticNet-BP collaborative program. The specific objectives of Leg 2a were to:

- Sample at 18 biophysical stations distributed in EL 449 and EL 451.
- Service and redeploy some of the 8 subsurface moorings deployed in EL 446, EL449 & EL451 in 2009. The remaining moorings were serviced during Leg 2b.
- Deploy 12 bottom anchored Marine Autonomous Recording Units (MARU) in EL 449 and EL 451.
- Depending on ice conditions, deploy a moored Met/Ocean surface buoy for the duration of the leg.
- Upon encountering ice, conduct ice thickness and roughness surveys using the helicopter mounted EM Induction system and deploy ice drift satellite beacons on large ice floes in and around the Pokak lease block.


4.2 Synopsis of operations

This section provides a general synopsis and timeline of operations during Leg 2a. Detailed cruise reports provided by onboard participants and including specific objectives, methodology and preliminary results for projects conducted during Leg 2a are available in Part II of this report. A detailed scientific log of all sampling operations conducted during the expedition is also available in Appendix 2.

Leg 2a started in Kugluktuk, NT on 12 August coinciding with a full Coast Guard crew change. Science participants and Coast Guard crewmembers joined the ship using a chartered Boeing 737, which left Quebec City in the early morning of 12 August and landed later in the afternoon in Kugluktuk. The *Amundsen's* departure from Kugluktuk and transit towards the first sampling station in the southern Beaufort Sea was delayed until the morning of 13 August because of maintenance requirements on one of the ship's engines.

While transiting in Amundsen Gulf just north of Cape Bathurst, a pod of bowhead whales was spotted by the Inuvialuit Marine Wildlife Observers working from the ship's bridge. The observers counted approximately 20 individual whales (not corrected for re-sightings).

The ship reached the first biophysical sampling station (BP10-018) in the early morning of 15 August. During the remaining 10 days of Leg 2a, scientists and crew worked 24 hours a day to complete the ambitious cruise plan. All 12 MARUs were deployed, operations at 18 biophysical sampling stations were completed and a total of 5 moorings were retrieved and 4 were redeployed. Sampling at 18 biophysical stations involved 25 CTD-Rosette casts, 18 vertical plankton net tows, 18 horizontal plankton net tows, 25 box-cores and 18 Agassiz trawls. At selected stations, additional surface water sampling was conducted from the 7.33 m Zodiac launch. One radiosonde (meteorological balloon) was launched. Moreover, a multitude of oceanic and atmospheric parameters were measured continuously throughout the leg using the Amundsen's extensive array of continuous samplers (SM-ADCP, EK-60 scientific echosounder, water surface pCO₂ and CTD on track system, foredeck and top bridge met towers, ceilometers, radiometer, all-sky camera). On the bridge, Marine Wildlife Observers spotted and identified marine mammals and seabirds for a 14 hours period each day. The EM302 multibeam sonar and the Knudsen sub-bottom profiler collected highresolution bathymetry and sub-bottom data as field conditions permitted during the entire leg.

Leg 2a cruise track and sampling sites

5 Leg 2b – ArcticNet/BP – 26 August to 23 September 2010 – Beaufort Sea

Chief Scientist: Steve Blasco¹ (<u>Steve.Blasco@NRCan-RNCan.gc.ca</u>) ¹ Natural Resources Canada (NRCan), Geological Survey of Canada (Atlantic), Bedford

Institute of Oceanography, 1 Challenger Drive, Dartmouth, NS, B2Y 4A2, Canada.

5.1 Introduction and objectives

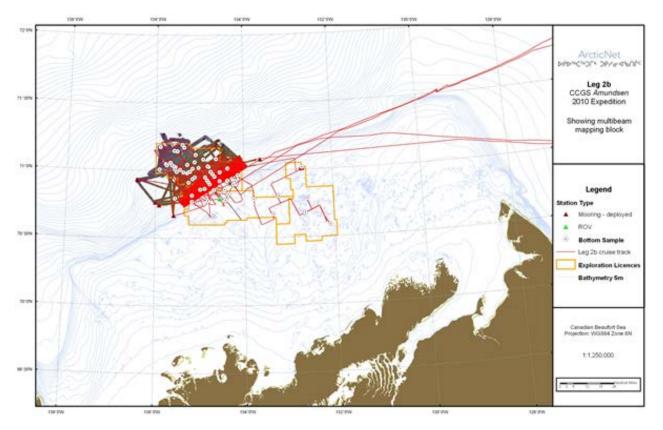
The science program during Leg 2b of the 2010 CCGS *Amundsen* Expedition was a collaboration between ArcticNet and its industry partner BP. The region of study was centered around BP's exploration acreages, EL449, EL451 and EL453 which lie north of the Tuktoyaktuk peninsula in the southern Beaufort Sea, Northwest Territories (Figs). Water depths in the study region range from 40m on the Mackenzie Shelf to over 1000m along the Beaufort-Mackenzie slope. The joint program was focused on geotechnical and geochemical bottom sampling with piston and box cores, multibeam bathymetry and subbottom mapping, oceanographic mooring recovery and deployment, a remotely-operated vehicle (ROV) dive, and water column and atmospheric sampling.

The principal objectives for Leg 2b were to:

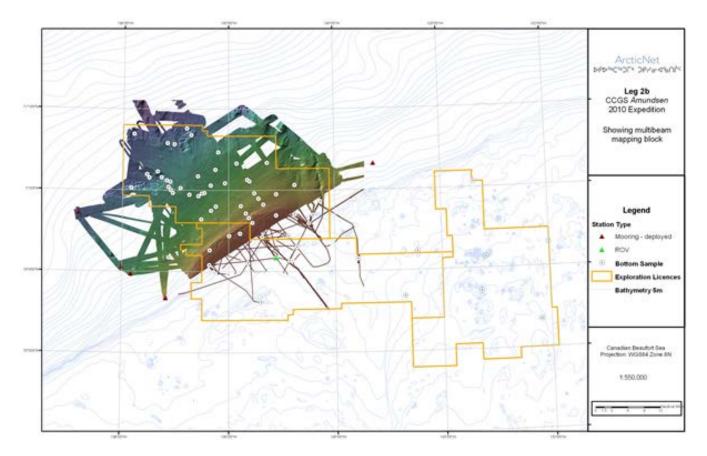
- Collect 44 piston cores, and 16 box cores for the BP-ArcticNet collaboration as well as complimentary piston and box cores for the Geological Survey of Canada (GSC)
- Recover and redeploy the oceanographic moorings not completed during Leg 2a
- Conduct remotely-operated (ROV) surveys on selected targets (time permitting)

5.2 Synopsis of operations

This section provides a general overview operations during Leg 2b. Detailed cruise reports provided by onboard participants and including specific objectives, methodology and preliminary results for projects conducted during Leg 2 are available in Part 2 of this report. A detailed scientific log of all sampling operations conducted during the Leg is also available in Appendix 2.


Leg 2b operations took place from 26 August to 23 September starting and ending with crew rotations in Sachs Harbour, NT. The 27-day Leg entailed 22 days of scientific operations and 5 days where the CCGS *Amundsen* was dispatched on an emergency Canadian Coast Guard Search and Rescue operation north of Kugluktuk, NT to rescue passengers from the grounded MV *Clipper Adventurer*.

Despite the unforeseen loss of 5 days of science, the program was an overwhelming success, with all sampling operations during Leg 2b completed as planned. Access to the MV *Clipper Adventurer* grounding site was only possible because of the mapping work


CCGS *Amundsen* had completed during previous expeditions allowing the ship to approach within a safe distance to the rescue site. Additionally, the use of a side-mounted multibeam system on the barge to map the shallow regions near the site, facilitated rescue operations and allowed the CCGS *Amundsen* to approach as near as possible for the rescue of the passengers.

A total of 49 piston (including 4 gravity) cores and 22 box cores were collected, together with approximately 8900 km of multibeam and sub-bottom data. Four oceanographic moorings, deployed in 2009, were recovered, serviced and redeployed and an ArcticNet mooring deployed in 2008 and recovered during Leg 2a was redeployed during Leg 2b. One remotely-operated vehicle (ROV) dive was completed on top of a seabed mud volcano and 10 CTD-Rosette casts were performed for water sampling.

In addition to the seabed mapping data collected in the offshore Beaufort study area, the Coast Guard rescue of the MV *Clipper Adventurer* allowed the CCGS *Amundsen's* bottom mapping team to collect additional multibeam and sub-bottom data while transiting back and forth to the grounding site in the Coronation Gulf and to collect site-specific data around the area of the grounded vessel. Both the *Amundsen's* EM302 multibeam mapping system and the shallow-water EM3002 mounted on the Coast Guard barge were used in this effort (see Section 20).

Leg 2b survey region showing BP exploration licenses, cruise track, sampling sites, and multibeam block

Leg 2b survey region showing BP exploration licenses, sampling sites and multibeam mapping block.

6 Leg 3a – ArcticNet/BP – 23 September to 7 October 2010 – Beaufort Sea

Chief Scientist: Keith Levesque¹ (<u>keith.levesque@arcticnet.ulaval.ca</u>) ¹ ArcticNet, Université Laval, Pavillon Alexandre-Vachon local 4075, 1045 avenue de la Médecine, Québec, QC, G1V 0A6, Canada.

6.1 Introduction and objectives

Leg 3a was a 2-week sampling program that included varied objectives and study areas. The major objectives for Leg 3a were to:

- Recover the 12 bottom anchored Marine Autonomous Recording Units (MARU) deployed on 15 August in the Pokak lease block.
- Recover 3 ArcticNet subsurface oceanographic moorings and deploy 5 new moorings in Amundsen Gulf.
- Expand the multibeam and sub-bottom coverage in the Pokak lease block priority areas.
- Conduct ice thickness and roughness surveys using the helicopter mounted EM Induction system, deploy Position-Only Sea Ice Motion Beacons on large ice floes and deploy Ice mass balance buoys.

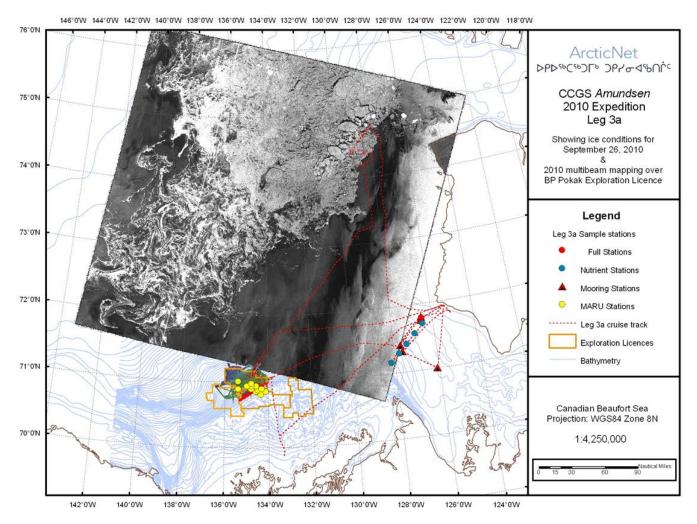
6.2 Synopsis of operations

This section provides a general synopsis and timeline of operations during Leg 3a. Detailed cruise reports provided by onboard participants and including specific objectives, methodology and preliminary results for projects conducted during Leg 3 are available in Part II of this report. A detailed scientific log of all sampling operations conducted during the leg is also available in Appendix 2.

Leg 3a started in Sachs Harbour on 23 September coinciding with a full Coast Guard crew change. Participants and crewmembers joined the ship using a chartered Boeing 737 going from Quebec City to Inuvik and then by chartered twin otter aircrafts from Inuvik to Sachs Harbour.

The crew change on 23 September went late into the evening. Not all luggage and science cargo made it on board that day because of diminishing daylight, which prevented the helicopter from completing the transfers. The *Amundsen* stayed at anchor for the night and the transfer of luggage and cargo was completed the next day around 10:00 AM.

Leaving Sachs Harbour, the *Amundsen* transited towards the first of three ArcticNet subsurface oceanographic moorings to be recovered in Amundsen Gulf. The recovery of the three moorings was completed on 24 September. On 25 and 26 September, the bottom-anchored hydrophones (MARUs) deployed during Leg 2a in the BP-Pokak lease block were


recovered. Unfortunately, one MARU did not surface even after sending the release signal on 4 separate occasions. In total, 11 out of 12 MARUs were successfully recovered.

From September 27 to 29, the vessel conducted ice related sampling operations in the southern Beaufort Sea. Operations included helicopter EMI surveys, ice beacon/buoy deployments, measurements of ice properties and icebreaking maneuvers. This 3-day foray into the ice field was planned as the first of two. Unfortunately, the second foray had to be cancelled for various reasons (see below).

Over the next 7 days, operations were complicated by spells of very bad weather, the need to Medevac a Coast Guard crewmember (Medevac from Tuktoyaktuk) and a Vessel fuel situation. Approximately 72 hours were lost due to bad weather alone. When weather permitted, scientists and crewmembers of the *Amundsen* worked 24 hours per day to complete the remaining scientific operations before the crew change of 07 October. Overall, 5 ArcticNet subsurface oceanographic moorings were deployed and sampling operations were conducted at 1 Full station and 5 Nutrient stations.

Operations during the leg also included 37 hours of dedicated multibeam and sub-bottom profiling surveys in the BP-Pokak lease block. These surveys allowed for completion of the coverage in priority area #2 and for the acquisition of additional coverage in the northeast corner of the block. In addition, a multitude of oceanic and atmospheric parameters were measured continuously using the *Amundsen*'s extensive array of continuous samplers (e.g., SM-ADCP, EK-60 scientific echosounder, water surface *p*CO2 and CTD on track system, foredeck and top bridge met towers, ceilometers, radiometer, all-sky camera). On the bridge, a Marine Wildlife Observer spotted and identified marine mammals and seabirds each day for a survey period of 12-h.

Sampling for Leg 3a ended on the evening of 06 October when the Vessel started its transit back to Sachs Harbour for a scientific crew change on the morning of 7 October.

Cruise track and sampling stations in Amundsen Gulf and Southern Beaufort Sea during Leg 3a of the 2010 ArcticNet expedition. Imagery for the ice conditions on 26 September is from Radarsat-2.

7 Leg 3b – ArcticNet – 7 October to 22 October 2010 – Canadian Arctic Archipelago and Baffin Bay

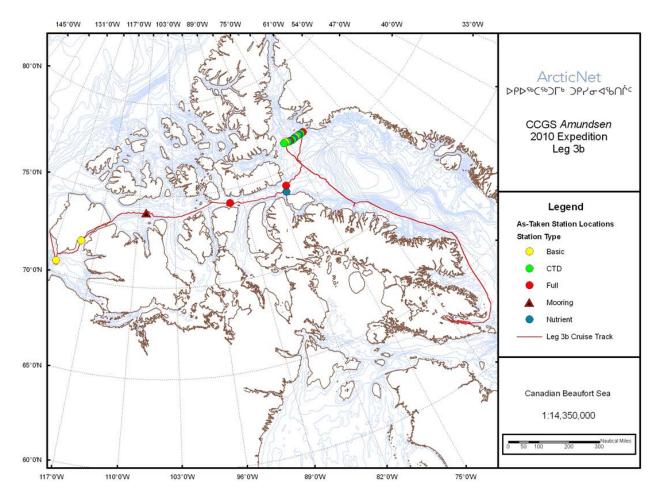
Chief Scientist: Jean-Éric Tremblay¹ (<u>jean-eric.tremblay@bio.ulaval.ca</u>) ¹ Université Laval, Département de Biologie, Pavillon Alexandre Vachon, Québec, QC, G1V 0A6, Canada.

7.1 Introduction and objectives

Leg 3b was a 2-week sampling program that included varied objectives and study areas such as mooring retrieval, mapping and ice operations.

7.2 Synopsis of operations

This section provides a general synopsis and timeline of operations during Leg 3b. Detailed cruise reports provided by onboard participants and including specific objectives, methodology and preliminary results for projects conducted during Leg 3 are available in Part 2 of this report. A detailed scientific log of all sampling operations conducted during the leg is also available in Appendix 2.


Leg 3b started from Sachs Harbour on 07 October. Thirteen new science personnel boarded the *Amundsen* to join the 18 that were already on board. After some urgent work in the engine room, the ship lifted anchor and sailed toward station 405 while running the multibeam system. Station 405 was sampled successfully during the morning of the 8th, after which the *Amundsen* sailed toward Prince of Wales Strait with some filming/photography of the ship off Nelson Head. Station 450 (100 m) was sampled during the night of 09 October and the ship resumed its northward transit. The next morning, the ship dropped anchor in 40 m of water (115° 58.099W, 73° 09.256N). The mooring team was sent ashore (site located on a small platform overlooking the ocean) to calibrate the 4 ADCPs to be deployed on mooring 308. The ship stayed in proximity due to poor visibility and uncertain weather conditions. Science passengers were transported on flight 1 (3 minutes) with half the equipment and the Polar Explorer contingent were transported on flight 2 with the rest of the calibration equipment.

Once out of Prince of Wales Strait, the ship travelled to an area in Viscount Melville Sound for a bathymetric survey. Unfortunately, the area was uniformly covered with new ice which made the survey impossible so we sailed east along the transit line until we met a large ice floe. The ship stayed against the ice floe for the rest of the night and resumed course at first light on the 10th. Ice operations began at 12h30 when the helicopter left with scientists to conduct ice-related sampling operations. They found a suitable ice floe (74° 13.350, 108° 04.387, taken from the helo's GPS) north east of the ship and deployed an ice mass balance buoy, an ice thickness buoy and a backup tracker buoy. The helicopter stayed with

them for the duration of the operations. Since headwinds were strong and very cold, we parked the ship in an ice floe to get the mooring equipment out of the cargo hold and let the mooring technicians assemble the mooring. The helicopter came back at 17h00 as mooring assembly was nearing completion and we sailed for a lead located slightly north of the area targeted for mooring deployment (500-m line). Given the heavy ridging that typically occurs in this area we judged that a deeper deployment was reasonable. Mooring operations began in over 518 meters of water at 18h30 with the zodiac deployment and were successfully completed at 19h45. Since triangulation was impractical amidst the multiyear ice floes surrounding us, we passed over the mooring with the ship and the mapping team got a precise fix and visual echo of the instruments (74.09703°N, 108.41523°W, 536 m). The mooring responded to acoustic queries. We moved slightly off site and began operations for station 308 with a Rosette. Horizontal tows (Tucker and Agassiz) had to be cancelled as the hole got smaller and visibility was poor. The ship began transiting toward Resolute at 8h20 on the 11th and briefly paused against an ice floe to deploy an ice beacon (Matthew Asplin) at 74°5.971N, 107°17.953W.

As the ship passed Griffith Island the helicopter went to Resolute to disembark and pick-up DFO participants (engineers). We then moved to station 304, which was successfully sampled as a full. Transit toward the entrance of Lancaster Sound was relatively slow due to difficult ice conditions. Due to time constraints we only sampled two stations, located slightly to the east of their intended position due to ice conditions. The ship then sailed to the northeast to reach Baffin Bay. Transit during the night of the 15th was very slow due to reduced visibility and ice conditions. A problem was found with the propeller, which created unusual vibrations. The captain feared the heavy ice had damaged it, but a visual inspection revealed no apparent problem. Due to poor visibility (no helicopter) and a bad Radarsat image, it was impossible to perform ice island operations on the way up, so we opted to sample the stations starting at the eastern end of the transect between Greenland and Ellesmere Island. The sampling was completed without problems until reaching station 106 in the early morning of 17 October. Ice conditions got tougher and the visibility was extremely poor. After performing the CTD-Rosette cast at station 106, operations were stopped. We resumed transit for station 105 in the morning of the 17th and were successful in finding a hole sufficiently large for all operations.

Mid-way through sampling of station 105 on Sunday 17 October, the helicopter was launched to perform an ice patrol over the remaining portion of the transect and, if possible (visibility was poor), deploy beacons on Petermann Ice Island PII-B (26 miles to the west). Two beacons were successfully deployed on the northern (#21340) and southern (#26340) portions of the fragment between 15h15 and 15h45. The circumference of PII-B was estimated at 20.8 nautical miles (total area of 90 km² assuming an semi-oval shape with maximum width of 4.5 nm and maximum length of 6.5 nm) and the freeboard was 14-15 m on average (but quite variable). Some of the largest fragments around it had up to 25 m of freeboard. It looked like a medium-sized piece had just broken off the southwestern tip and other small fragments were visible on the horizon.

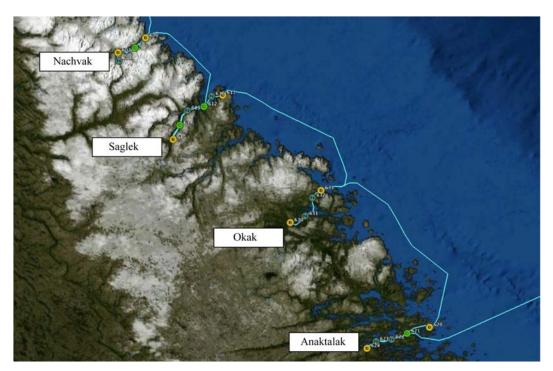
Cruise track and sampling stations in Amundsen Gulf, Parry Channel and Baffin Bay during Leg 3b of the 2010 ArcticNet expedition.

On Monday 18 October, another beacon was deployed (#23350) near the center of fragment PII-B-a (formerly labeled PII-C). Conditions were initially sunny and then partly overcast. The fragment's shape was highly irregular and bore evidence of recent fragmentation at its southern end. The freeboard was more homogenous and seemed slightly higher than for PII-B. Its approximate dimension was 28 km². We had saved a fourth beacon to deploy on one of the two small fragments drifting south, but Radarsat support was unavailable and our transit was taking us to the general area late in the day – given the short window left for helicopter ops and the bad weather coming our way, we could not wait until the 19th and pushed forward toward Iqaluit. All three beacons are transmitting and the data is archived in Winnipeg. Arrangements are being made to provide access for CIS.

Beacon ID	Fragment	Date	Latitude N	Longitude W
21340	PII-B	17-Oct-10	76 17.933	77 58.261
26340	PII-B	17-Oct-10	76 15.057	77 54.774
23350	PII-B-a (C)	18-Oct-10	75 58.700	78 01.190

Upon completing beacon deployments, the *Amundsen* continued its transit in stormy weather toward Iqaluit for the science crew change. A bathymetric survey was conducted in Frobisher Bay during the night of the 22nd since the ship had to wait for daylight before entering the narrows to reach Iqaluit.

8 Leg 3c – ArcticNet – 22 October to 31 October 2010 – Northern Labrador fjords


Chief Scientist: Michel Gosselin¹ (<u>michel.gosselin@uqar.qc.ca</u>) ¹ Université du Québec à Rimouski, Institut des sciences de la mer (ISMER), 310, allée des Ursulines, Rimouski, Quebec G5L 3A1

8.1 Introduction and objectives

Leg 3c of the 2010 CCGS *Amundsen* ArcticNet Expedition took place from 22 to 31 October, starting in Iqaluit and ending in Quebec City. The overall goal of the expedition was to conduct oceanographic sampling in the fiords of Nunatsiavut, including Nachvak Fiord, Saglek Fiord, Okak Bay, and Anaktalak Fiord. Science operations onboard the CCGS *Amundsen* constitute a major field component of the ArcticNet Nunatsiavut Nuluak project, which is focused on studying the impacts of climate change and modernization on the Nunatsiavut marine environment and communities (NI's Ken Reimer of the Royal Military College and Tom Sheldon of the Nunastsiavut Government).

In partnership with the Nunatsiavut Government, the Royal Military College of Canada (Environmental Sciences Group), Parks Canada, the Department of National Defense, Environment Canada, the Department of Fisheries and Oceans, Vale Inco., and the Torngat Joint Secretariat, the ArcticNet Nunatsiavut Nuluak project is conducting a baseline inventory and comparative assessment of four northern Labrador fiord-based marine ecosystems. This project uses both a shore-based (operated from the Kangidluasuk base camp) and ship-based (from the CCGS Amundsen) approach. The overall objective of this project is to address Inuit concerns regarding the ecological integrity of the marine environment in northern Labrador by acquiring a better understanding of the effects of climate change, natural resource extraction and contaminants along the northern Labrador coast. An integrated regional approach has been implemented to ensure concerns from all stakeholders, including major industrial and governmental organizations, are adequately addressed. The four marine ecosystems that are currently being studied are Nachvak Fiord (a pristine ecosystem adjacent to the Torngat Mountains National Park Reserve), Saglek Bay (an area with a local source of PCB contamination due to historical operations at the site), Okak Bay (an area used frequently by Inuit for harvesting and travel), and Anaktalak Bay (the shipping route to the VALE Inco. Nickel mine, formerly Voisey's Bay nickel mine. These studies complement each other and provide excellent comparative data for other northern marine ecosystems currently being investigated by ArcticNet. The study integrates Inuit and Inuit knowledge throughout the entire process including the selection of indicators, areas of study, analysis and interpretation of data, and conducting field research. This project has developed strong partnerships with other northern organizations, such as the Torngat Wildlife, Plants and Fisheries Secretariat, Sikumiut Environmental Management Ltd., Nunatsiavut Health and Environment Review Committee (NHERC), Putjotik Fisheries

Ltd., and CJ Webb Inc. These valuable partners along with Nunatsiavut community members help us carry out our science program and determine the direction of our research.

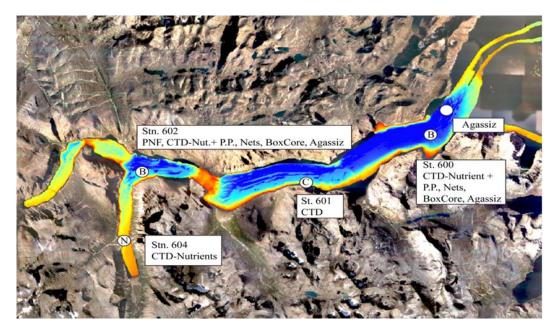
The 4 Nunatsiavut Fiords and sampling stations visited during the 2010 CCGS *Amundsen* expedition.

The ArcticNet Nunatsiavut Nuluak program builds on previous work, and on wellestablished relationships between the proponents and their partners. In particular, the cruise aboard the CCGS Amundsen this year built upon a successful eight-week field season that was completed via long-liners run from the co-managed Kangidluasuk base camp during August and September, prior to boarding the ship. The sampling approach taken aboard the Amundsen was to complement the shore-based research whenever possible and pursue activities that would not be possible without the ship and its equipment. The sampling onboard the Amundsen consisted of CTD and MVP profiles, nutrient and phytoplankton samples using the rosette, zooplankton sampling using an obligue Tucker trawl and vertical Hydrobios and Monster tows for species composition, biomass, food-web dynamics, DNA barcoding and contaminants, multibeam seabed mapping and sub-bottom profiling, Agassiz trawl for biodiversity, contaminants, and food-web dynamics (see Table 1). Under the ArcticNet Nunatsiavut Nuluak umbrella, Ken Reimer, Trevor Bell, Sam Bentley and Reinhard Pienitz are spearheading the research into coastal food-web dynamics and contaminants, benthic biodiversity and habitat mapping, sediment flux and freshwater delivery, and paleoceanographyic work, respectively. Zooplankton (biomass and composition), phytoplankton, nutrients, and MVP and CTD profiles are being carried out

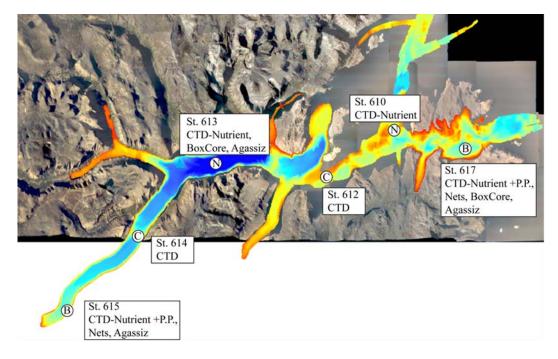
jointly by the Nunatsiavut Nuluak team and Louis Fortier, Michel Gosselin, Jean-Éric Tremblay and Yves Gratton, respectively.

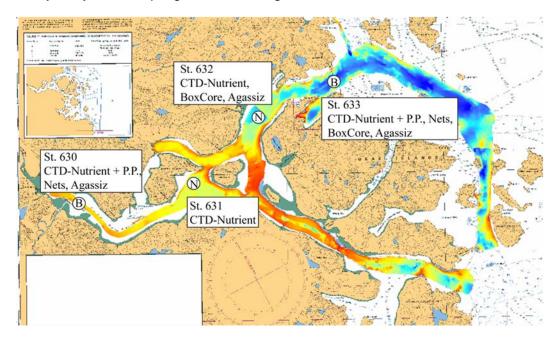
8.2 Synopsis of operations

This section provides a general synopsis and timeline of operations during Leg 3c. Detailed cruise reports provided by onboard participants and including specific objectives, methodology and preliminary results for projects conducted during Leg 3 are available in Part 2 of this report. A detailed scientific log of all sampling operations conducted during the leg is also available in Appendix 2.

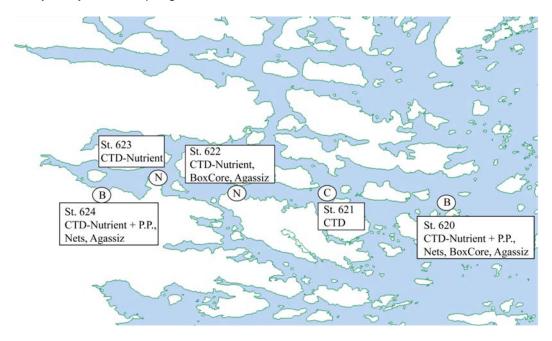

The science crew change took place on 22 October in Iqaluit from 10:00 AM to 14:00 PM at the onset of Leg 3c. Seven new science personnel boarded the CCGS *Amundsen* to join the 10 that were already on board. The ship left Iqaluit at 6:00 PM and arrived at the mouth of Nachvak Fiord 24 hours later. A bathymetric survey was conducted at the mouth of the fiord for a period of 3hrs. The Moving Vessel Profiler (MVP) was deployed and towed between stations 600 to 604 from 9:30 PM to 11:55 PM. On 24 October, water column and benthic sampling was conducted at 5 stations in the fiord starting at the Basic station 600 at 2:00 AM and ending at the Nutrient station 604 at 5:30 PM. In addition to work conducted at these stations, the Agassiz trawl was deployed at the mouth of the fiord and the barge was also deployed for a bathymetric survey of Tinutyarvik Cove.

The ship left Nachvak Fiord for Saglek Fiord at 8:00 PM on the 24th. On 25 October, water column and benthic sampling was conducted at 6 stations in Saglek Fiord, starting at Basic station 617 at 1:30 AM and finishing at Basic station 615 at 17:30 PM. The MVP was deployed between stations 615 and 617 from 6:15 PM to 10:00 PM. On the same day, the barge was deployed from 8:30 to 4:00 PM to survey with the multibeam system the Nachvak Brook delta in Torr Bay. Seabed mapping was also conducted with the *Amundsen* between stations 610 to 612 and in the Northern Arm of the Fiord.


The ship transited from Saglek Fiord to Okak Bay from 10:00 PM on 25 October to 8:00 AM on 26 October. The barge was deployed from 8:30 AM to 4:00 PM for seabed mapping at Okak Island Cove. In Okak Bay, water column and benthic sampling was conducted at 4 stations, starting at Basic Station 633 at 8:45 AM and finishing at Basic station 630 at 20:30 PM. The MVP was then deployed between stations 630 and 633 from 20:45 PM to 23:30 PM.


The ship transited from Okak Bay to Anaktalak Fiord from 23:30 PM on 26 October to 8:00 AM on 27 October. The barge was deployed for seabed mapping of the inner basin from 8:30 AM to 2:45 PM. The MVP was deployed between the Niatak Island and station 624 from 9:45 AM to 1:00 PM. Water column and benthic sampling was conducted at 5 stations in the fiord, starting at Basic Station 624 at 1:00 PM and finishing at Basic station 620 at 1:30 AM on 28 October. On 27 October at 4:10 PM, 4 science participants disembarked the ship at Nain. The travel time of the helicopter was 31 minutes.

After the last sampling station in the Anaktalak Fiord on 28 October, the ship travelled to the southern Makkovik Margin for seabed mapping. The ship arrived on site at 12:30 PM. After discussion with Travis Hamilton, Pim Kuus and Commandant Stéphane Julien, the seabed mapping of the Makkovik margin was cancelled at 1:30 PM due to difficult weather and working conditions (eastern winds at 23 knots and waves of 2-3 m). The ship then headed to Québec City. The demobilization of ship's laboratories started in the afternoon and continued until arrival in Québec City on 31 October at 8:45 AM.


Bathymetry and sampling stations in Nachvak Fiord.

Bathymetry and sampling stations in Saglek Fiord.

Bathymetry and sampling stations in Okak Fiord.

Sampling stations in Anaktalak Fiord.

Part II – Project reports

1 Mercury behavior and transformation in the Arctic water and lower atmosphere – Leg 1a, Leg 1b

ArcticNet Phase 2 – Project titled *Effects of Climate Change on Contaminant Cycling in the Coastal and Marine Ecosystems* (www.arcticnet.ulaval.ca/Phase 2/Stern_contaminants)

Project leader: Holger Hintelmann¹ (<u>hhintelmann@trentu.ca</u>) Cruise participant Leg 1a and Leg 1b: Anabelle Baya¹

¹ Trent University, Department of Chemistry, 1600 West Bank Drive, Peterborough, ON, K9J 7B8, Canada.

1.1 Introduction

Mercury (Hg) is a global pollutant from both natural and anthropogenic sources that is persistent in the atmosphere and can thus be transported and accumulated in areas far from the emission sources. Mercury contamination in the arctic regions, for long considered pristine with virtually no natural or anthropogenic sources, is a good example of the long-range transport of mercury.

Due to the accumulation of Hg in the arctic region over the past decades, mercury contamination in the arctic is currently an important environmental and health issue that raises great scientific interest. The aquatic wildlife and local communities are already exposed to high levels of mercury through the contamination of the food chain. During the past decade, steady progress has been made in the research of Hg cycling in the Polar Regions. The atmosphere has been identified as the major pathway for its introduction into the Arctic environment. However, due to limited analytical methods, the presence of organic mercury, mainly dimethylmercury (DMHg) and monomethyl mercury (MMHg) in the atmosphere and thus the direct contribution of the atmosphere has not been investigated. Considerable knowledge gaps still exist on the pathways and delivery processes of mercury to the aquatic food chain. Furthermore, limited studies have been conducted to investigate the methylation and demethylation rates of mercury in the aquatic ecosystems. A good understanding of the various MMHg sources to the aquatic ecosystem as well as the mechanisms controlling the methylation of Hg and the release and removal of MMHg is thus very important for the development of contamination control methods and mitigation processes to prevent toxicity.

Legs 1a and 1b of the 2010 Expedition was a continuity of the work that was started in 2010 in the Canadian high arctic. The main aim of the study was to gather information for a better understanding of the sources and fate of MMHg in the arctic aquatic ecosystem.

The objectives of the study were to:

- Measure organic mercury (monomethyl mercury, MMHg and dimethylmercury, DMHg) and inorganic mercury (Gaseous Elemental mercury, GEM) species concentrations in the lower atmosphere and in open water in the Arctic to investigate temporal and spatial trends in concentrations using a newly developed analytical method based on species specific mercury isotopic dilution and online ethylation.
- Investigate mercury methylation and demethylation rates in Arctic aquatic environments using species specific Hg isotopic dilution.
- Measure GEM flux over the ocean to better understand the pathway of Hg in the Arctic and quantify the exchange between the ocean and atmosphere.

1.2 Methodology

1.2.1 Air sampling

Air was sampled for organic Hg determination during transit between the stations over open water. The air sample and permeation set up was located in a container on the foredeck while the sample line was on the side of the ship so that air above the water could be sampled.

1.2.2 Air sampling for organic mercury

Air was pumped at a rate of 1 lpm and mixed with Hg species specific enriched isotopes (CH₃²⁰⁰HgCl and (CH₃)₂¹⁹⁸Hg) and passed through an online ethylation system before trapping on 4 Tenax traps placed in a row. The ethylation system consisted of a 45 µm cellulose filter impregnated with freshly prepared ethylating reagent (200 ml acetate buffer with 100 ml of sodiumtetraethylborate). The ethylated monomethyl mercury and dimethylmercury if present in the air sample was trapped on Tenax traps. Mercury enriched isotopes from a permeation source were added to the ethylation system to assess the ethylation efficiency of MMHg and the transformations that may occur during the sampling and online ethylation processes. The traps were collected after sampling and stored in the dark at 4°C. The Hg species collected on the traps will be determined using thermal desorption to release the Hg species followed by analysis by GC-ICPMS at the Worsfold Water Quality Centre at Trent University.

Air was sampled for organic mercury while transiting in the Hudson Bay during Leg 1a and Lancaster Sound during Leg 1b for DMHg and MMHg using the online ethylation system.

1.2.3 GEM Flux and concentrations measurements

A new technique based on the micrometeoroligal approach (Edwards et al. 2005) was developed and used to measure the mercury flux over ocean water.

The flux system (Figure 1.1) was deployed on Full stations during Leg 1a, and Basic and Full stations during Leg 1b, for a minimum sampling time of 2 hours. The air samples at 2 different heights were analyzed using the 2537A Tekran mercury vapor analyzer with a data point at one height every 5 minutes.

Furthermore, during transit air was continuously sampled for GEM concentrations in the lower atmosphere (Figure 1.1). The GEM values obtained from the Tekran 2537A will be valuable for spatial differences in GEM concentrations in Hudson Bay compared to the Canadian High Arctic.

Figure 1.1. Left: GEM Flux measurement over water; Right: Sampling inlets for GEM concentrations measurement in the lower atmosphere

1.2.4 Water sampling

Water was sampled at 3 different depths (surface, bottom and chloromax or minimum oxygen) using acid-washed Teflon lined Niskin bottles (12 L) mounted on the CTD-Rosette.

The species of mercury that will be measured in sea water are:

- Monomethyl Mercury (MMHg)
- Dimethyl Mercury (DMHg)
- Total Dissolved Gaseous Mercury (DGM)

For dissolved gaseous mercury and dimethylmercury determination, water was sampled from the Niskin bottles to sparging bottles and purged with argon gas for 30 min at a rate of 200 ml min⁻¹. Dissolved gaseous mercury and dimethylmercury were trapped on gold traps

and carbo traps respectively. A soda lime trap will be attached before the carbo trap to capture moisture. Water samples for MMHg determination were collected separately in 500 ml glass bottles and stored at -20 °C in the dark for analysis in the lab at the Worsfold quality centre, Trent University, by ethylation, purging and trapping.

Water samples were collected at Basic stations for mercury species concentrations measurements while incubations were also conducted during Leg 1a at Full stations for methylation and demethylation rates determination.

For incubations, the water samples collected in sparging glass vessels were spiked with isotope enriched Hg species as detailed in Table 1.1 and incubated for 12 hrs intervals (t=0, t=12, t=24) over 24 hours. After spiking, the DMHg concentrations were determined by purging and trapping on carbo traps while water samples were collected in glass bottles and frozen for MMHg concentrations determination in the lab. The incubations were done in triplicates for each sample interval.

Table 1.1. Spiking rate for enriched isotopes of Hg species for Hg methylation and demethylation rate investigation by incubation.

Hg Species	Spiking rate (ng/L)
²⁰⁰ Hg ²⁺	40
CH₃ ¹⁹⁹ Hg⁺	0.4
(CH ₃) ₂ ¹⁹⁸ Hg	0.25

1.3 Preliminary results

No preliminary results are available at this time as the water and air samples still need to be analyzed in the laboratory at Trent University.

The results will be able to confirm the presence and quantify the concentration of organic mercury in the atmosphere. The results from the incubations of water samples with Hg species including DMHg are expected to provide some data that will contribute for a better understanding of the transformations and rate of reactions of the Hg species in the water column.

2 Surface climate, air-surface fluxes and carbon exchange dynamics – Legs 1a, 1b, 2a, 2b, 3a, 3b

ArcticNet Phase 2 – Project titled *Carbon Exchange Dynamics in Coastal and Marine Ecosystems* www.arcticnet.ulaval.ca/Phase 2/Papakyriakou carbon dynamics.

Project leaders: Tim Papakyriakou¹ (papakyri@cc.umanitoba.ca) and BP (Legs 2a, 2b and 3a) Cruise participants Leg 1a: Bruce Johnson¹ and Meredith Pind¹ Cruise participants Leg 2b: Meredith Pind¹ Cruise participants Leg 2a: Bruce Johnson¹ and Emmelia Stainton¹ Cruise participant Leg 2b: Bruce Johnson¹ Cruise participant Legs 3a & 3b: Kyle Swystun¹

¹ University of Manitoba, Centre for Earth Observation Science (CEOS), Wallace Building, 125 Dysart Rd, Winnipeg, MB, R3T 2N2, Canada.

2.1 Introduction

Specific objectives relate to the development of tools (observation, model, and remote sensing) to assist with regional budgeting of (primarily) heat, CO₂ and momentum, and in the longer term, to develop the necessary process-level understanding of the exchange dynamics, to forecast how the ocean's response to climate change and variability will affect the atmosphere-ocean cycling of CO₂.

The surface meteorology and flux program of the *Amundsen* is designed to record basic meteorological and surface conditions, and to study exchanges of momentum, heat and mass across the atmosphere-sea ice-ocean interface in support of the objectives described above.

Novel to the air-sea studies is the ship-based application of the eddy covariance technique to the direct measurement of heat, CO_2 and momentum. Eddy covariance represents the lone local scale (100s m to km) direct measurement of the respective fluxes using micrometeorological approaches.

2.2 Methodology

2.2.1 Micrometeorology and eddy covariance flux tower

Table 2.1 lists the variables that were monitored, the location where the sensor was installed, the purpose for each variable, along with the sampling and averaging frequency (if applicable).

Table 2.1. Inventory and application of ship-based variables monitored during the 2010 ArcticNet Expedition onboard the *Amundsen*.

Variable	Instrumentation	Location of instrument	Purpose	Sample/ Avg Frequency (s)
air temperature (Ta)	HMP45C-212	foredeck tower	meteorological	1/60

Variable	Instrumentation	Location of instrument	Purpose	Sample/ Avg Frequency (s)
relative humidity (RH)	HMP45C-212	foredeck tower	meteorological	1/60
wind speed (ws-2D)	RM Young 05106-10	foredeck tower	meteorological	1/60
wind direction (wd-polar)	RM Young 05106-10	foredeck tower	meteorological	1/60
barometric pressure (Patm)	Vaisala PTB101B	foredeck tower	meteorological	1/60
sea surface temperature (Tsfc)	Apogee SI-111	foredeck	meteorological	1/60
ship heading (H)	OceanServer OS5000	foredeck tower	ancillary information	1/
ship speed over ground (SOG), course over ground (COG) ³	Garmin GPS16x- HVS	foredeck tower	ancillary information	1/
ship location (lat., long.)	Garmin GPS16x- HVS	foredeck tower	ancillary information	1/
incident solar radiation	Eppley Pyranometer	wheel-house platform	heat budget and microclimate	2/60 (Leg 1) 3/60 (Leg 2&3)
incident long-wave radiation	Eppley Pyrgeometer	wheel-house platform	heat budget and microclimate	2/60 (Leg 1) 3/60 (Leg 2&3)
photosynthetically active	Kipp & Zonen	wheel-house platform	heat budget and	2/60 & 1/60 (Leg 1)
radiation (PAR)	PARLite	& foredeck tower	microclimate	3/60 (Leg 2&3)
wind speed 3D (u, v, w)	Gill Wind Master Pro	foredeck tower	air-sea flux	0.1 (10 Hz)
ultra-violet A and B (UVA, UVB)		wheel-house platform	heat budget and bioclimate	0.1 (10 Hz)
sonic temperature (Ts)	Gill Wind Master Pro	foredeck tower	air-sea flux	0.1 (10 Hz)
atm. water vapor concentration (ρ _v)	LICOR LI7500 & LI7000	foredeck tower	air-sea flux	0.1 (10 Hz)
atm. concentration of CO_2 (ρ_c)	LICOR LI7500 & LI7000	foredeck tower	air-sea flux	0.1 (10 Hz)
rotational motion (accx, accy, accz, r x, r_y, r_z)	Systron Donner MotionPak	foredeck tower	air-sea flux	0.1 (10 Hz)
LI7500 sensor temperature	Fine wire thermocouples	foredeck tower	air-sea flux	0.1 (10 Hz)
barometric pressure (mbar)	All Sensors BARO-A- 4V-MINI-PRIME	foredeck tower	air-sea flux	0.1 (10 Hz)
upper sea water	General Oceanics	under-way system,	air-sea flux and	3/60 (Leg 1)
temperature (Tsw)	8050 <i>p</i> CO ₂	forward engine room	ancillary information	3/120 (Leg 2&3)
sea water salinity (s)	General Oceanics	under-way system,	air-sea flux and	3/60 (Leg 1)
	8050 pCO ₂	forward engine room	ancillary information	3/120 (Leg 2&3)
dissolved CO2 in seawater	General Oceanics	under-way system,	air-sea flux and	3/60 (Leg 1)
	8050 pCO ₂	forward engine room	ancillary information air-sea flux and	3/120 (Leg 2&3)
рН	General Oceanics 8050 pCO ₂	under-way system, forward engine room	air-sea flux and ancillary information	3/60 (Leg 1) 3/120 (Leg 2&3)
	General Oceanics	under-way system,	air-sea flux and	3/60 (Leg 2&3)
dissolved O2 in seawater	8050 pCO ₂	forward engine room	ancillary information	3/120 (Leg 2&3)
	0000 0002	iorward engine room		JIZU (LEY 200)

The micrometeorological tower located on the front deck of the *Amundsen* (Figure 2.1) provided continuous monitoring of meteorological variables and eddy covariance parameters. The tower consisted of slow response sensors that recorded bulk meteorological conditions (air temperature, humidity, wind speed/direction, surface temperature, barometric pressure) and fast response sensors that recorded the eddy covariance parameters (CO_2/H_2O concentration, 3D wind velocity, 3D ship motion, air temperature). In addition, radiation sensors were installed on the roof of the wheelhouse to provide information on incoming long-wave, short-wave and photosynthetically active

radiation (PAR) (Figure 2.2). All data was logged to Campbell Scientific dataloggers; a model CR3000 logger was used for the eddy covariance data, a CR1000 logger for the slow response met data, and a CR23X for the radiation data. All loggers were synchronized to UTC time using the ship's GPS system as a reference. Ship heading and location (latitude and longitude) were measured to compensate measured apparent wind information for ship direction and motion.

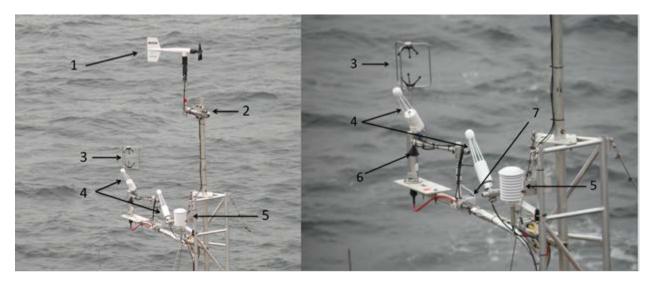


Figure 2.1. Flux and meteorological sensors on the foredeck tower. 1-RM Young 05106 2D anemometer, 2-Kipp & Zonen Par-Lite, 3-Gill Wind Master Pro 3D sonic anemometer, 4-Licor LI-7500 open path IRGA, 5-Vaisala HMP45C212 T/RH probe, 6-sample inlet for Licor LI-7000 closed path IRGA, 7-All Sensors BARO-4V-PRIME-MINI pressure transducer.

Figure 2.2. Radiation sensors on the roof of the wheelhouse. 1-Eppley PSP Pyrgeometer, 2-Kipp & Zonen UVS-AB-T Radiometer, 3-Kipp & Zonen PAR-Lite, 4-Eppley PIR Pyranometer.

New for 2010, a second sensor for measuring photosynthetically active radiation was installed on the tower to be used as a check against times when the sensor on the roof of the wheelhouse is shaded by the structures on the wheelhouse. A time series comparison

of the two PAR sensors for the period 15 July to 19 July (Leg 1a) is shown the preliminary results section below (Figure 2.5). A different type of IR transducer (Apogee SI-111) was installed for measuring surface skin temperature. Results from Leg 1a seem to indicate that this sensor is more reliable than the sensors that were used in previous years.

The eddy covariance system on the tower made use of two separate gas analyzers and a single 3D sonic anemometer. The dual gas analyzers system allowed making use of both closed path and open path eddy covariance systems. The open path gas analyzer has the benefit of making measurements concurrently with the sonic anemometer, but the closed path gas analyzer is not as easily disturbed by adverse weather conditions.

In an effort to gather more precise data for making corrections to the calculated fluxes as measured by the open-path CO_2 system, three fine-wire thermocouples were attached to the sensor head for the 2010 Expedition. The thermocouples were installed to measure the temperatures of the base, spar and top bulb of the sensor head. A fast response barometric pressure sensor was placed on the tower at the same level as the CO_2 measurements were made, in an effort to more accurately measure the pressure fluctuations on the flux tower.

In order to make sure that the two systems were comparable, careful calibrations were performed on both instruments. The closed path system was based on a LI-7000 gas analyzer which employed two optical cells, one of which was used to monitor the drift of the instrument by constantly passing a stream of ultra-high purity N₂. In addition, the sample cell of the instrument was calibrated daily using the ultra-high purity N₂ to zero the CO₂ and H₂O measurements, and a reference gas of known CO₂ to span the instrument. Occasionally, a span calibration of the H₂O sensor was performed using a dew point generator (model LI-610). The open path gas analyzer (LI-7500) could not be calibrated as conveniently, and so it was calibrated approximately every two weeks. In general, it was found that this was effective for this instrument, which did not drift significantly over time.

In previous cruises, the LI7000 gas analyzer was housed in the foredeck container, which necessitated a long sample line (~22 m). Processing of the flux data has shown that signal noise appears to be drowning out any CO_2 signal that may be present. With this in mind, the gas analyzer with its system of valves and solenoids, was housed inside a watertight enclosure that was placed on the foredeck of the ship, close to the base of the flux tower (Figure 2.3). As a result, the sample line was reduced in length to about 8 m.

Figure 2.3. LI7000 gas analyzer enclosure at the base of the flux tower.

The ship motion correction necessary for the application of the eddy covariance technique requires accurate measurement of ship motion (3 plane measurement of angular acceleration and rate), heading and location. Rotational motion was monitored using a multi-axis inertial sensing system. Data related to heading and location was available from the ship's GPS and gyro. Using these data, yaw, pitch and roll, in addition to translational motion was calculated, and collectively this information was used to correct our 3D wind measurements.

Leg 1a – 1 July to 2 August 2010 – Hudson Bay

Leg 1b – 2 August to 12 August 2010 – Baffin Island and Canadian Arctic Archipelago

The flux tower was operational as of 2200 UTC on 03 July 2010, the day following departure from Quebec City. Final installation of the new LI7000 enclosure at the base of the tower was completed as of 1530 UTC on 06 July 2010. The system operated continuously throughout Leg 1a, with short stoppages (usually less than 15 minutes) for calibration of the analyzers and tower maintenance. The closed-path system (LI7000) was turned off while at the port of Churchill on 20 July, but remained operational while at Churchill on 25 July.

The testing of the ship's motion effect on calculated CO_2 fluxes was conducted during Leg 1. A shroud was placed over the sensor head of the second analyzer to isolate it from external CO_2 fluxes.

Leg 2a – 12 August to 26 August 2010 – Beaufort Sea Leg 2b – 26 August to 23 September 2010 – Beaufort Sea

The flux tower system was operational for the entire duration of Leg 2, with short, daily interruptions (generally < 30 minutes) for calibration and tower maintenance. Wherever possible, these interruptions were timed to correspond with poor flux conditions (i.e. when the ship was stopped at a station). The pump for the closed path system was turned off on numerous occasions when the ship was at station, and the wind was coming from behind

the ship. During these interruptions, which could last for several hours, the flux system was measuring "dirty" air originating from the ship.

From past *Amundsen* expeditions, the accuracy of the Licor LI-7500 open path IRGA for ship-based eddy covariance studies has been called into question. Specifically, it is questioned whether the ship's motion, or the presence of salt particles on the lens of the analyzer affects the calculated fluxes. With this in mind, a second LI-7500 was placed on the flux tower in close proximity to the first LI-7500 and the sonic anemometer during Leg 2. This second LI-7500 was allowed to remain "dirty" (i.e. the lenses of the analyzer were not cleaned during tower maintenance) for periods of time lasting up to three weeks. Post processing will determine whether an apparently clean analyzer, as indicated by its diagnostic value, but which has not been cleaned on a regular basis, gives different estimates of CO_2 fluxes.

An ultraviolet radiometer was added to the suite of radiation sensors located on the roof of the wheelhouse at the beginning of Leg 2a. This sensor provided separate measurements of global UV radiation (i.e. the sum of direct solar radiation plus radiation which has been scattered by particles in the air) in the UV-A and UV-B spectral ranges. The sensor was operational effective 0145 UTC on 15 August.

Leg 3a – 23 September to 7 October 2010 – Beaufort Sea

Leg 3b - 7 October to 22 October 2010 - Canadian Arctic Archipelago and Baffin Bay

The flux tower system was operational for the entire duration of Legs 3a and 3b, with short, daily interruptions (generally <30 minutes) for calibration and tower maintenance. Wherever possible, these interruptions were timed to correspond with poor flux conditions (i.e. when the ship was stopped on station). The pump for the closed path system was turned off on numerous occasions when the ship was at station, and the wind was coming from behind the ship. During these interruptions, which could last for several hours, the flux system was measuring "dirty" air originating from the ship.

2.2.2 On-track pCO₂ system

A General Oceanics 8050 pCO₂ system has been installed on the ship to measure dissolved CO₂ within the upper 5 m of the sea surface in near real time (Figure 2.4). The system was located in the engine room of the *Amundsen*, and draws sample water from the ship's clean water intake. The water was passed into a sealed container through a shower head, maintaining a constant headspace. This set up allowed the air in the headspace to come into equilibrium with the CO₂ concentration of the seawater, and the air was then cycled from the container into an LI-7000 gas analyzer in a closed loop. A temperature probe was located in the equilibrator to provide the equilibration temperature. The system also passed subsample of the water stream through an Idronaut Ocean Seven CTD, which measured temperature, conductivity, pressure, dissolved oxygen, pH and redox. All data was sent directly to a computer using software customized for the instrument.

Figure 2.4. The on-track pCO₂ system located in the engine room of the CCGS *Amundsen*. The equilibration chamber is the clear cylinder (left, vertical with black top) and the gas analyzer is the green box behind the computer display.

The LI-7000 gas analyzer was calibrated daily using ultra-high purity N_2 as a zero gas, and a gas with known CO_2 concentration as a span gas. Spanning of the H_2O sensor was not necessary because a condenser removed H_2O from the air stream before passing into the sample cell.

The system was installed while still at port in Quebec City, but was only fully operational late on 5 July 2010. The system ran continuously throughout Leg 1a, with short stoppages (i.e. <30 minutes) for cleaning of the filter and CTD. The pump and water flow were turned off when the ship was at port in Churchill on 20 July and 25 July, although the system was still logging data.

The pCO₂ system was operational for the entire duration of Leg 2 and during Legs 3a and 3b, with short stoppages (generally <30 minutes) for cleaning of the filter and CTD assembly.

2.2.3 Idronaut CTD

New for Leg 2b, an Idronaut CTD was equipped with inputs for external sensors, one of which was designed to accept a thermistor that can be used to measure the temperature of the water as close to the ship's clean water intake as possible, and before the water is heated by passing through the pump and water lines inside the engine room. A thermistor had been set up during the original instrument installation at the beginning of Leg 1, but never recorded accurate temperatures. It was finally fixed during Leg 2b, became operational as of 01:30 UTC on 13 September, and recorded until the end of Leg 3b.

2.2.4 Continuous automated CO₂ sampler (CACS) (Leg 1a)

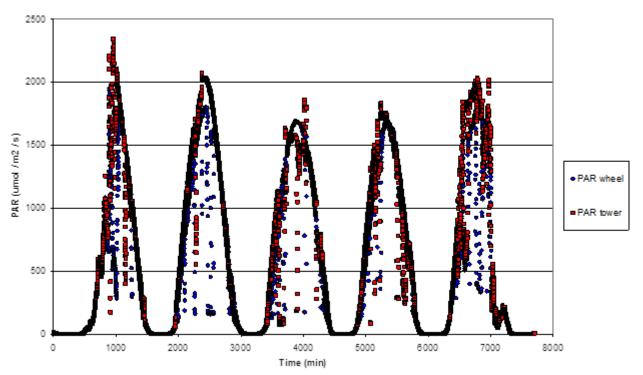
The CACS system measured dissolved gas in water using a peristaltic pump to draw water into the inner chamber of a gas permeable mini-module. A closed loop air stream was pumped through the outer chamber of the mini-module, and equilibrated with the dissolved gases in the water. The air loop then passed through an in-line Nafion tubing, an oxygen sensor, and a CO₂ analyzer (LI-820 Gas Hound). Data was logged on a Campbell Scientific CR10X datalogger at 15 second intervals.

During Leg 1a, the portable CACS pCO_2 system was used from the barge to do a more detailed survey of dissolved gases within the estuaries of the Great Whale River, Nelson River and Hayes River. Four estuary stations were sampled at the Great Whale River on 13 July, and seven stations were sampled at the Nelson / Hayes River estuary on 22 July (Table 2.2). Dissolved CO₂ values from the Great Whale River in comparison to the values measured at the ship's location are illustrated in Figure 2.6 of the results section below. Unfortunately, there were problems with the datalogger, and most of the data from the Nelson and Hayes rivers was lost.

River	Station	Latitude N	Longitude W
GWR	GW1	55°16.092'	077°46.228'
GWR	GW2	55°16.578'	077°49.182'
GWR	GW3	55°17.393'	077°50.656'
GWR	GW4	55°21.132'	077°53.466'
NR	B6	57°06.681'	092°26.495'
NR	B8	57°10.746'	092°23.873'
NR	B10	57°14.821'	092°13.192'
NR	B12	57°19.312'	092°06.892'
NR	BD20	57°19.968'	091°52.197'
HR	D6	57°11.252'	091°57.846'
HR	D8	57°14.478'	091°52.130'

Table 2.2. Locations of estuary sampling in the Great Whale River (GWR), Nelson River (NR) and Hayes River (HR) in Hudson Bay during Leg 1a.

2.2.5 Data processing


The high frequency variables associated with the eddy covariance system were scanned at 0.1 second intervals and stored as raw data and as 1 minute averages. The raw data were used to compute the fluxes (heat, mass and momentum) over time intervals that can range from 10 min to 60 min. Fluxes were computed during post processing.

The slow-sequence largely meteorological variables were scanned at 1 second intervals and saved as 1 minute averages. In regard to wind speed and direction, ship motion correction was applied in post-processing.

2.3 Preliminary results

2.3.1 Leg 1a – 1 July to 2 August 2010 – Hudson Bay

A time series comparison of the two PAR sensors for the period 15 July to 19 July is shown (Figure 2.5).

Dissolved CO_2 values from the Great Whale River in comparison to the values measured at the ship's location are illustrated in Figure 2.6. Unfortunately, there were problems with the datalogger, and most of the data from the Nelson and Hayes rivers was lost.

Figure 2.6. pCO_2 values from the on-track (underway) system and the CACS stations at the Great Whale River in Hudson Bay on 13 July 2010 during Leg 1a.

2.3.2 Leg 2a – 12 August to 26 August 2010 – Beaufort Sea Leg 2b – 26 August to 23 September 2010 – Beaufort Sea

A comparison of the CO_2 concentrations from the closed-path system on the meteorological tower and the p CO_2 system in the engine room recorded on 19 August is shown in Figure 2.7.

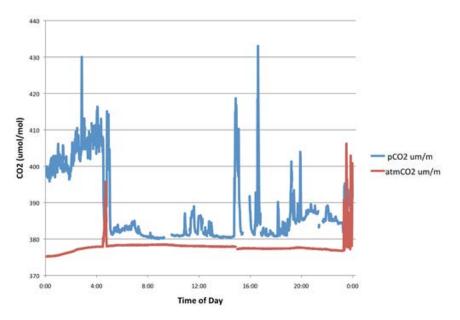


Figure 2.7. CO₂ concentrations from the closed-path system on the foredeck meteorological tower and the on-track system in the engine room for 19 August 2010 during Leg 2a.

A comparison of the CO_2 concentrations from the closed-path system on the meteorological tower and the p CO_2 system in the engine room for 15 September is shown in Figure 2.8. This comparison gives a general view of the flux gradient between the ocean and the atmosphere.

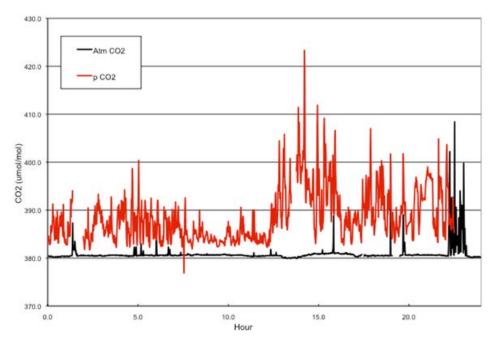


Figure 2.8. Comparison of CO_2 concentrations from the closed-path system on the foredeck meteorological tower and the on-track system in the engine room for 15 September 2010 during Leg 2b.

A comparison of the water temperatures measured by the on-track pCO₂ system (equilibrator T; inlet T), with the surface skin temperature measured from the foredeck

meteorological tower for 15 September is shown in Figure 2.9. From this data, the amount of heating the water has undergone before entering the equilibrator can be observed, as can the good coherence between the measured surface temperature and the water temperature at the inlet.

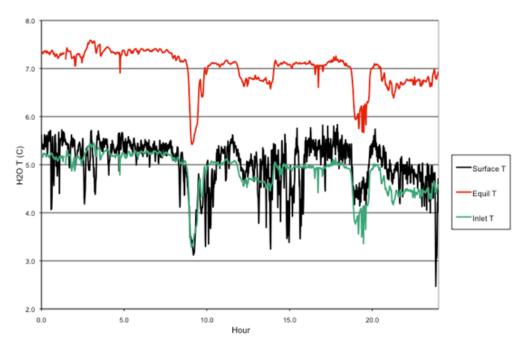


Figure 2.9. Comparison of surface skin temperature from the foredeck meteorological tower, and water temperatures (equilibrator and inlet) from the on-track pCO₂ system for 15 September 2010 during Leg 2b.

2.4 Comments and recommendations

During Leg 2, a considerable amount of potentially good quality data was lost due to the orientation of the ship with respect to the prevailing winds while located at sampling stations. Flux data is routinely filtered out if the ship lies within the flux footprint of the eddy covariance system. All flux data needs to be corrected for the ship's motion in post-processing, so data collected while the ship is stationary is potentially of higher quality. Whenever possible, the ship should be oriented to face into the prevailing winds while at a station to avoid this loss of data.

3 Ocean – sea ice – atmosphere processes – Legs 2a, 2b, 3a and 3b

ArcticNet Phase 2 – Project titled *The role of sea-ice in ArcticNet IRISes*. <u>http://www.arcticnet.ulaval.ca/pdf/phase2/barber_seaice.pdf</u>

Project leaders: David Barber¹ (<u>dbarber@cc.umanitoba.ca</u>), BP (Legs 2a, 2b and 3a) and IORVL (Leg 3a)

Cruise participants Leg 2a: Ryan Galley¹, Emmelia Stainton¹, Kerri-Ann Warner¹ and David Babb¹

Cruise participants Leg 2b: David Babb¹

Cruise participants Leg 3a: Ryan Galley¹, Kerri-Ann Warner¹, David Babb¹, Matthew Asplin¹ and Alexander Komarov¹

Cruise participants Leg 3a: Matthew Asplin¹

¹ University of Manitoba, Centre for Earth Observation Science (CEOS), 460 Wallace Building, Winnipeg, MB, R3T 2N2, Canada.

3.1 Introduction

The research interest of the Sea Ice and Atmosphere group revolves around improving the understanding of ocean-sea ice-atmosphere dynamic and thermodynamic coupling. A large ensemble of ship-based sensors, and physical sampling equipment that collect sensor-based atmospheric, oceanic and sea ice data are utilized. Data collection is driven by many interlinked objectives, including:

- Develop a dataset of ice thickness, ice concentration and ice roughness for use in future engineering purposes.
- Develop and improve of satellite-based remote sensing of sea ice using a ship-based EM sampling program, and physical sampling of sea ice geophysical and electrical properties.
- Improve the understanding of atmospheric coupling of sea ice dynamics and thermodynamics by monitoring atmospheric conditions, sea ice motion, sea ice roughness, and growth and ablation of sea ice.
- Improve the dynamic modeling of dynamic and thermodynamic ocean-sea iceatmosphere processes.
- Continue time-series monitoring of near surface water currents, and upper ocean light, temperature and salinity near the industry exploration lease blocks (Legs 2a, 2b and 3a).
- Evaluate the sea ice climatology of the Southern Beaufort Sea, the Pokak Block lease area, and the Canadian Arctic Archipelago (Leg 3b).

Active ArcticNet sampling programs, such as ice geophysics and dynamics, ice distribution and thickness, are of particular interest to BP and IORVL for the planning and development of potential future offshore drilling platforms. The group's 2010 ArcticNet monitoring and sampling program was expanded to accommodate monitoring within BP and IORVL exploration blocks in the southern Beaufort Sea during Legs 2a, 2b and 3a. The emphasis of the expanded program was on site specific time-series monitoring of near surface water currents, and upper ocean light, temperature and salinity.

3.2 Methodology – Sea ice

3.2.1 Helicopter-based EMI surveys

Figure 3.1. Helicopter with IcePic taking off from CCGS *Amundsen* on 18 Aug 2010 during Leg 2a. The helicopter-based EM induction system (IcePic) was used during Leg 2a only, to derive sea ice thickness and surface roughness for mobile first-year and multi-year ice.

In Leg 2a, the system worked as it should have for two flights on 18 August 2010 in the southern Beaufort Sea centered about 72°N, 137°W.

In Leg 3a, the system worked as it should have for two flights on 27 September, three flights on 28 September and one flight on 29 September 2010 in the southern Beaufort Sea centered about 74.5°N, 129°W.

These flights were made under 'new' pilot guidelines for the BO-105 Nose Stinger Ice Probe Operations, which did not seem to affect the data quality at first glance.

The raw data from these flights has been post-processed only to the point of a 'first-look' on-board. Preliminary data indicates that water at the surface sometimes creates specular reflection in the laser data making it impossible to determine the sea ice thickness at these points.

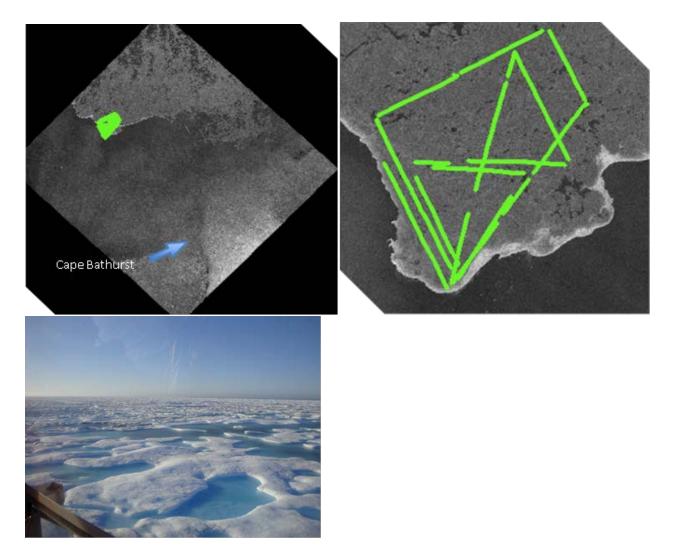


Figure 3.2. [Top left] Radarsat-2 geotiff showing the position of the sea ice and the flight lines made on 18 Aug 2010 during Leg 2a, noting the position of Cape Bathurst in the bottom right corner (R2 Scene shows only uncalibrated DN's). [Top right] A blow-up of the top left image – approximate distance from side to side is 45 nm. [Bottom] Photo of the area taken from the helicopter during flight. Note the amount of water at the ice surface (D. Babb).

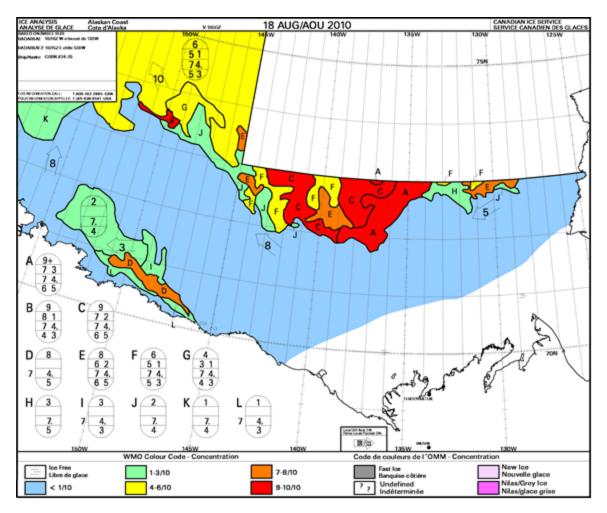


Figure 3.3. Canadian Ice Service digital analysis for the 'Alaska' region on 18 August 2010. The area in which the helicopter flew with the IcePic is approximately denoted by the black square.

During leg 2a, the Canadian Ice Service digital chart for the area flown for the date and location of the flights shows that the ice over-flown was 9+/10ths in concentration, made up of 7/10ths old ice (vast floes) and 3/10ths thick first-year sea ice (big floes) (Figure 3.3).

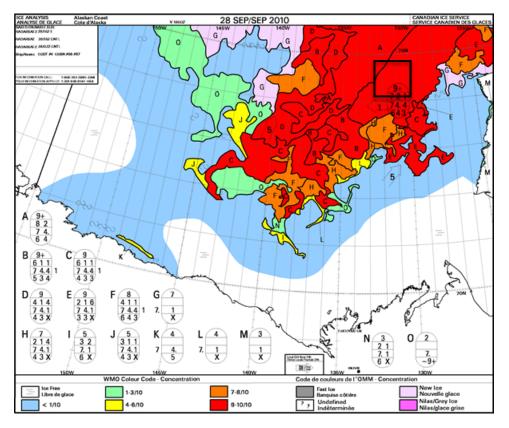


Figure 3.4. Canadian Ice Service digital analysis for the 'Alaska' region on 28 September 2010. The general area CCGS *Amundsen* operated in on 27, 28, 29 September is denoted by the black square.

During Leg 3a, the Canadian Ice Service digital chart for the median date and area where flights were conducted shows that the sea ice was 9+/10ths in concentration and made up of 7/10ths old ice (vast floes) and 2/10ths grey sea ice (Figure 3.4).

3.2.2 Position-only sea ice motion beacons

Leg 2a - ArcticNet/BP - 12 August to 26 August 2010 - Beaufort Sea

Three Oceanetics position-only beacons were installed during HEMI operations on 18 August 2010. Positions in WGS84 are given in Table 3.1. The functionality of these beacons has not yet been ascertained.

Table 3.1. Coordinates of the three ice motion beacons deployed during Leg 2a in the Beaufort Sea.

Beacon ID	Latitude N	Longitude W
289110	71°52.499	137°05.054
285100	72°07.458	137°24.673
284100	71°57.506	136°42.249
Leg 3a – Arcticl	Net/BP – 23 Sep	tember to 07 O

Fourteen Oceanetics position-only beacons (POB) were installed during operations on 27-29 September 2010. Each has been confirmed to have successfully transmitted to

Winnipeg.

Serial Number	Date Deployed	Latitude N	Longitude W
25480	20100928	74° 37.750'	129° 12.202'
96630	20100928	74° 45.621'	129° 17.889'
23490	20100928	74° 42.637'	128° 49.458'
27340	20100928	74° 27.328'	128° 21.573'
22370	20100928	74° 21.025'	129° 09.127'
24350	20100928	74° 29.664'	128° 44.408'
21490	20100929	74° 44.230'	127° 54.229'
21350	20100929	74° 50.572'	127° 38.244'
27480	20100929	75° 01.491'	127° 02.534'
20350	20100929	74° 50.105'	128° 14.388'
23340	20100929	74° 43.068'	128° 03.939'
29340	20100929	74° 43.981'	127° 46.057'
27350	20100929	74° 33.195'	128° 08.074'
28330	20100929	74° 35.697'	129° 16.226'

Table 3.2. Summary of POB deployments carried out during Leg 3a giving Oceanetics Iridium serial number, date and location for each (datum is NAD83).

Leg 3b – ArcticNet – 07 October to 22 October 2010 – Canadian Arctic Archipelago and Baffin Bay

Four ice motion beacons were deployed during Leg 3b, and are summarized below (Table 3.3). One beacon was deployed on a large multi-year ice floe in Viscount Melville Sound on 11 October 2010. The other three were deployed by helicopter on the Petermann Ice Island fragments in northern Baffin Bay.

Table 3.3. Summary of ice beacon deployments carried out during Leg 3b giving Oceanetics Iridium serial number, date and location for each (datum is NAD83).

Beacon ID	Date	Latitude N	Longitude W
20490 (MYI)	11 Oct 2010	74° 06.048	107° 18.948
21340	17 Oct 2010	76° 17.816	077° 59.402
26340	17 Oct 2010	76° 15.105	077° 54.972
23350	18 Oct 2010	?	?

3.2.3 Ice thickness camera (Leg 3b)

Ship-based monitoring using cameras and manual observations of sea ice concentration was carried out in close proximity to the ship. A downward-looking camera monitored ice thickness where ice breaking was necessary: when breaking through ice, some of the broken ice floes will turn on their side. Where imagery is clear and floe thickness can be estimated, estimates of ice thickness will be manually post-process from this photography.

3.2.4 Ice mass balance system installation

On 27 September 2010, a CEOS ice mass balance system (IMB04) was installed on a multi-year sea ice floe at 74°14.990'N, 128°49.025'W (NAD83). The ice floe was 237cm thick at the point where the temperature string was installed. There was 7cm of snow on the floe. The instrument mast, temperature string and underwater sounder were installed successfully and a successful transmission has been confirmed in Winnipeg since the system's installation.

Figure 3.5. Ice mass balance system (CEOS IMB04) installed in the Beaufort Sea on 27 September 2010 during Leg 3a.

3.2.5 Ship-based EM measurements

EM measurements using a C-Band scatterometer were conducted in order to observe the interaction of electromagnetic radiation with various ice conditions. The collected data will be used in electromagnetic modeling studies and for calibration of satellite remote sensing data. The results of this study will allow for us to improve our knowledge of the temporal evolution of sea ice physical, thermodynamic, and electrical properties during the late summer, and early ice formation season (late August, September, October).

During Leg 2a, on 18 August 2010, one site (71.47°N, 136.43°W) was scanned using the C-Band scatterometer on 18 August 2010. Coincident measurements of sea ice temperature and salinity at 5cm intervals were made.

During Leg 3a, on various occasions between 27 September 2010 and 29 September 2010. A calibration scan for the C-Band Scatterometer was conducted on 27 September 2010 at 74°21.4751'N, 128°27.9062'W. A total of six sites were scanned using the C-Band Scatterometer. Coincident measurements of sea ice temperature and salinity at 5cm intervals were made. Three ice cores were collected at each station for post processing in the lab to analyze density and microstructure. The final three cores taken from each sampling station will be shipped back to the University of Manitoba where they will be cut, shaved and processed in the cold lab. These samples will be used to analyze the vertical microstructure and the density of the ice at the various sites.

3.3 Methodology – Air-sea heat and momentum exchange (Leg 2)

A surface buoy suspending a 45 m string of sensors was deployed at 250 m (70°56.948'N, 134° 44.593'W), at 24:00 GMT on 24 August during Leg 2a. Eleven PAR (light intensity) sensors (JFE ALEC[©], model MDS MkV-L) and temperature/conductivity sensors (JFE ALEC[©], model ACT-HR Compact CT) were attached at 3, 6, 9, 12, 15, 20, 25, 30, 35, 40, and 45m. Two current profilers (Nortek Aquadopp) were positioned at 3 and 45m. The surface buoy was recovered at 00:30 GMT on 20 September during Leg 2b. All data from the PAR and CT sensors was downloaded and processed, and from a preliminary review the data appears to be good quality.

Figure 3.6. [Left] JFE ALEC[©] compact CT sensor. [Middle] Aquadopp current profiler. [Right] JFE ALEC[©] PAR sensor (Photo: E. Stainton).

3.4 Methodology – Atmosphere and meteorology

3.4.1 All-sky camera

The all-sky camera (Nikon D-90) system was used to take pictures of the sky in order to determine the percentage and type of cloud cover throughout the cruise. The system consisted of a Nikon D-90 camera outfitted with fish-eye lenses, mounted in a weatherproof enclosure.

The camera was programmed to take pictures using an external intervalometer set at 15minute intervals. The system was mounted in a small 'crow's nest' immediately above the ship's wheelhouse (Figure 3.7). The all-sky camera was fully functional upon arrival onboard, and should only require regular maintenance and data backup on future legs. Imagery collection commenced on 04 July 04, and will be post-processed into a tabular format describing cloud fractional coverage, cloud type, UTC date and time, and coordinates.

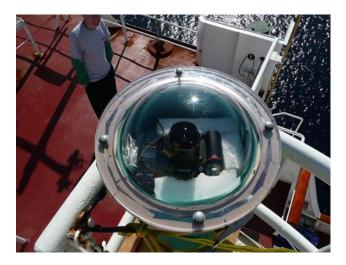


Figure 3.7. All sky camera (Nikon D-90) with fisheye lenses attached in a weatherproof enclosure.

The all-sky camera was fully functional during Legs 2a, 2b, 3a and 3b, and required only regular maintenance and data backup. Imagery will be post-processed into a tabular format describing cloud fractional coverage, cloud type, UTC date and time, and coordinates.

3.4.2 Ceilometer

The Vaisala CT25K ceilometer was used to measure the height of up to three separate cloud layers above the ship (Figure 3.8). The instrument measures backscatter from an active laser pulse to identify cloud heights. The instrument sampled at a frequency of approximately once every 30 seconds. The ceilometer was fully functional throughout all of Legs 2a, 2b, 3a and 3b. Routine maintenance and data backup was performed at regular intervals. All data files are raw text format, and will require post-processing.

Figure 3.8. The ceilometer (Vaisala CT25K) mounted at 90°.

3.4.3 Temperature and water vapour profiling radiometer

A radiometrics temperature and water vapour 3000A profiling radiometer (TP/WVP3000A) was used to measure the temperature, relative humidity, and pressure within the atmosphere using passive microwave radiometry at 22 – 29GHz, and 51 – 59GHz. The TP/WVP3000A was installed on a mount attached to the white container laboratory located directly behind the ship's wheelhouse (Figure 3.9). The instrument was suspended away from the roof of the shed to ensure that the field-of-view (approximately 15° above the horizon to the left and right to the zenith) was clear of any obfuscation.

Figure 3.9. The temperature and water vapour profiling radiometer (TP/WVP 3000A) mounted on the roof of the MetOcean Container.

The instrument generated vertical profiles of upper-level air variables including temperature, water vapour density, relative humidity, and liquid water from the surface to an altitude of 10km. The resolution of the measurements varied with height. The resolution of the instrument was 50m from the surface to an altitude of 500m, then increased to 100m from 500m to 2km altitude, and was 250m for measurements from 2km to 10km. In addition, the instrument also measured concurrent basic surface meteorology variables, including pressure, relative humidity, and ambient temperature. A skyward-looking infrared sensor measured the temperature of the sky. A rain-sensor detected the presence of any precipitation. The instrument also calculated integrated column water vapour, and liquid water content. The sampling frequency for all data was approximately one complete profile per minute.

The temperature and water vapour profiling radiometer (TP/WVP 3000A) was not operational during Legs 2a and 2b, having not been operational during Leg 1. Upon many attempts to get the unit functioning, it was determined that the issue was with the software and thus measures were arranged to have a new software package for the next leg. Upon the arrival of the Leg 3a participants, it was determined there was an ongoing problem from previous issues regarding an error message "server not ready." It was determined that the problem was related to a corrupt windows service (cryptography), which the profiler software depends upon, to run the profiler server software as daily scheduled task in windows task scheduler. The problem was corrected, and no further problems were noted with the software or hardware. The profiling radiometer was fully functional throughout leg 3B without any notable issues or errors. It should be noted that the radome window was very dirty at the end of the leg, and will need to be considered when working with the data.

A liquid nitrogen calibration was performed on 27 September 2010 in Leg 3a, and should be repeated at least once more during Leg 3b. All data files are raw text format, and will require post-processing. The end data product will have UTC date and time, and coordinates attached to surface and upper-level data values, and integrated liquid and water vapour.

3.4.4 Radiosondes

Balloon launches allowed physical sampling of the troposphere and were also used to profile low-pressure systems, cyclones, and periods of significant warm or cold-air advection aloft. Before launch, the radiosonde's temperature, pressure and humidity sensors are calibrated using the Vaisala ground station calibration unit. Surface meteorological observations are also noted and recorded for each launch. Starting meteorological conditions are input into the sounding including: sea level pressure, air temperature, relative humidity, and wind speed and direction.

Data was transmitted at a rate of one message per second via VHF radio (~400.00MHz). Each data message reported a value for pressure, temperature and humidity data (raw PTU data). GPS strings were also transmitted, and were used to calculate upper-level wind speed and direction. All radiosonde data files were exported as a raw time series, and will require quality assurance, and post-processing. Furthermore, an ongoing problem with the paired humidity sensors will need to be checked and rectified if necessary.

Figure 3.10. A weather balloon with attached radiosonde and the launch from the helicopter deck (Photos: M. Gervais).

In Leg 2, there was one meteorological balloon launched during Leg 2a but none during Leg 2b. Balloon launches were coordinated to correspond with the over-flights of the earthorbiting satellites CLOUDSAT and CALIPSO for an Arctic validation study currently being undertaken by this group.

During Leg 3a, a total of 13 balloons were launched, which were carried out at least once per day to provide continuous physical sampling of the troposphere. If a significant closed low-pressure system is affecting the region, the sampling interval is increased to 6-hourly. All radiosonde launches are summarized in Table 3.4.

Date (GMT)	Time (GMT)	Tair (°C)	RH (%)	P (mbar)	Wind speed (kts)	Wind dir. (°true)
20100925	0600	-0.2	89	1008.1	14	020
20100925	1800	1.0	71	1000.77	23	190
20100926	0600	0.0	66	1003.13	5	320
20100926	1800	0.8	78	1005.22	9	265
20100927	0600	-1.6	79	1006.10	11	040
20100927	1800	-5.2	99	1003.18	8	207
20100928	0600	-3.6	96	1000.73	7	165
20100929	1800	-2.7	89	1000.16	5	154
20100930	1800	-0.8	68	1008.99	20	287
20101001	1800	0.7	87	1013.75	7	265
20101002	1800	0.0	98	1000.60	28	066
20101004	1800	-3.9	74	1016.41	33	087
20101005	1800	-6.3	74	1006.40	27	080

Table 3.4. Summary of weather balloons launched during Leg 3a.

During Leg 3b, there were 6 balloon launches (Table 3.5). Balloon launches were carried out at least once per day during Leg 3a to provide continuous physical sampling of the troposphere, but were scaled back this leg as the primary study area was the Southern

Beaufort Sea. Sampling opportunities along the Baffin Bay transect were limited by an uncertainty over whether balloons could be launched in Danish waters. Data in this region was not critical to the sampling program, so launches were suspended.

Date (GMT)	Time (GMT)	Tair (°C)	RH (%)	P (mbar)	Wind speed (kts)	Wind dir. (°true)
20101009	0600	-1.4	99	1009.99	1	005
20101010	0600	-2.0	99	1018.00	19	015
20101011	1830	-3.4	99	1008.54	20	040
20101012	0000	-4.2	98	1006.30	17	095
20101013	1800	-4.1	99	1003.38	26	083
20101017	0000	-2.2	99	1012.42	9	055

Table 3.5. Summary of weather balloons launched during Leg 3b.

3.5 Preliminary results

3.5.1 Leg 2a – ArcticNet/BP – 12 August to 26 August 2010 – Beaufort Sea

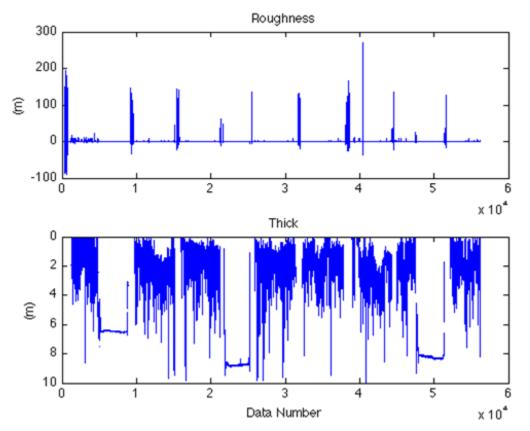


Figure 3.11. A sample of raw (not quality checked, completely unfiltered) HEMI data for surface roughness (top) and ice thickness (bottom).

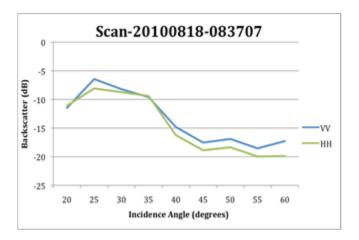


Figure 3.12. Ship-based EM measurements of VV and HH polarized scans of a late-summer multi-year floe recorded in the Beaufort Sea during Leg 2a. The scan parameters were: Azimuth: 0° to 60°, Elevation: 20° to 60°, and Step/Interval: 5°.

3.5.2 Leg 3a – ArcticNet/BP – 23 September to 07 October 2010 – Beaufort Sea

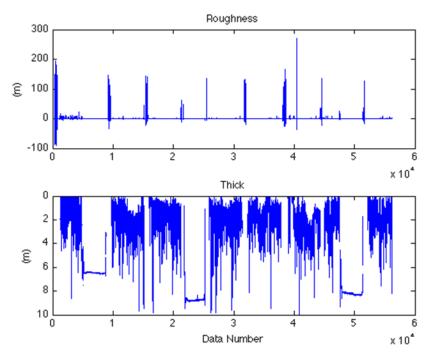
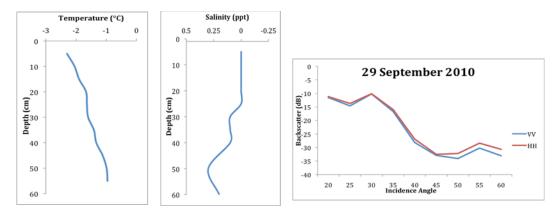
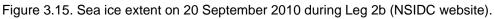


Figure 3.13. A sample of raw (Not quality checked, completely unfiltered) HEMI data for surface roughness (top) and ice thickness (bottom) conducted in the Beaufort Sea during Leg 3a.

Figure 3.14 displays the results of a sampling station on 29 September 2010. The first graph (left) displays the temperature profile ranging from -2.3°C at the surface down to -0.96°C at the 55cm measurement. The second graph (center) displays the salinity profile for the same floe. The top 60cm of this floe had virtually no saline content due to the fact that this sampling station was on a piece of multi-year ice (MYI). The third graph (right) displays the backscattering signature from the C-Band scatterometer on the same sampling site.





Figure 3.14. Temperature (left), salinity (center) profiles from the top 60cm of a MY ice floe sampled in the Beaufort Sea on 29 September during Leg 3a, along results from the C-band scatterometer from the same floe (right).

3.6 Comments and recommendations

Data collection proceeded as planned for the ocean and atmosphere portion of the work, and ended with Leg 3b on 22 October.

The sea ice in 2010 reached its 3rd lowest recorded extent since satellite based monitoring began in the 1970s. Figure 3.15 below displays Arctic Sea Ice Extent as of 20 September 2010 with the orange line representing the median sea ice extent for the 1979 – 2000 period.

The 2010 sea ice extent was greater than only the record low year of 2007 and the subsequent year of 2008. This can be explained through the Dipole phenomena which occurred in 2010 creating a strong high pressure system over the Beaufort Sea, bringing with it warmer than normal air temperatures. On the Leg 3a, a visit to the ice pack to carry out a sampling regime will help to better understand the impacts of this near record year (see page 63, Integrity of Beaufort Sea ice in the fall season – Leg 3a).

4 Integrity of Beaufort Sea ice in the fall season – Leg 3a

Project leaders: Exxon Mobil and BP

Cruise participant Leg 3a: Exxon Mobil

4.1 Introduction

This study is intended to evaluate the integrity of the sea ice, particularly old and multi-year, present in the Beaufort Sea during the fall season. The direct measure of ice integrity is obtained by localized breaking of ice floes by the Canadian Coast Guard icebreaker *Amundsen*. The direct measurements of integrity or strength will be used to verify and calibrate more indirect measurements of ice floe integrity or strength.

4.2 Methodology

The icebreaker *Amundsen* tested the integrity of select ice floes. Ice floes targeted were floes in which ice cores had been collected and/or helicopter based electromagnetic thickness measurements (HEMI) had been made. The integrity of the floes tested was evaluated using ship-based observations and through conversations with Captain, ice observer and ArcticNet scientists.

4.3 Preliminary results

Icebreaking tests were conducted on 27-19 September 2010 during three days of ArcticNet work in ice offshore Banks Island (Figure 4.1). A log of observations collected during the icebreaking was kept. In addition to these observations, approximately 3000 photos and 100 videos of the icebreaking activities were collected. Finally, the movement of the icebreaker was captured with the onboard AVOS system and through a personal GPS recorder. All of the collected data will later be synchronized and synthesized to study the integrity of the sea ice as indicated by the *Amundsen*'s ability to break ice features.

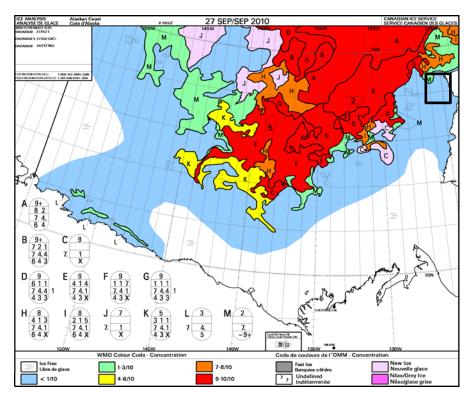


Figure 4.1. CIS daily ice chart showing ice conditions in the area where icebreaking tests were conducted on 27-29 September 2010 during Leg 3a.

4.4 Comments and recommendations

Better coordination of ice studies would be beneficial in future expeditions. In the most ideal scenario, ice cores and HEMI data would be collected on every floe tested by the icebreaker. In particular, better alignment between the ships pathway and the HEMI data is desired.

5 Mooring program – Legs 1a, 1b, 2a, 2b & 3a

ArcticNet Phase 2 – Project titled *Long-Term Observatories in Canadian Arctic Waters*. <u>http://www.arcticnet.ulaval.ca/pdf/phase2/gratton_marine_observatories.pdf</u>

Project leaders: Yves Gratton¹ (<u>vves_gratton@ete.inrs.ca</u>), IMG-Golder Corporation and BP (Legs 2a, 2b and 3a)

Operations participants Legs 1a & 1b: Sylvain Gagnon², Steeve Gagné² and Vincent Dupuis²

Operations participants Legs 2a & 2b: Luc Michaud², Pascal Massot², Jean Ouellette², Greg Curtiss⁴, Jessica Cote⁴ and Phil Osborne⁴

Operations participants Legs 3a: Pascal Massot², Jean Ouellette², Steeve Gagné² and Vincent Dupuis²

2010 ArcticNet Mooring Report author: Shawn Meredyk³

¹ Institut national de la recherche scientifique (INRS) – Eau, terre et environnement (ETE), 490, de la Couronne, Québec, QC, G1K 9A9, Canada.

² Université Laval, Québec-Océan, Pavillon Alexandre-Vachon local 2078, 1045 avenue de la Médecine, Québec, QC, G1V 0A6, Canada.

³ ArcticNet, Pavillon Alexandre-Vachon local 4081, 1045 avenue de la Médecine, Université Laval, Québec, QC, Canada, G1V 0A6, Canada.

⁴ IMG-Golder Corporation (Golder Associates Inc.), suite 200, 18300 NE Union Hill Road, Redmond, WA 98052, USA.

5.1 Introduction

ArcticNet's 2010 mooring operations were carried out from onboard the CCGS *Amundsen* between 02 July and 07 October during Legs 1a,1b, 2a, 2b and 3a. The Mooring operations constituted a collaboration between several parties. In 2010, the petroleum companies Imperial Oil Limited (IOL / ESSO) and British Petroleum (BP) contracted IMG-Golder to design and help (ArcticNet Mooring personal were part of the mooring operations) re-deploy two mooring arrays (nine moorings) in their three respective Exploration Lease Blocks: EL 446 (IOL), EL 449 (BP) and EL 451 (BP).

The primary ArcticNet objectives of the CCGS *Amundsen* mooring operations in 2010 were to:

- Recover the four 2009 ArcticNet moorings (CA05-, CA05-MMP, CA16-, CA16-MMP) that were deployed in the Beaufort Sea.
- Re-deploy these four moorings with the addition of two more moorings (CA04- and CA08-).
- Recover (and re-deploy) the four 2009 Hudson Bay moorings (AN01-, AN02-, AN03-, AN04- / MH01-) with the addition of two more shallow water moorings at site AN04- (A, B)
- Deploy moorings in Lancaster Sound and in Viscount Melville Sound.

5.1.1 Overview of 2010 mooring operations

In 2010, ArcticNet mooring operations took place in the Beaufort Sea, in Hudson Bay as well as in the Canadian Arctic Archipelago in Lancaster Sound and Viscount Melville Sound (Figure 5.1). A summary of all ArcticNet mooring operations performed in 2010, including the recovery results for the 2010 deployments, are presented in Table 5.1.

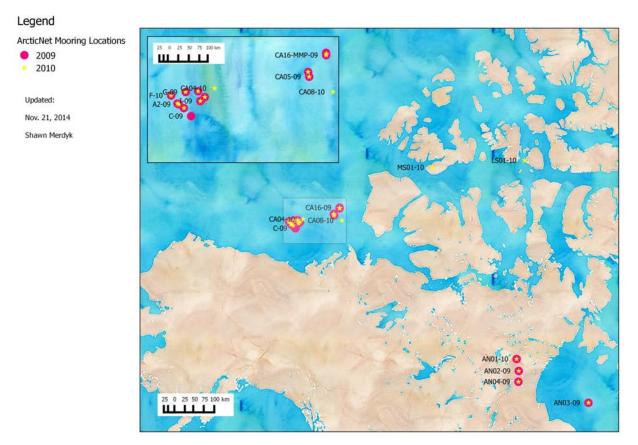


Figure 5.1. Overview of ArcticNet mooring operations conducted in 2010 in Hudson Bay, Beaufort Sea (top left inset map for the Beaufort Sea moorings locations), Lancaster Sound and Viscount Melville Sound.

Table 5.1. Summary of mooring operations conducted onboard the *Amundsen* in 2010 in Hudson Bay, the Beaufort Sea, Lancaster Sound and Viscount Melville Sound, including recovery of 2009 moorings (-09), deployment of 2010 moorings and recovery results in 2011 (-10).

Mooring ID	Program	Area	Rationale	Deploy	Reco ver	Latitude N	Longitude W	Depth (m)
A1-09	ArcticNet- Industry collaboration	Shelf slope Ajurak lease block	ArcticNet-Industry Mooring	2009	2010	70°45.684	136°00.384	688
A2-09	ArcticNet- Industry collaboration	Shelf slope Ajurak lease block	ArcticNet-Industry Mooring	2009	2010	70°44.784	135°55.212	615
AN01-09	ArcticNet	Hudson Bay West, north of Nelson River	See AN01-10 for explanation	2009	2010	59°58.164	091°57.054	104
AN02-09	ArcticNet	Hudson Bay West,	See AN01-10 for explanation	2009	LOST	58°46.686	091°32.094	76

Mooring ID	Program	Area	Rationale	Deploy	Reco ver	Latitude N	Longitude W	Depth (m)
		north of Nelson River, closer than AN01						
AN03-09	ArcticNet	Hudson Bay East, near Great Whale River	See AN01-10 for explanation	2009	LOST	55°24.534	077°55.860	136
AN04-09	ArcticNet- Manitoba Hydro	Hudson Bay West, Nelson River outer estuary	Manitoba Hydro partnership	2009	2010	57°40.212	091°36.192	54
B-09	ArcticNet- Industry collaboration	Shelf break Ajurak lease block	ArcticNet-Industry Mooring	2009	2010	70°39.990	135°35.862	154
C-09	ArcticNet- Industry collaboration		ArcticNet-Industry Mooring	2009	2009	70°29.724	135°08.028	61
CA05-09	ArcticNet	Amundsen Gulf mouth near Mackenzie Shelf	Productivity hotspot on the eastern slope of the shelf as estimated from benthic sampling. Monitor the intermittent upwelling of cold- saline water on the eastern shelf, despite the fact that the origin of the upwelling is closer to Cape Bathurst (CA06). Ocean circulation is highly variable, but the along-shelf flow of Pacific-derived water entering the Amundsen Gulf could be monitored at depth. A MMP is equipped on the mooring for this reason.	2009	2010 (partly lost)	71°19.050	127°35.514	204
CA05- MMP-09	ArcticNet	Amundsen Gulf mouth near Mackenzie Shelf	MMP dedicated line in association with CA05. Moving profiler to track fluorescence and ocean properties at the eastern shelf. Pacific-derived waters (Beaufort Undercurrent) entering the Amundsen Gulf can be monitored here. Circulation is highly variable on a monthly to seasonal scale.	2009	2010	71°25.026	127°39.684	235
CA16-09	ArcticNet	Amundsen Gulf West (central)	Center of the Cape Bathurst polynya as defined in Barber and Hanesiak (2004). Long- term monitoring site of particle fluxes: seasonal signal and inter-annual variability of marine productivity in the Amundsen Gulf	2009	2010	71°48.090	126°31.020	314
CA16- MMP-09	ArcticNet	Amundsen Gulf mouth near Sachs Harbour	Apparent productivity coldspot in contrast to CA05. Monitor the intrusion of water masses coming from the Canada Basin into the Amundsen Gulf, both at the surface and at depth. The circulation is dictated by the behavior of the Beaufort Gyre. Eddies were detected at this location during CFL 2008.		2010	71°45.270	126°30.564	353

Mooring ID	Program	Area	Rationale	Deploy	Reco ver	Latitude N	Longitude W	Depth (m)
F-09	ArcticNet- Industry collaboration	Deep water Ajurak lease block	ArcticNet-Industry Mooring	2009	2010	70°55.818 ⁻	136°24.642	101 0
G-09	ArcticNet- Industry collaboration	Deep water Pokak lease block	ArcticNet-Industry Mooring	2009	2010	71°0.126	135°28.770	702
H-09	ArcticNet- Industry collaboration	Shelf slope Pokak lease block	ArcticNet-Industry Mooring	2009	2010	71°1.248	134°41.226	367
I-09	ArcticNet- Industry collaboration	Shelf BP lease block	ArcticNet-Industry Mooring	2009	2010	70°48.870	134°32.724	75
J-09	ArcticNet- Industry collaboration	Shelf BP lease block	ArcticNet-Industry Mooring	2009	2010	70°53.880 ⁻	134°15.612	83
A1-10	ArcticNet- Industry collaboration	Shelf slope Ajurak lease block	ArcticNet-Industry Mooring	2010	2011	70°45.918	136°00.300	684
A2-10	ArcticNet- Industry collaboration	Shelf slope Ajurak lease block	ArcticNet-Industry Mooring	2010	2011	70°44.634	135°54.876	608
AN01-10	ArcticNet	Hudson Bay West, north of Nelson River	Same as AN01-09	2010	2011	59°58.170 (091°56.988	105
AN02-10	ArcticNet	Hudson Bay West, north of Nelson River but closer to Nelson River than AN04	Same as AN02-09	2010	LOST	58°46.686 (091°32.094	75
AN03-10	ArcticNet	Hudson Bay East, near Great Whale River	Same as AN03-09	2010	2011	55°24.822 (077°55.122	139
AN04-10	ArcticNet- Manitoba Hydro	Hudson Bay West, Nelson River outer estuary	Manitoba Hydro partnership	2010	LOST	57°40.206 (091°36.180	60
B-10	ArcticNet- Industry collaboration	Shelf break Ajurak lease block	ArcticNet-Industry Mooring	2010	2011	70°40.098	135°35.160	149
CA04-10	ArcticNet	Kugmallit Valley (upper Mackenzie Shelf slope)	Historical cross-shelf transect during CASES to study Shelf- Basin interactions (with CA07 and CA12).	2010	LOST	71°4.884	133°37.734	305
CA05-10	ArcticNet	Amundsen Gulf mouth near Mackenzie Shelf	Productivity hotspot on the eastern slope of the shelf as estimated from benthic sampling. Monitor the intermittent upwelling of cold- saline water on the eastern shelf, despite the fact that the origin of the upwelling is closer to Cape Bathurst (CA06). Ocean circulation is highly variable, but the along-shelf flow of Pacific-derived water entering the Amundsen Gulf could be monitored at depth. MMP is equipped on the mooring for this reason.	2010	LOST	71°19.062 ⁻	127°35.628	205
CA05- MMP-10	ArcticNet	Amundsen Gulf mouth near Mackenzie Shelf	MMP dedicated line in association with CA05. Moving profiler to track fluorescence	2010	LOST	71°25.002 ⁻	127°39.666	235

Mooring ID	Program	Area	Rationale	Deploy	Reco ver	Latitude N	Longitude W	Depth (m)
			and ocean properties at the eastern shelf. Pacific-derived waters (Beaufort Undercurrent) entering the Amundsen Gulf can be monitored here. Circulation is highly variable on a monthly to seasonal scale. Center of the Cape Bathurst					
CA08-10	ArcticNet	Amundsen Gulf West (central)	polynya as defined in Barber and Hanesiak (2004). Long- term monitoring site of particle fluxes: seasonal signal and inter-annual variability of marine productivity in the Amundsen Gulf	2010	LOST	71°0.276	126°4.278	395
CA16-10	ArcticNet	Amundsen Gulf mouth near Sachs Harbour	Apparent productivity coldspot in contrast to CA05. Monitor the intrusion of water masses coming from the Canada Basin into the Amundsen Gulf, at the surface and at depth. Circulation dictated by the behavior of the Beaufort Gyre. Eddies were detected at this location during CFL 2008.	2010	LOST	71°47.178	126°29.760	315
CA16- MMP-10	ArcticNet	Amundsen Gulf mouth near Sachs Harbour	MMP-dedicated line in association with CA16. Moving profiler to track fluorescence and ocean properties at the Gulf mouth. Waters from the Canada Basin entering the Amundsen Gulf can be monitored here. Circulation depends on the strength of the Beaufort Gyre.	2010	LOST	71°45.270	126°30.540	353
F-10	ArcticNet- Industry collaboration	Deep water Ajurak lease block	ArcticNet-Industry Mooring	2010	2011	70°55.848	136°24.858	100 3
G-10	ArcticNet- Industry collaboration	Deep water Pokak lease block	ArcticNet-Industry Mooring	2010	2011	71°0.378	135°29.322	706
H-10	ArcticNet- Industry collaboration	Shelf slope Pokak lease block	ArcticNet-Industry Mooring	2010	2011	71°01.260	134°41.118	363
I-10	ArcticNet- Industry collaboration	Shelf BP lease block	ArcticNet-Industry Mooring	2010	2011	70°48.786	134°32.610	73
J-10	ArcticNet- Industry collaboration	Shelf BP lease block	ArcticNet-Industry Mooring	2010	2011	70°53.862	134°15.654	82
LS01-10	ArcticNet	Lancaster Sound near Barrow Strait	Location based on previous partnership with S. Prinsenberg (DFO)	2010	2011	74°28.176	090°23.298	275
MS01-10	ArcticNet	Viscount Melville Sound (deepest point)	Marine productivity hotspot based on P. Richard's work on beluga whale migration. New exploratory mooring for 2010 (initially planned for 2009). Complementary mooring to	2010	2011 (partly lost)	74°05.760	108°24.792	500

Mooring ID	Program	Area	Rationale	Deploy	Reco ver	Latitude N	Longitude W	Depth (m)
			LS01 to study west-east gradient in productivity and ocean circulation in the Canadian Archipelago.					

5.2 Methodology – Mooring design and instrumentation

5.2.1 Taut-line moorings

ArcticNet moorings were generally designed to be of taut-line configuration (Figure 5.2). The first instrument deployed close to the surface was a conductivity-temperature probe. Different models from RBR, Sea-Bird, Alec or Nortek companies were used. Sediment traps were always attached 5 to 10 meters below a current meter. Acoustic Doppler Current Profilers (ADCPs) were deployed at 100 meters so they could provide current data from 100 meters and upwards and simpler Current Meters (CMs) were used at 200 m and 400 meters.

The McLane Moored Profiler (MMP) is a moving profiler that slides up and down along the mooring line recording temperature, salinity, pressure and fluorescence data (Figure 5.2). MMP moorings were paired with traditional moorings that contained a full suite of oceanographic equipment (sediment traps, current meters, CTDs) so that the CTD data on the MMP moorings could be verified with the adjoining mooring and increase the resolution of the water column data. Again in 2010, two MMP moorings were deployed in the Beaufort Sea next to moorings CA05 and CA16 and were named accordingly CA05-MMP and CA16-MMP.

The moorings generally consisted of the following oceanographic equipment.

- Top float with ice profiler (IPS).
- JFE-ALEC CT or SBE37 Conductivity, Temperature and Depth (CTD) probe to record water characteristics.
- Hydrophone (AURAL) bioacoustics.
- RCM 11/ RBR with Aquadopp or AquaPro Conductivity, Temperature and Depth (CTD) probe with single-point current meter.
- ISUS V3 Nitrate sensor.
- Technicap sediment traps (24cups bi-weekly sampling rate) to trap descending sediment for particle flux analysis and accumulation rates.
- RDI or Nortek Continental current profilers.
- 30" ORE float and/or 17" BENTHOS floats in-line floatation to balance the weight/ float balance throughout the mooring line.
- Technicap sediment traps (24 cups bi-weekly sampling rate) to trap descending sediment for particle flux analysis and accumulation rates (deeper water moorings).
- RCM 11 / Aquadopp or AquaPro with RBR Conductivity, Temperature and Depth (CTD) probe with single-point current meter.

- 17" BENTHOS floats in-line floatation to balance the weight/ float balance throughout the mooring line.
- Tandem mooring releases (Oceano 861AR and BENTHOS 865A).
- An anchor (one to four train wheels).

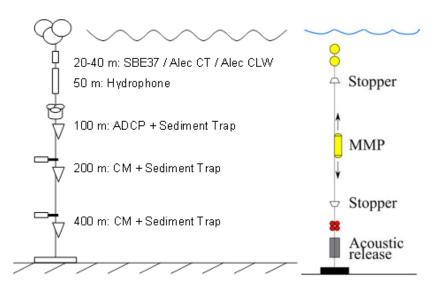


Figure 5.2. Illustration of general ArcticNet mooring designs. Left: Taut-line configuration and Right: MMP mooring setup.

5.2.2 Benthic frame mooring

The only mooring not of a taut-line configuration was industry mooring C-09 deployed in 2009 in IOL's Ajurak exploration lease (Figure 5.3). This mooring was recovered in 2010 but not re-deployed. Mooring C-09 was a bottom frame mooring meant for deployments in shallow shelf waters. At the shallowest site (C) at the south-eastern corner of IOL's Ajurak lease area, an Acoustic Doppler Current Profiler (ADCP) was deployed to measure current profiles as well as directional wave data. In order to measure wave height, period and direction accurately, the ADCP must be stable and a benthic frame was used instead of a taut-line mooring.

There is no documentation in the ArcticNet archives identifying the exact programmed settings of the ArcticNet and Golder/IOL-BP lease block moorings deployed in 2010.

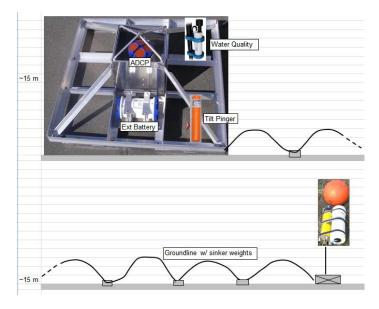


Figure 5.3. Benthic frame design of mooring C-09 deployed in the IOL Ajurak lease block in the Beaufort Sea in 2009 and recovered in 2010 (not redeployed in 2010).

Current profile data were recorded in XYZ coordinates, while wave data were recorded in beam coordinates. Even after the compass calibration, errors may occur in the ADCP heading due to fluctuations in the earth's magnetic field caused by the reduced horizontal component this close to the magnetic pole. ADCP heading data are recorded, and since the frame does not move, an average heading can be determined and applied during data processing.

Along with the current/wave measurements, water parameters were obtained using an RBRXR420 CTD (plus Dissolved Oxygen), and an Alec CLW (Fluorescence plus Chlorophyll).

An acoustic tilt-pinger was used to monitor the verticality of the frame and thus ensure that the bottom frame was deployed upright. The primary recovery mechanism is a released activated pop-up buoy, while the groundline can be dragged up if necessary. The groundline was 1" buoyant polysteel rope with small weights every 10-20 m.

5.3 Methodology – Mooring equipment calibration

Compass accuracy is essential for current meters deployed near or above the Arctic Circle, due to the reduced magnitude of the horizontal component of the earth's magnetic field. Therefore, it was important to calibrate internal compasses near the approximate latitude where they were deployed and care was taken to eliminate all ferrous material in the mooring cages and in the calibration environment. Golder performed the compass

calibrations for the Beaufort Sea moorings, including some of the ArcticNet mooring ADCPs. Compass calibration coefficients in the Beaufort Sea were not kept for 2010, which reduces the accuracy of post-processed ADCP data.

The ADCP compasses should be re-calibrated whenever the batteries are replaced. The calibrations need to be done away (minimum 20 m) from any magnetic influences and therefore, cannot be done on the ship. In advance, the plan was to physically separate the ADCP compasses (in the transducer heads), from their battery packs, by using external battery canisters. By mounting the ADCP and external battery 20-30 cm apart in their respective cages, the effect of the batteries on the compasses was reduced (potentially removed, though RDI recommends 1m distance (conservative)). Also the fact that the batteries are in-line below the compass and not off to one side reduces their effect on the compass. With this configuration it should be possible to replace the batteries without having to re-calibrate the compasses. However, Meredyk (2014) points out the great benefit from a data quality stand-point in pre-calibrations (compass calibration coefficients) and in calibrating the instruments in their deployment cage-floats. This hasn't been done as of 2014 due to logistical constraints.

All mooring instruments deployed in 2010 were calibrated by their respective manufacturers prior to the expedition, except the current meters' compasses (RDI, Nortek and Anderaa) which were calibrated on land near their respective deployment areas (Figure 5.4).

Figure 5.4. ArcticNet and BREA mooring equipment compass calibration sites for 2010 operations in Hudson Bay (3x), Lancaster Sound and the Beaufort Sea (Inuvik, NT and Sachs Harbour, NT)

The ArcticNet mooring equipment was calibrated in three Hudson Bay locations:

- 12 July 2010 Belanger Island: 56°09.295' N, 76°38.494' W, Magnetic declination 17°
- 18 July 2010 Marble Island: 62°39.269' N, 90°58.263' W, Magnetic declination 10°
- 20 July 2010 Churchill River, MB: 58°40.595' N, 94°10.107' W, Magnetic declination 2°

Two Beaufort Sea locations:

- Inuvik, NWT Airport: 68°18.475' N, 133°29.201' W, Magnetic declination ~23 ° (TBC from NRCan website)
- Sachs Harbour: 71°55.572' N, 125°05.105' W, Magnetic declination ~28° (TBC from NRCan website)

One Lancaster Sound location:

06 August 2010 – Devon Island : 74°34.3367' N, 80°43.7241' W, Magnetic declination 2°

In Viscount Melville Sound, instrument calibration was unsuccessful due to weather and ferrous soil (erratic readings).

5.3.1 Compass calibration procedure (ArcticNet)

The calibration site was selected in a location that was flat and without trees, without rock out-crops and with a view of the *Amundsen* in-case the helicopter needed to return to the boat and for the bridge to keep watch over the field crew (Figure 5.5).

Figure 5.5. Two sites of compass calibration conducted in Hudson Bay during Leg 1. Left: near Punngaviapik, QC (SE Hudson Bay), 12 July 2010 18:38 UTC, 56°09.2946' N, 76°38.4941' W, mag. decl. 17°. Right: Marble Island (NW Hudson Bay), 18 July 2010, 62°39.2688' N, 90°58.2629' W, mag. decl. 10°.

Using a handheld GPS (Garmin Map 72H) true north was found and the latitude and longitude were recorded. A landmark was placed >30 m along the same longitude. The calibration table 0° markings (along with device 0 degree marking) were aligned to True North and using the analog compass, the magnetic declination (actual) was recorded and compared to the theoretical value (helicopter flight tables and/or NRCan website) (Figure 5.6).

Figure 5.6. Analog compass used for magnetic declination verification during the compass calibrations in the field.

The ADCP calibrations were conducted with a custom tilt and rotate jig using a tripod with a spinning top fixture, where the ADCP was installed and aligned to true north, before calibration began (Figure 5.7).

Figure 5.7. Aquadopp instrument head with indicating mark for instrument's zero heading, Lancaster Sound, Devon Island.

The calibration procedures followed standard manufacturer protocols for each instrument and is briefly described below. At the calibration site, the ADCP was set on the tripod. The heads (beams) on the RDI ADCP are numbered 1=East, 2=West, 3=North, 4=South. Each ADCP was aligned on the tripod so the notch at beam-3 (north) points at the landmark located by GPS to be true-north from the tripod (Figure 5.8). The communication cable hangs down from the bottom connector on the side opposite that.

Figure 5.8. WHS ADCP in older model ArcticNet calibration table.

The RDI utility program "BBtalk" is run on the laptop-PC connected to a diesel generator:

- 1. 'Enter' was pressed to wake up the instrument.
- 2. Command 'AX' was entered to check the internal compass table with the instrument vertical, then the instrument was tilted 10° to 20° from the vertical axis.
- 3. Command 'AF' was entered, then the unit was rotated around the vertical axis while tilted (<5° / sec.).
- 4. 'F3' was pressed on the PC to record entries to a file named 'WHS_####-cal_yyyy.txt' where #### was the unit's serial number and yyyy was the year.
- 5. The rotation was repeated with different tilt angle as prompted by the program (<5° / sec.).
- 6. The turntable was rotated back to 0° (notch points to true north) and 'PC2' entered to display the data stream to screen. When the displayed heading value was stable (after about 5-10 seconds), the heading was recorded with respect to its True North Heading, 'Enter' was pressed and the unit rotated 10° to the next mark on the turntable. 'PC2' was entered, and when heading was stable, 'Enter' was pressed again. This sequence

was repeated at successive marks around the turntable until the last measurement at 360° which is back at 0° (=360°).

7. 'F3' was pressed to stop logging to the file and the heading data was filled into a plotting program (EXCEL) and the slope (6 orders) coefficients were calculated. These coefficients will be used in post processing to further improve on the accuracy of the measured current directions.

No detailed procedure was available concerning the ArcticNet Beaufort Sea compass calibrations from Sachs Harbour, NT or Kugluktuk, NT, although it likely followed the ArcticNet compass procedure used in Hudson Bay and detailed above.

No calibration procedure or results exist for the mooring equipment deployed in Leg 2, calibrated in Kugluktuk, NT or Sachs Harbour, NT.

Compass calibration results (ArcticNet)

Readings were taken at 60° heading intervals. Seaguard #292 and WHS#8682 experienced erratic readings during calibration, which prevented an accurate compass calibration for either instrument. Therefore, these equipments will need to be post-calibrated after recovery (potentially 2011) (Table 5.2).

Ideally, the RDI ADCP units need to have a compass calibration performed (hard and soft iron) before deployment, this way the calibration coefficients can be stored in the unit's memory matrices and the adjusted (real) heading can be calculated. Unfortunately, this could not be completed for the WHS #8682 device and this unit's data would have been potentially recorded using the 2007 NABOS calibration coefficients recorded in Kirkeness, Norway in 2007. It is unknown if subsequent compass calibrations were performed at Université Laval during maintenance periods in 2008 and 2009. Caution and critical analysis of this instrument's data would be needed before accepting / using its data (Meredyk 2014).

All of the instruments needed for the Beaufort Sea mooring sites were calibrated relatively close to the respective deployment sites (Figure 5.4) and were reported as having been properly calibrated, though not always completely calibrated due to erratic readings (ferrous terrain) (Boivert et al. 2010).

Instrument	SN	Region	Pre-Calibration site	Pre-calibration date	pre-calibration status
RCM11	266	HB	Near Punngaviapik, QC	Jul-10	Good
WHS	3045	HB	Near Punngaviapik, QC	Jul-10	Good
RCM-Seaguard	292	HB	Marble Island	Jul-10	Needs Post-calib
WHS	8682	HB	Marble Island	Jul-10	Needs Post-calib
RCM-Seaguard	30	HB	Churchill River	Jul-10	unknown
WHS	5560	HB	Churchill River	Jul-10	Good
AQD	3914	LS	Devon Island	Aug-10	Needs Post-calib
AQD	3921	LS	Devon Island	Aug-10	Needs Post-calib

Table 5.2. ArcticNet mooring equipment compass calibrations conducted during Leg 1 in Hudson Bay (HB) and Lancaster Sound (LS).

5.3.2 Compass calibration procedure (Golder)

The Golder compass calibration procedure was used for Legs 2a and 2b and is briefly described here.

All of the current meter compasses (Aquadopp, Continental (CNL), WorkHorse – Sentinel (WHS)) needed for the Golder/IOL-BP moorings (along with several ADCPs for ArcticNet moorings as well) were all calibrated by Golder in Inuvik, NWT (July 2010) (Figure 5.9) and then transferred to Sachs Harbour, by the Golder technical staff (contracted-out by Imperial Oil Limited (IOL / ESSO)).

The calibration procedure follows a very similar process to the ArcticNet ADCP compass calibration procedure described below. The difference between ArcticNet and Golder methods (both are effective) resided in the finding of the true north. Golder technical staff used a Furuno SC-30 satellite compass to determine true north heading (based on two internal antennas) whereas ArcticNet mooring professionals used a handheld GPS and the landmark method.

Communication was established with the instrument using the manufacturer's calibration software after a serial communications line was connected to the instrument. Power was provided to the instrument by the instrument's internal battery pack or an external AC power supply.

Figure 5.9. Mooring instrument compass calibration performed in Inuvik, NWT using a jig with a RDI WHS (left) and a RDI DVS750 (right) (Golder Cruise Report Leg 2, 2010).

For Leg 2a, the current meters were oriented in the configuration in which they would be deployed. On-screen directions were followed to rotate the instrument through 360° with varying degrees of pitch and roll, until calibration was achieved.

For Leg 2b, the current meter was oriented in a downward-looking mode (i.e., the orientation in which it will be deployed) and rotated through 360° in +/- 90° increments, with

+/- 45° increments of pitch and roll, until a minimum of 20 samples were obtained and a "pass" result was achieved for all calibration criteria. It normally takes more iteration to obtain a "pass" when a compass calibration is done by hand, compared to using the turntable, but the outcome is the same. An acceptable Arctic calibration (\leq 5° error) was produced for the Leg 2b instrument in question.

The following spare instruments (leased from ASL Environmental) were calibrated for Leg 2a (Inuvik, NWT):

- TRDI 75 kHz LR ADCP
- TRDI 150 kHz QM ADCP
- TRDI 300 kHz Work Horse ADCP
- TRDI DVS 750 current meter
- TRDI DVS 6000 current meter

In addition, the following ArcticNet instruments were calibrated for Leg 2a (Inuvik, NWT):

- Nortek Aquadopp profilers (owned by University of Manitoba)
- 4 Nortek Continental 470 kHz current meter
- 1 Nortek Continental 190 kHz current meter
- 7 Nortek Aquadopp profilers
- 1 Aanderaa RCM 11

Compass calibration results (Golder)

There was no record kept regarding the outcome of the calibration results for the Golder calibrated instruments (pre/post compass error, or raw data) for 2010. However, it was noted in the Golder 2010 Field Report that all the instruments were calibrated until they 'passed' the acceptable heading error.

DVS current meters

It is recommended that the compasses on the uncalibrated DVS current meters deployed at F-10 be checked in Inuvik in 2011 using a calibration stand and GPS compass. Although these instruments cannot be post-cruise calibrated, it might be possible to get a sense of the error range for each compass (compass calibration coefficients through compass verification).

5.3.3 CTD sensor calibration

Beaufort Sea

Calibrations of the CTD sensors used in the Beaufort Sea (RCM 11; Seabird37; RBR XR420) in 2010, were done at their respective factories in 2009 and also by ASL onboard the *Amundsen* in 2009.

JFE-Alec sensors (CTW, CLW, EM) gave only raw data and needed to be converted using calibration coefficients (not internally stored). Calibration details (calibration range, calibration date, etc.) for 2009 as well as ASL calibration certificates, usually provided by the instruments' manufacturers, are unavailable. Although there is no reason to believe the deployed instruments have malfunctioned, without the verification certificates, all the JFE-ALEC data for 2009-2010 and 2010-2011 should be handled with care.

<u>Hudson Bay</u>

The CTD sensors on the Aanderaa RCM (Recording Current Meter) units used in Hudson Bay moorings were calibrated by the company in 2007 or by P. Massot (Université Laval) in 2009. The CTD sensor compass calibration procedure was documented by the 2010 Hudson Bay mooring team (S. Gagné and L. Michaud) and is outlined below:

- The RCM11 unit was opened to verify the internal zero heading indicator, to connect the battery pack and to turn the unit onto continuous sampling (1 sensor per second) for all 8 channels (sensors connected)
- Deck Unit Aanderaa A-3127 was connected to the port on top of the RCM11 and to the laptop-PC, and the Hyperterm terminal program was used to look at (and during actual compass calibrations, to capture to file) the ascii output from it.
- The water-current simulation Test Unit (Aanderaa A-3731) was placed over the Doppler current sensors (type DCS-3900) with transducer surfaces moistened for best acoustic contact (Figure 5.10). The RCM11 was rotated 90 degrees to verify that the acoustic sensors functioned properly and changed the simulated "direction" by about that amount (channel 3 is the compass sensor's heading data channel). The instrument was inclined to check the built-in tilt sensor functionality.
- By rotating the calibration table in 10° increments and recording the values on channel 3 (takes at least two readings before compass stabilizes), then converting the raw values (channel 3 value * 0.352) into actual headings and plotting the 6th order slope of the fitted line, compass calibration coefficients and the compass error can be calculated / recorded for post-processing of the unit's data.

Figure 5.10. Left: Reading stabilizer for Aanderaa instruments. Right; RCM-Seaguard #30 with water current simulator affixed. Photos from ADCP compass calibration site in Churchill River (causeway), Hudson Bay, on 20 July 2010: 74° 34.3367' N, 80° 43.7241' W – Mag. Decl. 2°.

5.4 Methodology – Mooring operations

5.4.1 Hudson Bay (Leg 1a)

In Hudson Bay during Leg 1a, the ArcticNet mooring team successfully retrieved two (AN01, AN04) of four moorings (four sites) deployed in 2009 (AN01, AN02, AN03, AN04; Figure 5.11). Moorings AN02-09 and AN03-09 were not recovered due to acoustic release problems. The releases on AN02-09 did respond after surface interrogation, and the release command was sent but no mooring instrument surfaced. The releases on AN03-09 did not respond to surface interrogation from several locations at various distances out to 10 nm from the recorded mooring position.

Four ArcticNet moorings (AN01, AN03 and AN04-10(a,b)) were successfully deployed during Leg 1a (Figure 5.11). Mooring AN02 was not re-deployed because it failed to be recovered two years in a row. It was speculated that the top float may be too shallow and the situation must be assessed carefully by a closer investigation into why the mooring recoveries haven't been successful.

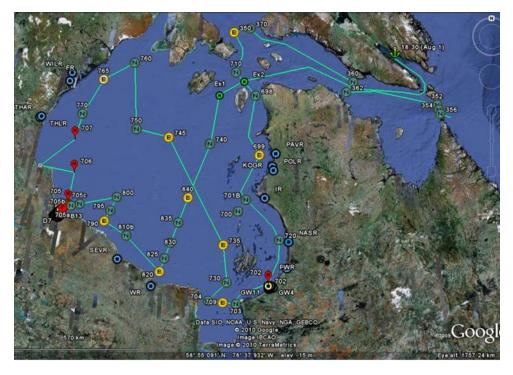


Figure 5.11. Cruise track of the Amundsen in Hudson Bay during Leg 1a with the locations of mooring sites: Station 707 = AN01, 706 = AN02, 702 = AN03, 705 = AN04.

Manitoba Hydro funded four days of ship time on Leg 1a to be devoted to an investigation of the dimensions and gradients of the plume of the Hayes and Nelson Rivers in Hudson Bay.

On 24 July 2010, the ArcticNet mooring team successfully recovered the Manitoba Hydro moorings (AN04-09) at Station 705 (Figure 5.12). These moorings were deployed in August 2009 with only an RDCP set at 5 m above bottom, roughly 50 m depth in the water column. Data recovered from AN04-09 encompassed 05 August 2009 to 07 June 2010. AN04-10 was redeployed as a pair of moorings (AN04a-10 and AN04b-10), on separate anchors, within 100 m of each other. Mooring AN04a-10 was identical to AN04-09 with an RDCP 5 m above bottom and AN04b-10 was deployed with CTs at 10 and 20 m above bottom and a CTD at 30 m above bottom, in 60 m of water.

Figure 5.12. Sampling grid around Station 705 at Nelson River, MB, in Hudson Bay during Leg 1a. Mooring AN04 is labeled as 705(M).

5.4.2 Lancaster Sound (Leg 1b)

On 06 August 2010 at 18:00 UTC, the *Amundsen*'s helicopter and mooring technicians went ashore to calibrate mooring LS01-10 ADCP compasses; however, the ferrous soils (contributing factor: erratic / weak horizontal component of the earth's magnetic field) prevented the instruments from being accurately calibrated. Even though the instruments could not be calibrated the decision was to deploy these instruments and post-calibrate after recovery. On 07 August, mooring LS01-10 was deployed (50 min total time, prep and deploy) in good weather (no wind, no sun) (Figure 5.13).

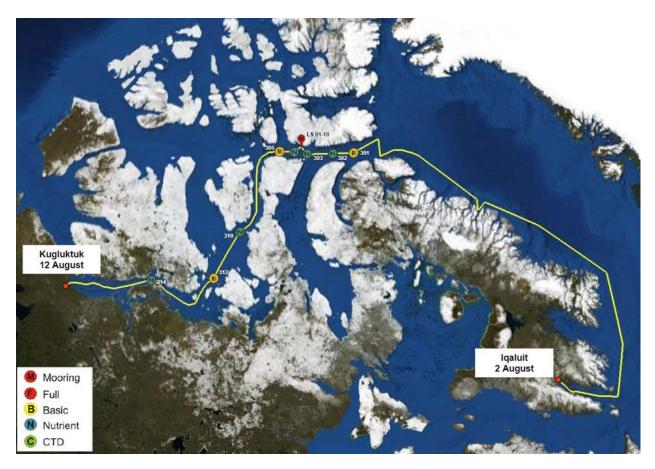


Figure 5.13. *Amundsen* ship track through the Canadian Arctic Archipelago during Leg 1b. The mooring in Lancaster Sound is labeled LS01-10.

5.4.3 Beaufort Sea – ASL-Golder / IOL-BP (Legs 2a & 2b)

Health and safety

All personnel involved in recovery, servicing, and re-deployment of the moorings participated in development of a Job Safety Analysis (JSA) and development of Specific Work Instructions (SWI), which identified the sequence of basic job steps, personnel responsible for the job steps, potential hazards, and safety controls to eliminate hazards including PPE. Preparatory meetings were held in advance of mooring operations on Leg 2a and 2b to review the JSA and discuss any details pertinent to the operation. A toolbox/tailgate meeting led by the CCG was held on the foredeck prior to each deployment/recovery operation. A toolbox/tailgate meeting led by the Coast Guard (normally, by the Chief Officer), was held on the foredeck prior to each deployment/recovery operation. The SWI for Leg 2b also incorporated additional precautions for handling flooded instruments to avoid spills or leakage of potentially hazardous battery/seawater mixtures.

Instrument servicing and data recovery (Preliminary QA/QC)

Servicing and inspection of the instruments, data recovery and deployment setup involved the following steps:

- Cleaning instrument (rinse with fresh water and air dry) and inspecting for damage (check cable, transducers, and canister or housing for corrosion and leakage).
- Initiating communications with the instruments
- Checking the instrument clock to see if it had drifted during the deployment
- Checking recorder and file status
- Downloading the data from the instrument
- Copying the data to a backup portable drive
- Preliminary review of the data to check for any obvious errors (clock drift), duration of data record (time series completeness), and general quality of the record (recorder and file status, time series plots)
- Opening the housing and inspecting the interior for corrosion and other damage
- Changing the batteries (if required) and replacing desiccant (if applicable)
- Cleaning the o-ring surfaces and re-greasing and replacing all o-rings
- Re-programming the instrument for re-deployment

Overview of operations

Legs 2a (12-26 August 2010) and 2b (26 August to 22 Sept ember 2010) were multi-faceted programs involving biology, ocean chemistry, marine mammal observations, meteorological, and other oceanographic investigations.

The primary ArcticNet mooring team objectives for Leg 2 was to help the Golder technical staff recover five and re-deploy four (C-09 was not to be re-deployed) oceanographic moorings in the Imperial Oil Limited (IOL) Ajurak lease area (EL 446; sites A1, A2, B, C, F), and four in the British Petroleum (BP) lease area (EL 449; sites G, H, I, J). All recovery and deployment operations were successful with a total of nine industry (ASL/IOL-BP) moorings recovered and eight moorings re-deployed using the same mooring design (Figure 5.14).

The sub-surface moored instrumentation were primarily intended to measure ice draft, water velocity profiles, and waves, but also water parameters such as temperature, salinity, dissolved oxygen, chlorophyll and turbidity. All moorings were taut-line except site C-09 which was a bottom frame (Figure 5.3).

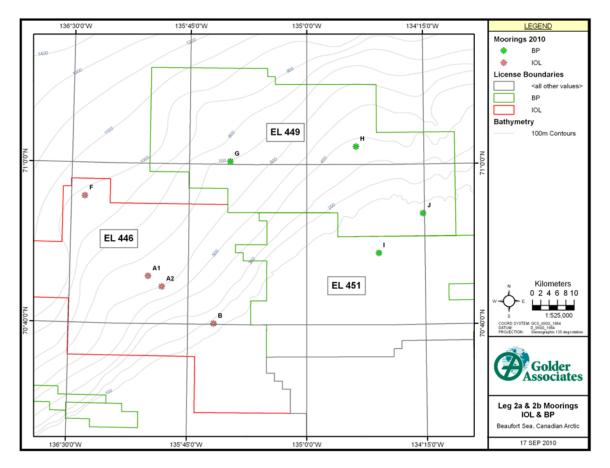


Figure 5.14. Locations of IOL-BP mooring sites with respect to Oil Company Exploration Licenses (EL) in the Beaufort Sea. Operations were carried out by Golder and ArcticNet during Legs 2a & 2b.

Recovery operations

The IPS deployment depth was based on records obtained from the EM302 multi-beam system on-board the CCGS *Amundsen*. Summaries of the data records and clock drifts from each instrument on moorings recovered in Legs 2a & 2b are provided in Table 5.3. On recovery, instrument clocks were compared to a GPS receiver clock in order to determine if the instrument clock drifted ahead (fast) or behind (slow) GPS time.

Table 5.3. Summary of data record and clock drift for each moored instrument deployed on ASL/IOL-BP moorings in the Beaufort Sea in 2009 and recovered on Legs 2a and 2b in 2010.

Mooring	Instrument	Start Time	End Time	Clock Drift
Leg 2a				
G-09	IPS5 #51102	22 July 2009 20:43	19 August 2010 13:50	00:09:55 slow
G-09	150 kHz QM ADCP #12825	23 July 2009 02:00	19 August 2010 03:46	00:04:32 slow
G-09	75 kHz LR ADCP #12884	23 July 2009 17:00	15 August 2010 08:46	00:03:35 slow
G-09	DVS 750 #12756	22 July 2009 20:00	19 August 2010 13:30	01:06:15 slow
G-09	RBR XR420 CT #15265	23 July 2009 17:00	19 August 2010 19:20	00:00:26 fast
G-09	RBR XR420 CT #15268	23 July 2009 17:00	19 August 2010 19:40	00:00:56 fast
G-09	RBR XR420 CT #15273	23 July 2009 17:00	19 August 2010 19:00	00:00:50 fast

Mooring	Instrument	Start Time	End Time	Clock Drift
G-09	RBR XR420 CT #15277	23 July 2009 16:00	19 August 2010 21:10	00:00:17 fast
H-09	IPS5 #51107	22 July 2009 14:50	16 August 2010 01:03	00:13:28 slow
H-09	150 kHz QM ADCP #12698	22 July 2009 18:00	22 August 2010 17:30	00:05:08 slow
H-09	75 kHz LR ADCP #12942	22 July 2009 20:00	22 August 2010 18:15	00:04:31 slow
H-09	RBR XR420 CT #15271	22 July 2009 17:00	22 August 2010 18:30	00:00:18 fast
H-09	RBR XR420 CT #15270	22 July 2009 17:00	22 August 2010 18:30	00:00:19 fast
H-09	RBR XR420 CT #15281	22 July 2009 16:00	22 August 2010 18:40	00:00:34 fast
I-09	IPS5 #51104	22 July 2009 18:54	24 August 2010 00:24	00:12:37 slow
I-09	300 kHz WHS ADCP #12813	22 July 2009 17:00	24 August 2010 01:45	00:01:26 slow
I-09	Alec CLW #006	21 July 2009 21:00	23 May 2010 02:50	03:18:38 fast
I-09	RBR XR420 CT #17114	21 July 2009 16:00	24 August 2010 15:00	00:00:28 fast
J-09	IPS5 #51105	21 July 2009 03:34	15 August 2010 17:52	00:13:28 slow
J-09	150 kHz QM ADCP #12841	21 July 2009 17:00	15 August 2010 21:22	00:05:08 slow
J-09	Alec CLW #007	21 July 2009 23:00	15 August 2010 22:00	NA
J-09	RBR XR420 CT #17113	21 July 2009 20:00	03 January 2010 12:00	NA
Leg 2b		·		
A1-09	IPS5 #51106	02 October 2009 00:00	9 September 2010 23:00	00:45:00 slow
A1-09	150 kHz QM ADCP #12823	01 October 2009 23:00	9 September 2010 23:30	00:00:46 slow
A1-09	75 kHz LR ADCP #12943	01 October 2009 23:00	9 September 2010 23:30	00:01:37 fast
A1-09	DVS 750 #12800	02 October 2009 01:00	10 September 2010 01:26	00:01:04 fast
A1-09	RBR XR420 CT #15269	19 July 2009 17:00:00	31 August 2010 17:20	00:00:05 fast
A1-09	RBR XR420 CT #15279	19 July 2009 17:00:00	31 August 2010 00:20	00:00:37 fast
A1-09	RBR XR420 CT #15263	19 July 2009 17:00:00	31 August 2010 02:07	00:00:43 fast
A1-09	RBR XR420 CT #15274	02 October 2009 01:20	10 September 2010 14:10	00:00:03 slow
A2-09	IPS5 #51109	24 July 2009 17:00	11 September 2010 19:00	00:11:56 slow
A2-09	150 kHz QM ADCP #12699	25 July 2009 16:00	13 August 2010 22:52	00:00:02 slow
A2-09	75 kHz LR ADCP #12962	25 July 2009 16:00	05 June 2010 19:00	00:00:39 fast
A2-09	DVS 750 #10717	25 July 2009 16:00	25 August 2010 22:45	01:19:12 slow
A2-09	RBR XR420 CT #15266	25 July 2009 16:00	31 August 2010 03:51	00:01:10 fast
A2-09	RBR XR420 CT #15258	23 July 2009 17:00	31 August 2010 12:55	00:00:48 fast
A2-09	RBR XR420 CT #15262	23 July 2009 17:00	31 August 2010 21:39	00:00:20 fast
A2-09	RBR XR420 CT #15278	23 July 2009 16:00	30 August 2010 21:07	00:00:09 fast
B-09	IPS5 #51103	16 September 2009 22:10	3 September 2010 01:14	00:08:25fast
B-09	150 kHz QM ADCP #12585	16 September 2009 22:10	19 August 2010 12:18	00:02:20 slow
B-09	RBR XR420 CT #15262	19 July 2009 04:00	19 July 2010 03:00	00:00:45 slow
B-09	RBR XR420 CT #15278	19 July 2009 04:00	20 July 2010 12:00	00:00:09 fast
F-09	IPS5 #51108	24 July 2009 17:00	5 September 2010 18:00	00:09:42 slow
F-09	150 kHz QM ADCP #12824	24 July 2009 22:10	30 August 2010 23:34	00:05:53 slow
F-09	75 kHz LR ADCP #12892	23 July 2009 17:00	3 September 2010 01:14	NA
F-09	DVS 750 #12800	24 July 2009	Data not Recovered	NA
F-09	DVS 750 #12800	24 July 2009	Data not Recovered	NA
F-09	DVS 6000 #12708	24 July 2009 20:00	24 February 2010 22:40	01:10:12 slow
F-09	DVS 6000 #12638	24 July 2009 20:05	18 June 2010 03:45	01:03:03 slow
F-09	DVS 6000 #12641	24 July 2009 20:00	16 April 2010 16:45	01:02:40 slow
F-09	RBR XR420 CT #15280	19 July 2009 17:00	31 August 2010 05:13	00:00:05 fast
F-09	RBR XR420 CT #15264	19 July 2009 17:00	31 August 2010 03:31	00:00:25 fast
F-09	RBR XR420 CT #15272	19 July 2009 16:00	30 August 2010 23:20	NA

Recovery problems

During Leg 2a, all of the CART releases showed signs of corrosion that exceeded expectations. One spare CART acoustic release was used on Leg 2a to replace a CART on

Mooring G which was flooded when it was retrieved. Due to the large amount of potential dangerous liquid in the flooded instrument, a full inspection as to the cause of the failure was not completed aboard the *Amundsen*. In addition, the tension bails (vertical rods) from one of the spare set of CART releases were used.

The battery canisters on two of the four QM ADCPs recovered on Leg 2a had corrosion on the connectors of the end caps. In both cases the y-cable used to connect the battery canister to the instrument had at least one pin that was severely corroded. One of the battery canisters was removed from service and replaced with the spare battery canister leased from ASL. The second battery canister was cleaned, Dow Corning 111 was added into the connector, and the other end of the Y cable was used.

The IPS5 from Mooring H had a failed pressure port leaking silicone inside the instrument and at least a small amount of salt water leaked through the pressure port. Inside the instrument there was thin grease along the lower portion of the electronics chassis and on the inside of the canister where the chassis sits. The chassis had more grease on the black plate at the bottom and there was also light corrosion on the ribbon cable just above the black plate, and on the lower part of the electronics. Just beneath the pressure port there is a flat surface and there were salt crystals on the surface. The instrument stopped recording data on 16 August, but the pressure data looks incorrect beginning on 01 August. The damage seems to be minor, but it could not be redeployed. It was replaced with the spare IPS5 leased from ASL.

During Leg 2b, all of the CART releases showed signs of corrosion that exceeded expectations. The corrosion on the Mooring B releases required the use of two spare CART releases. The corrosion occurred on the tensions bails (vertical rods) and on the bolts and the clevis at the base of the release that holds the release closed (Figure 5.15).

Figure 5.15. Corrosion of the CART tandem frame components (left) and tension rod thread (right) from Mooring B-09 recovered in the Beaufort Sea during Leg 2b.

On Leg 2b, the QM ADCP on Mooring F and the LR ADCP on Mooring A2 also both had corrosion on the connector of the end cap and were removed from service. The QM ADCP and LR ADCP were replaced with the spares calibrated in Inuvik before the start of Leg 2a.

Two DVS 750 current meters (#12685, 12684) on Mooring F were recovered in a flooded condition and corrosion was visible around the heads (Figure 5.16). It was not possible to recover any data from memory on either instrument. One DVS 750 was replaced with the spare DVS750 provided by Teledyne RDI and the other with one of the serviced DVS 6000s from a lower (deeper) part of the mooring. The spare DVS 6000 that was calibrated in Inuvik before the start of Leg 2a, and was substituted for the DVS 6000 used to replace one of the flooded DVS 750s.

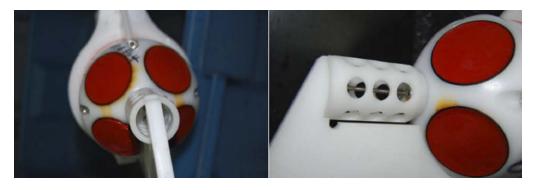


Figure 5.16. Photos of corrosion on DVS 750 transducer heads for Mooring F-09.

The three DVS 6000 current meters (#12708, 12638, 12641) on Mooring F and one DVS 750 current meter on Mooring A1 did not perform as well as predicted by the manufacturer in terms of battery consumption (sampling regime too intense for battery: 2010 sampling regime was changed to using an ensemble interval of 30 min, which decreases the battery consumption by 62%). The batteries in these instruments were replaced with new alkaline battery packs. The four current meters were serviced and reinstalled on the respective moorings. These instruments will not have calibrated compasses for the 2010-2011 dataset. They will provide current speed, but may not provide reliable data for current direction in the second year of deployment. The compasses on the un-calibrated DVS current meters should be checked in Inuvik (or a site near the approximate latitude of their deployment) in 2011 using a calibration turntable and GPS compass. Although these instruments cannot be post-cruise calibrated (according to Teledyne RDI), it might be possible to quantify the heading error for each compass.

Re-deployment operations: The eight moorings re-deployed by ArcticNet /Golder in IOL/BP exploration leases (Figure 5.14) were all deployed top first, with the anchors free-falling at the end of the operation (anchor last). Sea ice was not present during any of the redeployments and CTD casts were performed after every deployment. A summary of the

re-deployed mooring locations, designs, dates of recovery and redeployment, water depths for Legs 2a and 2b are found in Table 5.1.

5.4.4 Beaufort Sea – MetOcean Buoy mooring (Leg 2b)

The surface MetOcean buoy mooring deployed by University of Manitoba was successfully recovered on Leg 2b on 20 September 2010 with the combined efforts of Golder and ArcticNet mooring teams. The A-frame and capstan were used to recover the surface mooring accompanied by its attached instruments (CTs). Golder downloaded the Aquadopp current meters and recorded the relative clock drifts. The preliminary recorder's data can be seen in the Golder Leg 2 Mooring Field Report for 2009-2010.

5.4.5 Beaufort Sea – ArcticNet moorings (Legs 2b & 3a)

During Leg 2b, mooring CA04-10 was deployed on 21 September on the return voyage to Sachs Harbour. This was a historical mooring location, which was not deployed in year 2009.

Expedition year 2010, was a good year for ArcticNet mooring recoveries in the Beaufort Sea, recovering all of the 2009 moorings during Leg 3a. However, CA05-09 was only partially recovered possibly due to a faulty batch of stainless steel shackles connecting the sediment traps to the mooring line. All moorings were imaged in the water column using the multibeam system (See 246 on seabed mapping).

During Leg 3a, the recovery of four and redeployment of five moorings (CA05-, CA05-MMP, CA08-, CA16-, CA16-MMP) were successfully performed in the southern Beaufort Sea and the Amundsen Gulf (Figure 5.17).

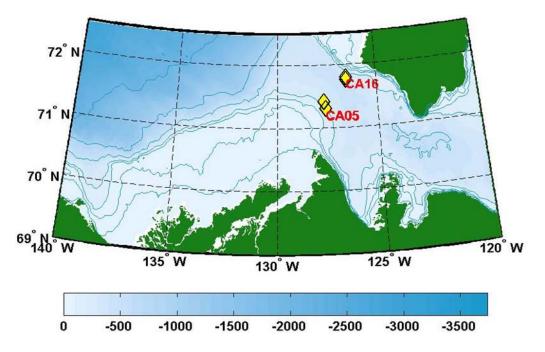


Figure 5.17. ArcticNet moorings recovered and redeployed in the Beaufort Sea/Amundsen Gulf region in 2010 (CA05, CA05-MMP, CA16, CA16-MMP) (Map: INRS QA-QC Report 2009-2010).

5.4.6 Viscount Melville Sound – ArcticNet mooring (Leg 3b)

Before mooring MS01-10 was deployed, four ADCPs compasses were calibrated on the land on the shores of Victoria Island / Prince of Wales Strait area (no raw data exists pertaining to the outcome (good / bad) of the calibrations).

Mooring MS01-10 was deployed on 10 October 2010 in Viscount Melville Sound (2 nm east of initial location) using the Zodiac pulling method in an anchor-last procedure. The multibeam water column image provided an accurate location of the mooring at depth, because vessel maneuvering was not possible due to multiple ice floes / heavy ice pack. The acoustic releases responded to range queries and the vessel continued with proceeding operations.

The Aural M2 hydrophone and Technicap PPS 3/3 sediment trap were not deployed on this mooring due to missing parts (hydrophone) and defective motor assembly (sediment trap).

5.5 Methodology – Mooring operations procedures

5.5.1 Mooring recovery (Golder mooring team, 2010, CCGS Amundsen)

There were no detailed documented procedures concerning the recovery operations of either the 2009 ArcticNet or ASL/IOL-BP moorings that were conducted in the Beaufort Sea during Legs 2a and 2b.

- All ArcticNet, Coast Guard, BP and IMG-Golder personnel attended a pre-operations Job Safety Assessment (JSA) and planning meeting involving the morning-of or night before the mooring operations.
- Cables and acoustic equipment were prepared and tested before the operation.
- A pre-operations 'toolbox' meeting took place on the deck to identify role and review responsibilities during mooring operations.
- The ship was stopped about 1-2 cables from the deployment location.
- A CTD cast was done usually before recovery (or after deployment) of the mooring.
- Transducer ranges were taken on the acoustic releases from several positions around the mooring site to verify approximate location and distance from the ship.
- When greater accuracy was needed (due to poor visibility or nearby ice) then triangulation was done by taking three range fixes from points surrounding the target location: ranges and locations were logged and a program was run to determine the most likely location of the mooring.
- The ship was then re-positioned sufficiently down-drift from this location and another range is taken before sending the release code.
- If the area over the target was clear then the Release code was transmitted, its confirmation reported, and the release time logged.
- When the mooring surfaced, the time and its location (distance & direction from ship position) were logged.
- The boat was launched and hooked onto the top float when all floatation components had reached the surface.
- The boat then pulled this alongside the ship and hooked it onto the A-frame winch hook.
- As the A-frame hook lifted sections of mooring on deck, the time was logged when each instrument came out of the water.
- The mooring lines were completely disassembled.
- Data from the instruments was downloaded and preliminary quality assurance and quality control (QA/QC) was performed on the data.
- Servicing / maintenance of the instruments was carried out, including any required trouble-shooting or field repairs.
- The instruments were re-programmed for the next year of operations (if applicable).

5.5.2 Mooring deployment

There were no detailed documented procedures concerning the recovery operations of either the 2009 ArcticNet or ASL/IOL-BP moorings that were conducted in the Beaufort Sea during Legs 2a and 2b.

This deployment procedure outlined below is based on the Golder Field Report 2010 and the current (2014) ArcticNet / CCGS *Amundsen* procedures.

- The instruments were programmed and mounted into their respective frames / floats.
- The mooring releases were verified for proper functioning.
- The mooring was assembled top-down on the foredeck according to the planned design.
- The mooring equipment attachments were confirmed and double checked.
- A Toolbox Meeting with Mooring and Ship's mooring crews was held on the foredeck to identify roles and review safety considerations.
- The Zodiac was launched (if needed).
- Date and time were recorded at the start of mooring operations by a fourth mooring team member, stationed on the bridge.
- A throw-line was attached to the top metal loop of the top float and the SeaCatch® secured (connected to the bottom of the frame, using the 500-hp winch line), paying attention to the release arm of the SeaCatch® so that it is free to lift up and outward without restriction.
- The throw-line was thrown to the Zodiac, which then attached it to the bow horn / tack.
- The mooring line was then tacked / secured and the Zodiac was then instructed to maintain a taut-line (not tight), unless otherwise instructed by the lead mooring professional / chief officer
- The top float was raised off the deck and the A-frame extended, undoing the mooring line tack before the instrument reaches the deck edge.
- The instrument was lowered and the safety pin of the SeaCatch® released at deck level, then subsequently releasing the SeaCatch® and top float at the water surface. Depending on wave conditions, timing of SeaCatch® release may need to be timed with a lull in wave period.
- The SeaCatch® was then brought back to the deck level (A-frame brought back in at the same time) and attached to the next solid structure (i.e. cage), pearl link / D-ring (added to the top-side of next device to be lifted).
- The mooring line was payed-out until there was 10-30 m remaining (30 m is advisable for rough seas), then the mooring line put on-tack.
- The next instrument was then raised by the 500-hp winch wire as the mooring line intack was released.
- The same procedure of lowering the device to the water then putting the mooring line on tack, then attaching the SeaCatch® to the top-side of the next device was followed until each device was in the water. Meanwhile, the Zodiac continued to maintain a taught-line so as to not allow for the deployed / in-water equipment to get entangled.
- The final release of the anchor was preceded by the Zodiac releasing its tack of the top float (trying to retain its tack line, or at least a good portion of it) and the chief officer confirmed the tagline release from the Zodiac and confirmation that the vessel was at the desired depth and position.
- The SeaCatch® on the Anchor chain shackle (located in the middle of the 2 m anchor chain, just above the protective chain cylinder) was then released to let the mooring free-fall into position.
- The Zodiac® and 4th team member on the bridge then marked the time and mooring / target location of the last seen vertical position of the top float on-descent.

- The Zodiac® returned to the vessel and the A-frame and 500hp winch were stopped and secured.
- The vessel then proceeded to 3 triangulation points at ~100 m around the target location and verified acoustic release communications through ranging / 'pinging' which allow for the anchor position to be calculated. These data were then input into a MatLab® triangulation script to determine the triangulated position of the mooring and kept within the field deployment sheets (Figure 5.20).
- A multibeam survey is performed to confirm the orientation and position and orientation of the mooring. Depending on the vessel's proximity to the mooring line, equipment and top-float depths might be visible, if the vessel travels directly over-top the mooring (example image Fig. 27).
- A post-deployment CTD cast / profile can be done, though the pre-deployment cast is sufficient if the CTD-Rosette was programmed to take several water samples at the same time as profiling the water column. The CTD profile plots for each mooring were kept within the field deployment workbook (EXCEL) and also archived at ArcticNet (Figure 5.19).
- The fore deck was cleaned of debris and remaining mooring equipment / cages were secured on the foredeck.

Figure 5.18. Multibeam water column imagery identifying orientation and instrument depths for deployed moorings (Screenshot courtesy of ArcticNet multibeam processing team).

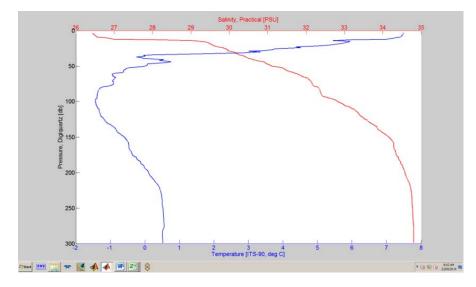


Figure 5.19. Example of a CTD-Rosette temperature and salinity profile (BS2-14).

5.5.3 Triangulation of mooring position procedure

The triangulation of the mooring positions was not well documented, but would most likely consist of the vessel proceeding to 3 triangulation points ~100 m around the target location (position were anchor was released) and verification of acoustic release communications through ranging / 'pinging', allowing for the anchor position to be calculated (Figure 5.20).

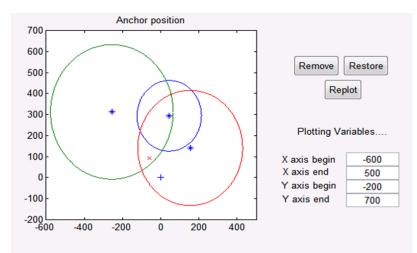


Figure 5.20. Triangulation plot from BS1-14 using Art's Acoustic Survey Matlab Script.

5.6 Comments and recommendations

5.6.1 Hudson Bay Leg 1a

Steel-toed boots should not be worn by the operator that spins the calibration table as this could potentially (small chance) throw off the calibration of the compass on the more sensitive devices (RDI ADCPs and Nortek ADCPs).

5.6.2 Beaufort Sea Leg 2 (Golder's comments)

CART releases

Corrosion was a major issue on the oceanographic moorings particularly on the CART releases. On at least 4 of 7 moorings, the corrosion required all or portions of the CART to be replaced by parts from the 4 spare CART releases. The corrosion occurred on the tension bails (vertical rods) and on the bolts and the clevis at the base of the release which holds the release closed (Fig. 22). The manufacturer, ORE Offshore, should be contacted to discuss the issue and determine the best approach to solving the corrosion problem.

Delegation of mooring operations responsibilities

The creation of a Job Safety Assessment, required by BP, identified a sequence of steps for mooring recovery, deployment and data retrieval. The JSA helped clarify the steps involved in the mooring recovery and deployment operations. The JSA not only identifies roles and responsibilities, but also acceptable PPE and a Hazards Analysis (which is needed by the CCG – French document). The JSA along with the Hazard Analysis creates a safety-first mentality that reduces confusion and increases safety for all mooring operations on-board.

FRC / Zodiac mooring assistance during mooring operations

The use of a Fast Rescue Craft / Zodiac can decrease the chance of the mooring line becoming entangled once the mooring anchor is released (deployment free-fall). Mooring line entanglements were encountered during the CASES program and periodically noticed by IOS (DFO) from time to time. In an effort to continue to deploy anchor-first, but to reduce the chance of entanglement (which prevents the mooring from releasing from the anchor), the Zodiac was used to pull the mooring line taut. The risk in pulling the line mooring line with the Zodiac is such that the Zodiac and chief officer and mooring leader need to have effective communications to prevent the mooring line from being too taut, especially in non-ideal weather conditions. The swell / waves will cause periodically high tension on the mooring line connected to the Zodiac and possess a safety risk to the mooring personal on the deck. Attention to procedure and effective communications with all personnel involved will make for a safe and smooth operation. It should be noted that ice pack may traverse the taut mooring line, still connected to the Zodiac. This is particularly hazardous for the Zodiac, mooring equipment and support vessel and mooring personal on-deck. Unfortunately, there

is nothing that can be done about this situation and experience and effective communications with the Zodiac will either raise or lower the mooring line, under the ice pack keel.

Instrumentation corrosion

Corrosion was a major problem on the 2009 moorings, especially for the CART releases, DVS 750 and impulse bulkhead connectors on the RDI ADCP housings (main unit and battery canisters).

Corrosion on the DVS transducer heads is the suspected culprit in the unit flooding instances. This problem needs to be addressed / repaired by RDI. As for next year's deployments, possibly looking into a different company's technology (Nortek AquaPro) could be a viable solution in the interim.

Alkaline batteries and an intense sampling regime prevented the DVS units from recording the full 12 month deployment period; therefore, still using an alkaline battery pack, the sampling regime was reduced to a 30 min interval, which increased battery life by 62%.

6 Water column structure and ocean circulation (CTD-Rosette, MVP and ADCP operations) – Legs 1a, 1b, 2a, 2b, 3a, 3b and 3c

ArcticNet Phase 2 – Project titled *Long-Term Observatories in Canadian Arctic Waters*. <u>http://www.arcticnet.ulaval.ca/pdf/phase2/gratton_marine_observatories.pdf</u>.

Project leader: Yves Gratton¹ (<u>yves_gratton@ete.inrs.ca</u>) and BP (Legs 2a, 2b and 3a)

Cruise participants Legs 1a & 1b: Dominique Boisvert¹ and Camil Hamel¹ **Cruise participants Leg 2a**: Yves Gratton¹, Alexandre Forest¹ and Jessy Barrette¹ **Cruise participants Leg 2b**: Alexandre Forest¹ and Jessy Barrette¹ **Cruise participants Legs 3a & 3b**: Dominique Boisvert¹ and Melissa Gervais¹ **Cruise participant Leg 3c**: Melissa Gervais¹ ¹ Institut national de la recherche scientifique (INRS) – Eau, terre et environnement (ETE), 490 de la Couronne, Québec, QC, G1K 9A9, Canada.

6.1 Introduction

6.1.1 Leg 1a – ArcticNet – 02 July to 02 August 2010 – Hudson Bay

Leg 1b – ArcticNet – 02 August to 12 August 2010 – Baffin Island and Canadian Arctic Archipelago

The objective of this team for Leg 1 was to describe the water masses and general circulation in Hudson Bay and Hudson Strait as well as through the Northwest Passage and in the Amundsen Gulf. Physical parameters were recorded using a Sea-Bird CTD-Rosette frame equipped with 24 bottles of 12 L, a ship mounted RDInstruments Ocean Surveyor ADCP (150 kHz), and a Brooke Ocean Moving Vessel Profiler (MVP).

6.1.2 Leg 2a – ArcticNet/BP – 12 August to 26 August 2010 – Beaufort Sea Leg 2b – ArcticNet/BP – 26 August to 23 September 2010 – Beaufort Sea

In Leg 2, the CTD-Rosette and MVP group examined and monitored the spatial and temporal variability of the physical processes responsible for mixing, water mass exchange and general ocean circulation. Selected key research questions include:

- What is the role of the Mackenzie River freshwater on oceanic circulation and upper stratification?
- How do Pacific and Atlantic water masses move along-shelf and across-shelf and what are the forcing mechanisms driving these exchanges?
- What are the roles of brine convection, eddies, upwelling and micro-scale turbulence in shaping the vertical and horizontal structure of the water column?

Answering these questions is necessary in order to develop more accurate predictive models for nutrient supply, sediment transport, biogeochemical cycling and overall biological productivity of the Beaufort Sea. Both mooring data (time series at fixed depths and locations) and ship-based data (vertical "snap-shots" over the area) are used.

The objective of the field work campaign for Leg 2 was primarily to characterize the water column physical and chemical properties using electrical and optical *in situ* probes: temperature, salinity, fluorescence, CDOM, dissolved oxygen concentration, nitrate concentration, light penetration and turbidity.

6.1.3 Leg 3a – ArcticNet/BP – 23 September to 07 October 2010 – Beaufort Sea Leg 3b – ArcticNet – 07 October to 22 October 2010 – Canadian Arctic Archipelago and Baffin Bay

Leg 3c – ArcticNet – 22 October to 31 October 2010 – Northern Labrador fjords

During Leg 3, the team examined the physical processes responsible for water mass exchange and circulation between the Canada Basin and the continental shelf as well as through the Northwest Passage and in the Labrador Fjords.

The objective of the shipboard field work was to characterize the water column physical and chemical properties: temperature, salinity, fluorescence, CDOM, dissolved oxygen concentration, nitrate concentration, light penetration and turbidity.

6.2 Methodology – CTD-Rosette

6.2.1 Instrumentation

Figure 6.1. CTD-Rosette system used on the *Amundsen* to characterize water column properties and collect seawater samples. Photo on the right shows the different sensors located below the bottles

The Rosette frame was equipped with twenty-four 12 liter Niskin bottles that were remotely closed at predetermined depths. A SBE 911 CTD and various other sensors were used mounted on the Rosette frame (Figure 6.1). In Leg 2, a Lowered Acoustic Doppler Current Profiler (LADCP) was attached to the frame to provide vertical profiles of horizontal current velocities on station. The Rosette also provided water samples for biologists and chemists.

Table 6.1. Sensors equipped on the Rose	ette.
---	-------

Photo	ltem	Manufacturer	Type & Properties	Serial Number	
	CTD	SeaBird SBE-911 Sampling rate : 24 Hz		0679	
0	Temperature	SeaBird	SBE 3plus Range: -5°C to + 35°C Accuracy: 0.001	4204	
	Pressure	SeaBird	Accuracy: 0.015% of full range	90584	
	Conductivity	SeaBird	SBE 4C Range: 0 to 7 S/m Accuracy: 0.0003	2696	
	Oxygen	SeaBird	SBE-43 Range: 120% of saturation Accuracy: 2% of saturation	0427	
	Nitrates ^a	Satlantic	MBARI ISUS Range: 0.5 to 200 μM Accuracy: ± 2 μM	134	
	PAR ^a	Biospherical	PAR Dynamic Range: 1.4x10 ⁻⁵ μE/(cm ² sec) to 0.5 μE/(cm ² sec)	4664	
	SPAR	Biospherical	PAR Spectral Response: Equal (better than ±10%) quantum response from 400 to 700 nm	20123	

Photo	ltem	Manufacturer	Type & Properties Min. detectable level 0.02 µg/l			Serial Number
			Gain sens	V(µ/l)	Range (µ/l)	
100 1	Fluorometer	Sea Point	30X	1.0	5	2465
		ood i onit	10X	0.33	15	2100
			3X	0.1	50	
			1X	0.033	150	
	Transmissometer V		Path length: 25 cm			CST-558DR
		WetLab	Sensitivity 1.25 mV			
	Altimeter	Benthos	Range: 50 m from bottom		1044	
	-		FL(RT)D			
	ECO fluorometer	CO fluorometer Wet Labs DOM)	Digital output resolution : 14 bit			
	(CDOM)		Analog output signal: 0-5V			
	(00011)		•	e: 0.09-5	• •	
			Ex/E	m: 370/4	60 nm	

^a The Rosette was restricted to the first 1000 m because of the PAR and Nitrates sensors.

Table 6.2. Rosette's sensors specifications.

Parameter	Sensor		Range	Accuracy	Resolution
	Manufacturer	Instrument Type			
CTD	SeaBird	SBE-9plus ¹			
Temperature	SeaBird	SBE-03 ¹	-5°C à +35°C	0.001°C	0.0002°C
Conductivity	SeaBird	SBE-4C ¹	0-7 S/m (0-70mmho/cm)	0.0003 S/m (0.003mmho/cm)	0.00004 S/m (0.0004 mmho/cm)
Pressure	Paroscientific	410K-105	up to 10 500m (15 000psia) ²	0.015% of full scale	0.001% of full scale
Dissolved oxygen	SeaBird	SBE-43 ³	120% of surface saturation ⁴	2% of saturation	unknown
Nitrates concentration	Satlantic	MBARI-ISUS 5T ⁶	0.5 to 2000 µM	±2 μΜ	±0.5 μΜ
Light intensity (PAR)	Biospherical	QCP2300	1.4×10 ⁻⁵ to 0.5 µE/(cm²⋅sec)		
sPAR	Biospherical	QCP2200	1.4×10 ⁻⁵ to 0.5 μE/(cm²⋅sec)		
Fluorescence	Seapoint	Chlorophyll- fluorometer	0.02-150 µg/l	unknown	30
Transmissiometer	Wetlabs	C-Star	0-5 V	unknown	1.25 mV
Altimeter	Benthos	PSA-916 ⁷	0 - 100 m	unknown	0.01 m
CDOM fluorescence	Wet Labs	FL(RT)D ⁷	0.09-500ppb	unknown	14 bit

Notes: ¹ Maximum depth of 6800m ² Depending on the configuration ³ Maximum depth of 7000m

⁴ In all natural waters, fresh and marine

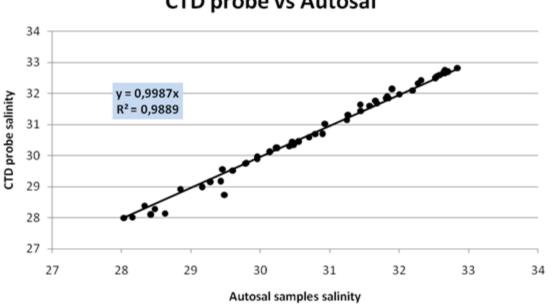
⁵ Maximum depth of 1200m

⁶ Maximum depth of 1000m

⁷ Maximum depth of 6000m

6.2.2 Lowered Acoustic Doppler Current Profiler (LADCP) (Leg 2)

Figure 6.2. LADCP equipped on the Rosette frame during Leg 2 to measure currents in the water column.


A 300 kHz LADCP (a RD-Instrument Workhorse[®]) was mounted on the Rosette frame during Legs 2 and 3. The LADCP gets its power through the Rosette cable and the data was uploaded on a portable computer connected to the instrument through a RS-232 interface after each cast. The LADCP was programmed in *individual ping* mode (one every second). The horizontal velocities were averaged over thirty-two, 4 m *bins* for a total (theoretical) range of 100 to 120 m. The settings were 57600 bauds, with no parity and one stop bit. Since the ADCP was lowered with the Rosette, there were several measurements for each depth interval. Processing was done in Matlab[®] according to Visbek (2002; J. Atmos. Ocean. Tech., 19, 794-807)

6.2.3 Sensor calibration

Salinity: Samples were usually taken on 2-3 casts during each Leg using small glass 200mL bottles. They were analyzed onboard with an autosal GuildLine model 8400B (range from 0.005 to 42 and accuracy < 0.002).

Figure 6.3. Bottles used to collect samples (left) for salinity calibration and the Guildline instrument (right) used to analyze salinity samples onboard the Amundsen.

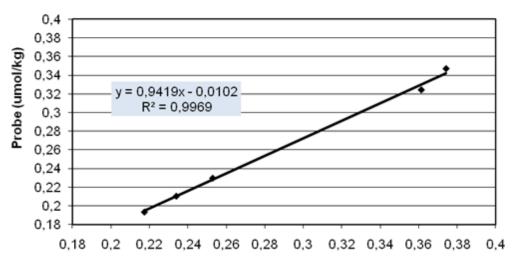

CTD probe vs Autosal

Figure 6.4. Comparison between salinity measurements obtained from the Ctd sensor on the Rosette and from calibration samples analyzed onboard. Example is from Leg1.

Oxygen: Oxygen calibrations were performed onboard during or after each leg using Winkler's method and a Mettler Toledo Titrator. Reagent blanks were tested at least once per leg. Water samples for oxygen titration were obtained in triplicates from a few casts per leg from five depths that offered a wide range of values.

Figure 6.5. Bottles used to collect samples (left) for oxygen calibration and the Mettler Toledo titrator (right) used to analyze the samples onboard the *Amundsen*.

CTD probe vs samples Cast 1001029

Oxygene samples (umol/kg)

Figure 6.6. Comparison between oxygen measurements obtained from the CTD sensor on the Rosette and from calibration samples analyzed onboard by Winkler titration. Example is from Leg1.

6.2.4 Sampling

Leg 1a – ArcticNet – 02 July to 02 August 2010 – Hudson Bay

Leg 1b – ArcticNet – 02 August to 12 August 2010 – Baffin Island and Canadian Arctic Archipelago

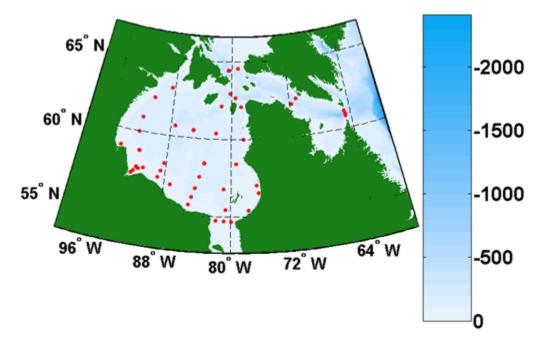


Figure 6.7. Locations of CTD-Rosette casts conducted in Hudson Bay, Hudson Strait and Foxe Basin during Leg 1a.

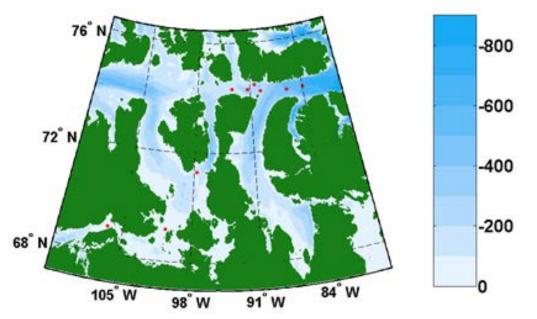


Figure 6.8. Locations of CTD-Rosette casts conducted in the Canadian Arctic Archipelago (Northwest Passage) during Leg 1b.

Water was sampled from the Rosette according to each team's requests, usually following this collection system:

<u>Nutrients</u> (J.-É. Tremblay): chlorophyll maximum, surface, 10 m, 20 m, 30 m, 40 m, 50 m, 60 m, 80 m, 100 m, 120 m, 140 m, 160 m, 180 m, 200 m, 250 m, 300 m and every 100 m down to the bottom.

<u>Mercury</u> (H. Hintelmann): Surface, bottom, mid-water column (unusual biological activity). <u>DOC/DON</u> (C. Michel): Salinity of 33.1, surface, 10 m, 20 m, 30 m, 40 m, 50 m, 60 m, 80 m, 100 m, 120 m, 140 m, 160 m, 180 m, 200 m, 250 m, 300 m and every 100 m down to the bottom.

<u>CDOM</u> (G. McCullough): 100 m, 70 m, 50 m, 40 m, 30 m, 20 m, 10 m.

<u>Primary production</u> (M. Gosselin): 50%, 30%, 15%, 5%, 1%, 0.2% of light, chlorophyll maximum, 75 m and 100 m while in open water, or nutrients profile below 100 m deep. <u>DNA</u> (C. Lovejoy): surface, chlorophyll maximum, nitracline, bottom.

Leg 2a - ArcticNet/BP - 12 August to 26 August 2010 - Beaufort Sea

Leg 2b - ArcticNet/BP - 26 August to 23 September 2010 - Beaufort Sea

Figure 6.9 and Figure 6.10 show the location of the CTD-Rosette and MVP casts completed during Leg 2.

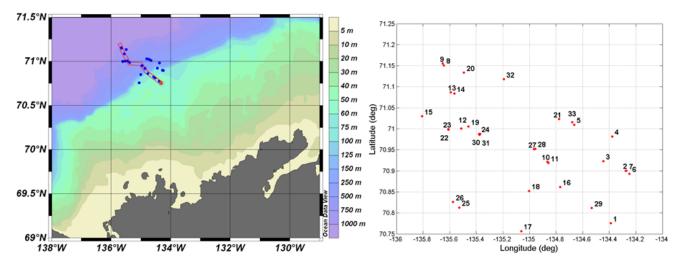


Figure 6.9. Left: Location of CTD-Rosette casts conducted during Leg 2a, with BP section indicated in red. Right: CTD-Rosette casts (red dots) identified by cast number. Note that casts 8 and 9 in the upper left corner are the northernmost ones and they correspond to Station BP10-009.

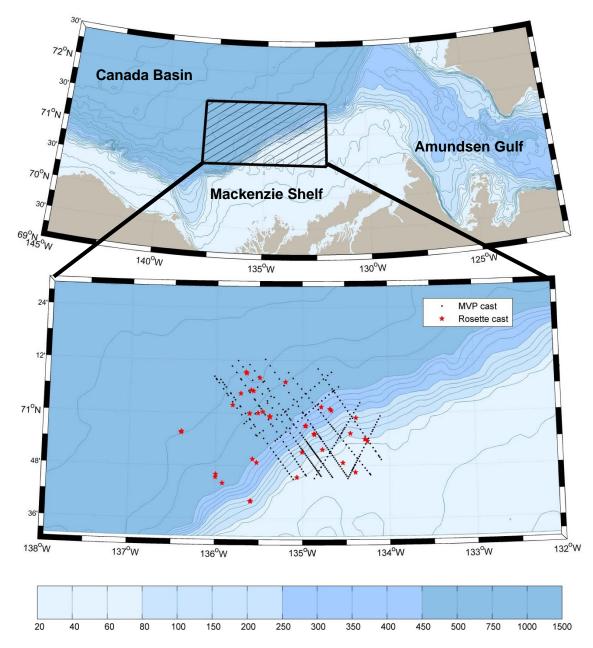


Figure 6.10. Location of the CTD-Rosette casts (red stars) and MVP casts (black dots) performed in the BP and IOL lease blocks in the southern Beaufort Sea during Legs 2a and 2b.

Water was sampled with the Rosette according to each team's requests. Most of the requests occurred during Leg 2a, whereas little water sampling was performed during Leg 2b (see CTD logbook in Appendix 3 for details).

Three types of CTD-Rosette casts were defined:

<u>CTD casts (Leg 2a and 2b)</u>: CTD profile only, no bottle was closed. This type of cast was usually performed prior to each mooring recovery and after each mooring deployment. A simple CTD cast was also performed for the USBL calibration on 02 September 2010.

<u>Biophysical casts (Leg 2a and 2b)</u>: During Leg 2a, samples were obtained for nutrients, contaminants, salinity, dissolved oxygen (DO) and the δ^{18} O to δ^{16} O ratio. In some instances, Total Alkalinity (TA), pH and Dissolved Inorganic Carbon (DIC) samples were also extracted from the same bottles. During Leg 2b, only one biophysical cast (1002040) for DO, TA, DIC, salinity and pH was performed (i.e. no nutrient and no contaminant).

<u>BP-1 to BP-5 casts (Leg 2a only)</u>: Twelve dedicated bottles (new ultra-clean bottles) were closed at approximately 125 m (six bottles) and 240 m (six bottles) to sample the Pacific and Atlantic water mass cores.

Leg 3a - ArcticNet/BP - 23 September to 07 October 2010 - Beaufort Sea

Leg 3b – ArcticNet – 07 October to 22 October 2010 – Canadian Arctic Archipelago and Baffin Bay

Leg 3c – ArcticNet – 22 October to 31 October 2010 – Northern Labrador fjords

During Leg 3, the CTD-rosette was deployed sixty-five (65) times and all data was recovered. Figure 6.11show the location of the Rosette casts.

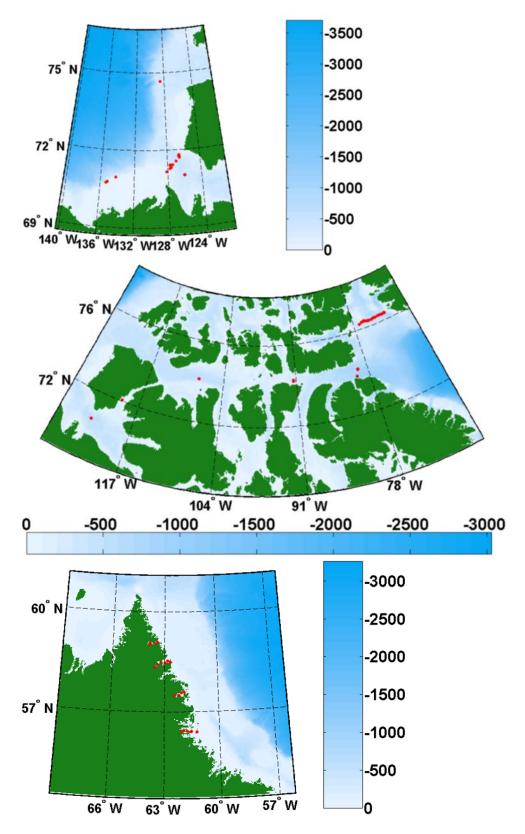


Figure 6.11. Locations of CTD-Ropsette casts conducted during Leg 3a (top), Leg 3b (center) and Leg 3c (bottom).

Three types of CTD-Rosette casts were defined:

CTD only: CTD profile only, no bottle was closed.

Nutrients and PP casts: High resolution sampling of the water column was done for nutrients and primary production. In some instances, Arsenic and δ^{18} O samples were also extracted from the same bottles.

Microbial diversity: Samples are obtained for microbial diversity at four to five depths of interest in the water column (ex: Nitracline, Oxygen minimum).

6.2.5 Data availability

All the information regarding the Rosette casts is summarized in the CTD Logbook (Appendix 3) which includes cast number and station ID, date and time of sampling in UTC, latitude and longitude, bottom and cast depths, and comments concerning each cast. For every cast, data from three seconds before a bottle was closed to seven seconds after was averaged and recorded in the ascii '*bottle files*'. The information included the bottle number, time and date, trip pressure, temperature, salinity, light transmission, fluorescence, dissolved oxygen, irradiance and pH measurements.

During Leg 1, a total of 80 casts were performed between 02 July 2010 and 12 August 2010.

During Leg 2, the CTD-Rosette was deployed 43 times and the data from 42 casts was recovered. Cast 24 was aborted due to communication problems; therefore, the data is not available.

6.3 Methodology – Ship-mounted ADCP (SM-ADCP)

Velocity data have been recorded continuously using a ship mounted RD-Instruments Ocean Surveyor 150 kHz ADCP (SM-ADCP). The GPS signal was available through the ship's navigation system or through the EK-60. The SM-ADCP provided dependable horizontal currents every 8 m only down to 125 or 150 m, the protective ice window absorbing part of the energy. The signal could reach 200-300 m when the ship was on station.

6.4 Methodology – Moving Vessel Profiler (MVP)

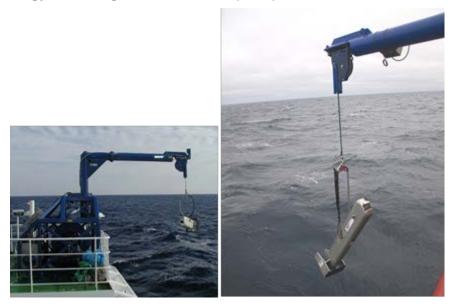


Figure 6.12. Moving Vessel Profiler used on the *Amundsen*. To conduct continuous vertical profiles of water column properties.

The Moving Vessel Profiler (MVP; model MVP300-1700) is a towed CTD fish-like profiler (also equipped with fluorescence, transmissivity and dissolved oxygen sensors) built by Brook Ocean Technology (BOT). It is usually used in automatic mode. The "fish" (Figure 6.12) freefalls at ~5 m s⁻¹ and is automatically winched back to 12 m below the surface (Figure 6.13) after each cast.

The MVP was equipped with 1700 m of cable and could profile down to 300 m at 12 knots. The slower the cruising speed, the deeper the MVP can reach and the better the horizontal resolution. At 4 knots, the MVP can profile down to 400 m with a 800 m horizontal resolution.

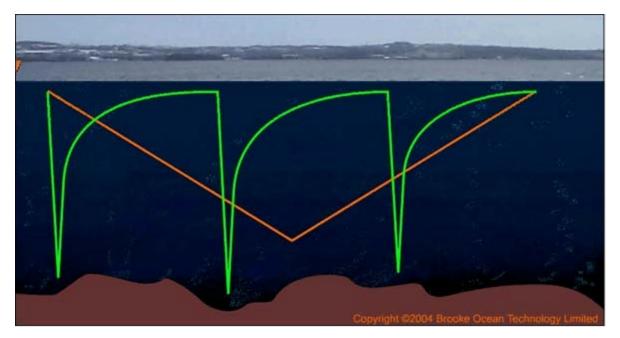


Figure 6.13. MVP fish profiling trajectory below the water (green line) while it is towed by the *Amundsen*. During Leg 1, MVP transects were made in Hudson Bay, Hudson Strait and Lancaster Sound. The MVP was likely hit by ice during the Lancaster Sound transect and its support frame was bent. The probes and cables were not damaged.

This instrument was not used during Leg 2a but was intensively used during Leg 2b to cover the sub-bottom mapping lines (see next section). During Leg 2a, the first 10 and last 10 meters of the water column were lost, while during Leg 2b, the first 12 m and last 20 meters were lost. During Leg 2, a total of 14 MVP transects were performed for a grand total of more than 300 profiles.

During Leg 3, the MVP was used only in the Labrador fiords during Leg 3c.

Problems encountered with the MVP (Leg 2b)

A major problem encountered with the MVP was the leakage of oil from the hydraulic pump during deployment. For an 8-hour deployment with semi-continuous profiling, the pump lost about 1.5 liter of oil. This could have been a major issue if the pump had lost more oil (or was not checked for several deployments). Fortunately, the pump was refilled after each deployment and the level of oil checked regularly.

Another problem was the frequent loss of communication between the MVP control unit and the M300 bottom sensor. If the bottom depth reading was lost momentarily during a downcast, the profile stopped and the MVP was automatically recovered at its dock position. The problem was bypassed by increasing the time-out delay between the MVP

and the M300, but this is not recommended for further deployments as it is risky. Instead, the connection should be repaired and checked for signal stability.

A third problem was the malfunctioning of the fluorometer, which did not work at all during Leg 2b and should be changed.

The final problem was the sporadic malfunctioning of the auto-recovery when the MVP reached its bottom depth time-out. This can cause the MVP to hit the bottom if the controller is not aware that sometimes the MVP does not stop at its boundary depth and continues to fall. This happened three times in total during Leg 2, but thanks to the vigilance of the MVP operators, the profiler was stopped and recovered manually before any incident happened.

6.5 Preliminary results

6.5.1 Leg 1a – ArcticNet – 02 July to 02 August 2010 – Hudson Bay Leg 1b – ArcticNet – 02 August to 12 August 2010 – Baffin Island and Canadian Arctic Archipelago

Sections of salinity profiles obtained with the MVP in Hudson Bay, Hudson Strait and Lancaster Sound during Leg 1 are presented in Figure 6.14.

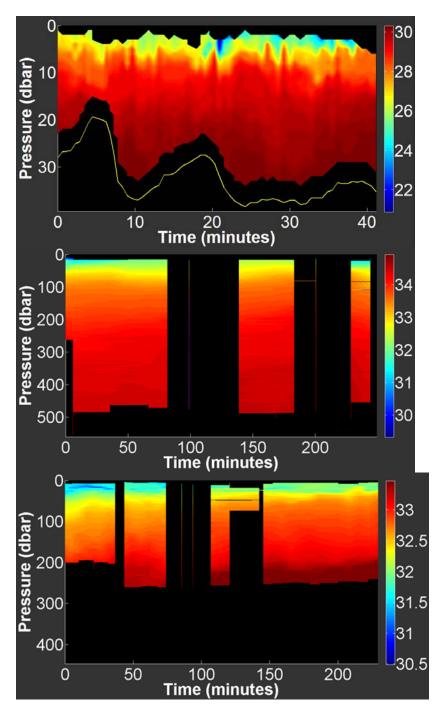


Figure 6.14. Salinity profiles from MVP Transect 2 in Hudson Bay (upper panel) and MVP Transect 3 in Hudson Strait (middle) during Leg 1a, and for MVP Transect 4 conducted in Lancaster Sound (bottom) during Leg 1b.

6.5.2 Leg 2a – ArcticNet/BP – 12 August to 26 August 2010 – Beaufort Sea Leg 2b – ArcticNet/BP – 26 August to 23 September 2010 – Beaufort Sea

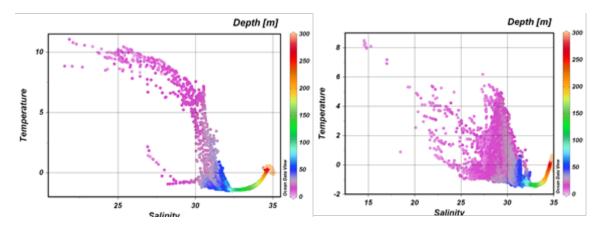


Figure 6.15. T-S diagrams constructed with data from Leg 2a in August-September 2010 (left) and Malina in August 2009 (right). Note the much warmer surface water in 2010. In 2009, the warmer waters (upper left corner) were found only very close the mouth of the Mackenzie.

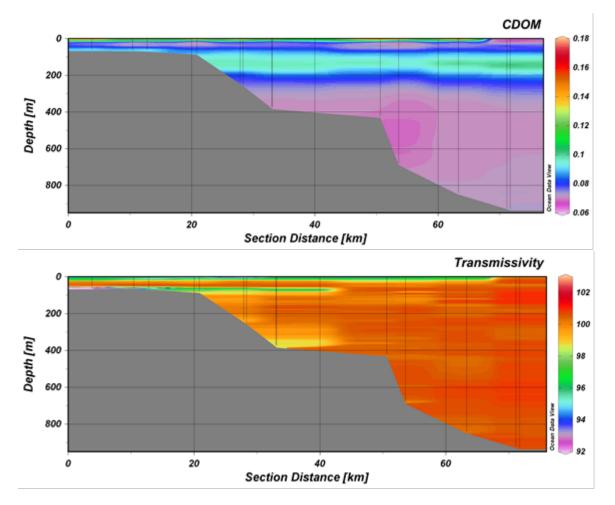


Figure 6.16. Dissolved Organic Matter (CDOM; above) and transmissivity (below) along the BP section. The BP section made up of Stations, from northwest to southwest, 9, 7, 16, 3, 4, 11, 13 and 18, sampled during Leg 2a (see map in Figure 6.9).

Two features are worth mentioning on this section (Figure 6.16): on the upper panel, the Pacific water layer is well defined by higher CDOM concentrations, as well as the thin surface layer. On the lower panel, the low transmissivity feature of ~ 400 was probably related to resuspended material drifting away from the shelf and slowly sinking. This feature was also observed in 2009.

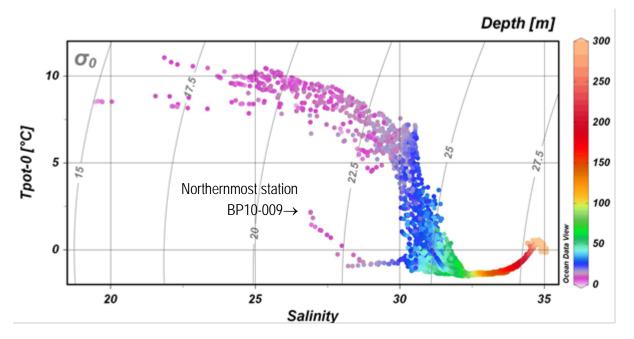


Figure 6.17. Potential temperature against salinity recorded with the CTD-Rosette profiler for all stations (all depths) located in the BP/IOL blocks and sampled during Leg 2. The color of each dot provides the 1-m bin average depth of each T/S signature. The isopycnals (sigma-theta, kg m⁻³) are given in the background (grey curves).

Note the very warm (up to ~10°C) and relatively fresh (<28 salinity) surface layer detected in August-September 2010 in the study region (Figure 6.17).

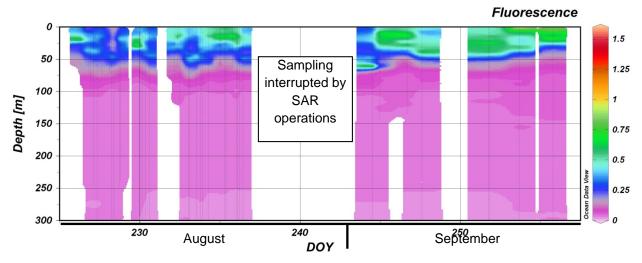
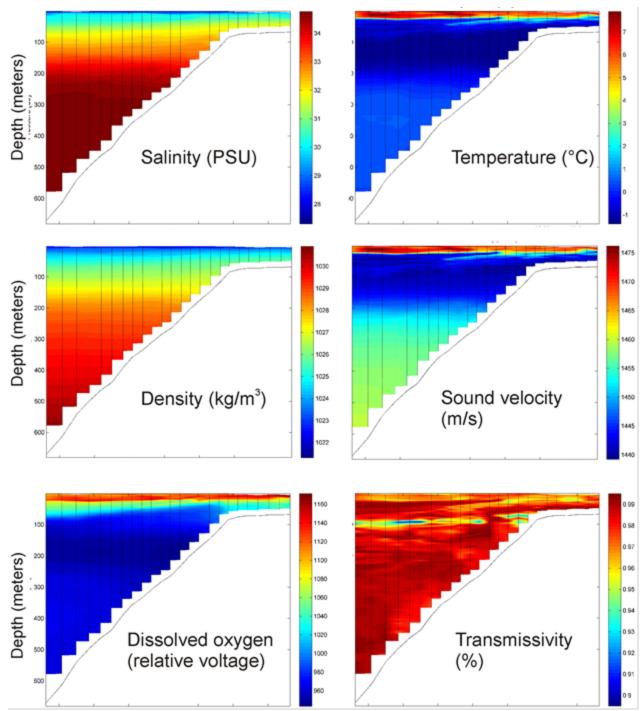



Figure 6.18. Time-series of relative and uncorrected chlorophyll fluorescence concentration (μ g Chl *a* L⁻¹) recorded in the study area throughout the entire Leg 2 with the fluorometer probe attached to the CTD-

Rosette profiler. The x-axis is given in day-of-year (DOY) with number 1 being January 1st, 2010. Note the weak fluorescence (<1 μ g Chl a L-1) detected in the surface layer. Sampling was interrupted in late August due to Search and Rescue (SAR) operations.

Figure 6.19. Physical-chemical properties of the water column acquired during the cross-shelf MVP transect (line 7) carried out on 03 September during Leg 2b. Thirteen other cross-shelf or along-shelf transects were performed during Leg 2b (Figure 6.10).

Note the strong vertical stratification in the area in Figure 6.19 exemplified by the density profiles and the marked intermediate nepheloid layer (turbid mid-water particle plume) apparent on the transmissivity transect. Unfortunately, the fluorescence probe encased in the MVP fish profiler did not work during Leg 2b.

6.6 Comments and recommendations

Rosette: The Rosette frame is unbalanced and too light. Weights should be added to compensate for the LADCP and also to make the Rosette generally heavier. It is estimated to require a supplementary 200 lbs.

Sensors: All sensors worked fine throughout Legs 1 and 2. Some anomalously low values in dissolved oxygen were recorded at depth at the beginning of Leg 2a (e.g. casts 5, 8, 9). This should be further explored as no cause was found. The problem was not apparent after 21 August.

Pump: No problems with the pump. During Leg 2, there were problems with the pump between the bottom and ~500 m on the upcast for casts 7, 8, 13 and 4. The problem was solved by changing a cable.

CTD: The CTD worked fine throughout Legs 1 and 2.

CTD and MVP acquisition computers: These two instruments should have distinct acquisition computers with a bare minimum of software (i.e. no Office® or Matlab®). The Brooke Ocean Technology technician recommended that both instruments should not be controlled by the same computer. If something happens to the computer, both instruments would be lost at the same time.

CTD data processing computer: A new processing computer with SeaSave, SBEDataProcessing, WinADCP, Microsoft Office[®] (Word, Excel and Power Point) and Matlab[®] installed is needed. All CTD, MVP, and LADCP data processing has to be done on the same computer so that the operators on shift have access to the same programs and to a single data set. This enables a smooth transition between different Legs and it is easier to back-up the processed data. This computer would need to have access to the "shares" folder to enable transfer of the processed CTD data.

Deck Unit: During Leg 1, the Deck Unit had some major problems during cast 1001073. It stopped communicating with the water sampler, and the deck unit had to be reset and a different data file created for the upcast. After that, there were some problems closing bottles (the signal had to be sent more than once for some bottles). The problems got worse on the attempted second cast at Station 312, the Rosette simply would not start. The tech team from U. Laval (led by S. Gagné) had to change a section of the cable. No problems were encountered during Leg 2.

Deck material (winch, A-frame, etc.): Everything worked fine in Leg 1, but during Leg 2, communication with the Rosette was lost at 400 m on cast 24. The splice on the Rosette cable had to be redone. The winch often shook vigorously on the first 20 m of the downcast and this could cause abnormal tension in the electro-mechanic wire and is not good for the connection. This should be checked as soon as possible or at the latest when the vessel returns to Quebec City.

LADCP: On some casts during Legs 2 and 3, two data files were created by the instrument instead of the usual one. The cause of this problem was not determined.

The LADCP was pitching and rolling significantly because the Rosette was not balanced. This had an effect on the data quality and in turn, will affect the data processing, but to what point, it is not known.

The acquisition of expendable, affordable "extension" cables for the LADCP is recommended. These cables could be used as expendable interface cables between the much more expensive T-cable and the RS-232 cable.

In shallow water, Visbek (2002) approach performs poorly. This happens whenever the instrument "sees" the bottom from the surface. It is recommended that the Rosette operators leave the LADCP under the surface a little longer than the three minutes suggested by SeaBird before starting the downcast to make sure that there are at least three "Short-term averages" (STA: one minute averages) to work with.

SM-ADCP: During Leg 1, the NAV signal (GPS) was erratic and therefore the data set is incomplete.

The SM-ADCP should have its own monitor and keyboard, instead of being accessible solely through the ship's network. The acquisition process could not be verified for long periods of time because of network problems and as a result, data was lost during Legs 1 and 2. The ship's navigation was lost regularly and the instrument stopped often for unknown reasons. During Leg 1001, the instrument logged ~600 mg instead of the usual ~4 gb. The Rosette operators should check the acquisition twice a day until the situation returns to the normal. Moreover, a 75 kHz, or better, a bi-frequency transducer should be acquired at the next opportunity. The vertical resolution would be halved but the depth penetration would be doubled.

7 Remote sensing and marine optics in Hudson Bay – Leg 1a

Project leader: Pierre Larouche¹ (<u>Pierre.Larouche@dfo-mpo.gc.ca</u>)

Cruise participants Leg 1a: Pierre Larouche¹ and Shilin Tang²

¹ Fisheries and Oceans Canada (DFO), Maurice Lamontagne Institute (MLI), BP 1000, Mont-Joli, QC, G5H 3Z4, Canada. ² Fisheries and Oceans Canada (DEO), Freshwater Institute (EWI), 501 University Crescent

² Fisheries and Oceans Canada (DFO), Freshwater Institute (FWI), 501 University Crescent, Winnipeg, MB, R3T 2N6, Canada.

7.1 Introduction

The general research objective of this study was to measure the *in situ* optical properties of the particulate and dissolved matter in order to better interpret the satellite images of ocean colour. Using data from satellites to measure sea surface temperatures as an indicator of physical processes (currents, upwellings, etc.) and ocean color data to measure chlorophyll concentration and evaluate phytoplankton productivity, the ArcticNet data will be utilized for interpretation and comparison measures. The optical properties of marine and coastal ecosystems in the Hudson Bay are complex due to the presence of large freshwater inflows. Accordingly, there remains an ongoing need to collect the relevant in situ data to validate the remote sensing data.

Enabling such data comparisons will contribute to the overall assessment of quantifying the response of the marine ecosystem to climate-induced variability and change in sea temperature. It will further contribute to the understanding of the environmental variables that govern the abundance and the species composition of the summer phytoplankton communities in Hudson Bay with a special attention to the hot spots.

7.2 Methodology

Different optical measurements were made during Leg 1a. The primary instrument was an optical profiling system (Figure 7.1) made of a variety of instruments enabling the measurement of various biological and optical water properties. These instruments were:

- A Wetlabs ACS measuring hyperspectral attenuation and absorption of light
- A Wetlabs AC9 equiped with a 0.2 μm filter to measure absorption by dissolved matter at 9 wavelengths
- A Wetlabs ECO-BB9 to measure light backscattering by particles at 9 wavelengths
- A Sequoia LISST-100X to measure the size spectra of particles up to 250 µm
- A pair of Satlantic hyperspectral light sensors to measure upwelling radiance and surface irradiance
- A Seabird SBE49 CTD to measure the vertical structure of the water column

• A pair of Wetlabs fluorometers to measure both phytoplankton and CDOM concentrations.

Figure 7.1. Optical profiler used during Leg 1a in Hudson Bay.

To complement the optical measurements, photos of the water surface and the sky were also taken.

Water samples were taken at different depths in order to complete the bio-optical informations gathered by the optical profiler. A surface water sample was collected using a bucket and two to three depths were sampled using the CTD-Rosette system. In general, samples were taken at 10 meters and at the chloromax depths at Nutrient stations while the sampled depths were 30%, 15% and chloromax at Basic stations.

Sea water samples were taken to measure total suspended matter using two different filters (GF/F and polycarbonate) in an effort to intercompare their respective performance. GF/F filters will also allow the determination of both the sample organic and inorganic fractions by

burning the filter at 550°C. All samples were frozen at -80°C and will be processed upon the return of the ship. Filtrations were also made for HPLC and pigments absorption using GF/F filters. These samples were flash frozen in liquid nitrogen in the filtration laboratory and transferred to a dry shipper for conservation. Finally, samples were also collected for colored dissolved organic matter (CDOM) and chlorophyll content. The CDOM samples were stored in the -15°C freezer while chlorophyll was measured onboard using a fluorometer. In addition to planned stations, samples coming from four rivers located along the Hudson Bay coast were also processed in cooperation with the U. of Manitoba team. This should allow to better define the optical properties of inflowing fresh waters from different hydrographic basins.

Overall, all Nutrients and Basic stations were sampled except Stations 704 and 825, leading to an impressive spatial coverage of the optical properties of Hudson Bay that will complement the dataset acquired during the 2005 ArcticNet Expedition by improving both the spatial and temporal coverage.

7.3 Preliminary results

No preliminary results are available yet.

7.4 Comments and recommendations

The *Amundsen* equipment and facilities improved a lot over the years. The only recommendation made here is about the floor of the 610 laboratory, that is very slippery when it is wet, which happens very often due to the nature of the work being done there. This is really dangerous for the people working in that laboratory.

8 Freshwater-marine interactions in Hudson Bay – Leg1a

ArcticNet Phase 2 – Project titled *Freshwater-Marine Coupling in the Hudson Bay IRIS*. <u>http://www.arcticnet.ulaval.ca/pdf/phase2/barber_freshwater-marine_coupling.pdf</u>

Project leader: David Barber¹ (<u>dbarber@cc.umanitoba.ca</u>)

Cruise participants Leg 1a: Greg McCullough¹, Geoffrey Gunn¹, Andrew Osipa¹, Michelle Curry¹, David Capelle¹, Jeremy Barber¹, Stéphane Lorrain²

¹ University of Manitoba, Centre for Earth Observation Science (CEOS), 460 Wallace Building, Winnipeg, MB, R3T 2N2, Canada.

²Representing Manitoba Hydro during the Hayes – Nelson Rivers estuary portion of the mission; Environnement Illimité Inc., 1453 rue Saint-Timothée, Montreal, QC, H2L 3N7, Canada.

8.1 Introduction

The general goal of the Freshwater – Marine Interactions Project is to document and study transfers of freshwater, suspended sediments, nutrients and organic matter into Hudson Bay from its watershed, to trace their circulation through Hudson Bay and, in particular, to investigate their effect on the light regime in Hudson Bay, with emphasis on studies in and near the estuaries of the Churchill and Hayes – Nelson Rivers in the southwest, and the Rivière de la Grande Baleine in the southeast.

The particular goals for Leg 1a were twofold:

- a collaborative systematic study on the relationship of water masses to organic matter composition (DOC) and the carbonate system using tracers, including salinity, colour and fluorescence spectra of organic matter (CDOM & FDOM), oxygen-18 isotope concentration (δ¹⁸O) and total alkalinity (TA), in order to determine the key drivers of carbon fluxes in Hudson Bay.
- a survey of the dimensions and gradients [salinity, suspended matter (TSM), chlorophyll-a (chla), DOC, CDOM, major nutrients, δ¹⁸O] of the plume of the Hayes and Nelson Rivers in Hudson Bay.

Previous work (Granskog et al. 2007, Else et al. 2008) indicated the significant influence of runoff as a source of labile organic carbon, resulting in remineralization and outgassing of CO_2 (Else et al. 2008ab), also evidenced by the loss of CDOM before waters exit Hudson Bay (Granskog et al. 2009). This suggests that ocean colour could be used to estimate CO_2 fluxes (Else et al. 2008), although this method would need to be refined, as currently there is very scarce data and large regional contrasts in bio-optical properties of surface waters in the bay (Granskog et al. 2007). Mundy et al. (2010) found that sea ice formation could possibly result in subsurface injections of carbon, through brine convection, and in surface dilution of DOC, possibly resulting in a sink of atmospheric CO_2 in areas where sea ice melt

dominates. However, direct observations are lacking, and this data set could shed new light on the origin of deep waters in the bay.

This collaborative project takes a holistic approach, with collaborative sampling of tracers (salinity, δ^{18} O, TA), organic matter (CDOM, DOC) and the carbonate system, to investigate which processes drive carbon cycling in Hudson Bay. The resulting data set will serve as validation data for remotely sensed ocean color in order to improve the reliability in estimating CO₂ fluxes from ocean color (or IR) data. TA could be used as an additional tracer for water masses, in addition to salinity, δ^{18} O and CDOM (Granskog et al. 2009), to investigate the origin of deep waters in the bay. Experiments on photochemical mineralization of CDOM would allow quantifying the remineralization of CDOM in different regimes in the Bay, and with the aid of irradiance measurements also the vertical distribution of photomineralization can be assessed. This would also improve the current understanding of the factors controlling the light penetration, and thereby primary production.

8.1.1 Hyperspectral reflectance data

Optical properties of bodies of water depend heavily on the inherent properties of water as well as the optical properties of dissolved and suspended materials. This relationship is the basis for ocean colour remote sensing, which seeks to connect synoptic satellite images to processes occurring in the upper layers of the water surface. These processes are the connection between incoming solar radiation and marine primary production and serve an important role in the health of the bay.

This study aims to understand the influence of physical processes on biological systems through the connection between ice features—such as polynyas—and observed water colour. The areal focus of this study is a little-known latent heat polynya that occurs in the northwest corner of Hudson Bay (Saucier et al. 2004). Other coastal regions, including the sensible heat polynyas of the Nelson and Great Whale Rivers, may also be studied.

In situ validation is required for this study due to the optically complex nature of coastal and inland seas, of which Hudson Bay is a classic example. Existing ocean colour algorithms that relate optical response to constituent material are only appropriate in the case 1 waters that persist in the global ocean and are subject to extreme errors in shallow, high sediment, near ice, or freshwater-fed marine regions (IOCCG 2000). Optical data collected from above or below the surface for a given area can be used to compute the Apparent Optical Properties (AOPs) of the area, which can then be extrapolated to remotely sensed values collected from air- or spaceborne platforms. The goal of the field component was to calculate and relate the water leaving radiance for specific wavelengths of light and relate those to measured inherent properties of water thus serving as valuable validation data for further synoptic studies.

8.2 Methodology

8.2.1 Water masses, DOC and nutrients

In Hudson Bay, 4 L of water was collected from the ship's CTD-Rosette at 10-m depth intervals (excluding 50 m) to 100 m depth or to the bottom, and in deeper water at 20 m intervals from 100 m to near-bottom. In Hudson Strait, 4-L samples were collected only at the surface, chlorophyll maximum and near-bottom. At every station, surface samples were collected by dipping 2 or 4 sample bottles directly into the sea, just below surface, either 1) by rope from the forward deck as the ship arrived on station, taking care to sample before water was disturbed by operation of the ship's bow thrusters, or 2) from the ship's boat (Zodiac) if it were launched at the station.

Samples were collected as described above for every named station in Hudson Bay (list below). In addition, water was sampled from above the limit of salt intrusion in 13 tributary rivers.

- 1. Full profiles (Hudson Bay): Stations 710, 698, 699, 701B, 720, CL, 702, 703, 709, 704, 730, 735, 745, 750, 760, 765, 770, 707, 706, 705(A,B,C,M), 790, 795, 800, 810, 820, 825, 830, 835, 840, and 740.
- 2. Surface, Chla max and near-bottom (Hudson Strait and Foxe Basin): Stations 356, 352, 360, 362, 370, and 350.
- 3. Rivers
 - Quebec shore: Pavungnituk, Kogaluk, Polemund, Innukshuak, Nastapoka, Nagaluk, Petite Baleine and Grand Baleine Rivers.
 - Nunavut/Manitoba shore: Rosemund, Tha' Anne, Thewiaza, Churchill Rivers
 - Ontario shore: Severn and Winisk Rivers.

Unfortunately, due to mechanical problems with the helicopter, followed by adverse flying weather, no freshwater sampling was carried out from either the Hayes or Nelson Rivers. The team had sampled both rivers frequently in previous years (2005, 2006, 2007 and 2009) for most of the parameters studied on this expedition.

All water samples were collected in 2-L large mouth polycarbonate bottles which had been acid-soaked and Milli-Q rinsed prior to the expedition, and which were Milli-Q rinsed between each sample collection. In every case, surface and Rosette samples were collected after rinsing bottles 3 times with sample water. Subsamples were filtered and stored for future analysis usually within 6 h of collection (or in a few cases, the day after collection, in which case they had been stored refrigerated in the interim).

Salinity was determined using the on-board salinometer for all offshore samples. Whole water from nearshore and inner estuarine samples was retained for later analysis at DFO-IOS (R. Macdonald). This latter group comprised samples collected in <20 m of water within the Hayes – Nelson Rivers estuary region, where turbidity might possibly have altered the calibration of the on-board salinometer.

Dissolved nutrients (NO₃, NO₂, P for all Hudson Bay stations; Si for rivers and the Nelson estuary region only) were subsampled only where identical samples were not collected by the nutrient team (J. Gagnon from J.-É. Tremblay's lab, U. Laval). Subsamples for dissolved nitrogen (NO₃, NO₂) and phosphorous were collected by filtration through GF/F filters (precombusted 5 h at 550°C; rinsed with 50 ml of sample water) and for dissolved silica through polycarbonate filters (1.2 μ m). Subsamples were analyzed on board using Bran & Luebbe autoanalyzers.

Subsamples for DOC were collected by filtration through GF/F filters (pre-combusted 5 h at 550°C; rinsed with 50 ml of sample water) into autoanalyzer vials (pre-combusted, prepared with an aliquot of hydrochloric acid) and stored refrigerated (dark, at 4°C) for subsequent analysis at U. Quebec à Rimouski (M. Allard).

Subsamples for CDOM & FDOM were collected by filtration through GF/F filters (precombusted 5 h at 450°C; rinsed with 50 ml of sample water) into 60 ml sample bottles (acid soaked, Milli-Q rinsed, pre-combusted 5 h at 550°C) and stored refrigerated (dark, at 4°C) for subsequent analysis at Trent U. (C. Gueguen).

Subsamples for subsequent particulate nutrient (POC-PON, PP) and Chla determination were collected on 25 mm GF/F filters (pre-combusted 5 h at 550°C) over a gentle vacuum. Subsamples for subsequent TSM determination were collected on pre-weighed, 47 mm GF/F filters (pre-combusted 5 h at 550°C) over a gentle vacuum. All filters were stored frozen.

Unfiltered subsamples for subsequent δ^{18} O analysis were stored in 20 ml scintillation vials.

8.2.2 Hayes – Nelson Rivers Plume Study

Manitoba Hydro funded four days of ship time on Leg 1a to be devoted to an investigation of the dimensions and gradients of the plume of the Hayes and Nelson Rivers in Hudson Bay. This study was carried out between 21 and 27 July 2010. The *Amundsen* arrived in the Hayes-Nelson region from Churchill on the evening of 21 July 2010. Due to the failure of a helicopter part, it was necessary to leave the region in the late afternoon of 24 July to return to Churchill to pick up the helicopter part. The ship arrived back in the Hayes-Nelson region on the morning of 26 July and left the region finally in the afternoon of 27 July.

In this time, surface water was sampled and CTD casts were made at over 70 stations in a region extending roughly 55 km from the Hudson Bay shore northward, and extending from the rivers' mouths ENE roughly 110 km, to just NE of Cape Tatnam (Figure 8.1). The calm seas and good weather allowed to complete an initial survey (surface samples and CTD casts) of the entire region in only 44 hours, from 22:00 on 21 July to 18:00 on 23 July. Water was also sampled at 10 m depth intervals at Stations 705A, 705B, 705C and 705M. Additional sampling (replication and more detailed cross-plume transects, helicopter

sampling upstream in the Hayes and Nelson Rivers) was attempted on 27 July, but weather and the helicopter failure allowed for only some additional replicate sampling using the *Amundsen*.

Figure 8.1. Stations sampled in the Hayes-Nelson Rivers region in Hudson Bay during Leg 1a. Lines indicate tracks of either the *Amundsen* or its barge or Zodiac boats.

At all stations, water was collected and vertical profiles of conductivity, temperature and turbidity were recorded using recently calibrated Idronaut CTDs. CTDs used in the survey were intercalibrated on site. Except at the four named ArcticNet stations (where full Rosette and ArcticNet CTD profiles were sampled) CTD casts were recorded to the bottom or to 30 m depth, whichever was less. Water was pre-processed (filtered and sub-samples stabilized) on board for later analysis for salinity, TSM, chla, CDOM & FDOM, δ^{18} O, and dissolved and particulate organic carbon (DOC, POC), nitrogen (NO₃, NO₂, PON), and phosphorous (DP, PP) and dissolved silica (Si) [split by filtration on GF/F (C, N, P at 0.7 μ m) or polycarbonate filters (Si at 1.2 μ m)].

On 24 July, the Manitoba Hydro mooring at station 705M was successfully recovered. The mooring was deployed in August 2009 with only an RDCP set at 5 m above bottom, roughly 50 m depth in the water column. Data recovered extends from 05 August 2009 to 07 June 2010. A pair of moorings was redeployed (on separate anchors, within 100 m of each other) with instruments in the earlier 2007-2009 configuration: one with RDCP at 5 m above

bottom and another with CTs at 10 m and 20 m above bottom and a CTD at 30 m above bottom, in 60 m of water.

In addition to this sampling program dedicated to characterizing gradients in the plume, the multi-beam sonar on board the *Amundsen* and its barge were used to extend detailed bottom mapping begun in 2007 to within the region mapped by Manitoba Hydro a few years ago. Finally, numerous biological and paleolimnological samples and measurements were completed by other ArcticNet researchers at one or more of Stations 705A, 705B, 705C and 705M (including carbon flux observations, net tows for phyto- and zooplankton, primary production measurements, vertical profiles of dissolved oxygen, nitrates/nitrites, chlorophyll-a and coloured dissolved organic matter fluorescence, optical beam attenuation, observations of reflectance, attenuation, absorption and backscattering spectra above the surface and within the water column, box cores for benthic invertebrates and contaminants measurements, gravity and piston cores for paleo studies of watershed-marine interaction)

8.2.3 Hyperspectral reflectance data

Two separate and complimentary methods were used on Leg 1a: above- and in water. The above water method used a Satlantic HyperSAS ocean colour radiometer to measure three main variables and ancillary data from a point on the bow of the *Amundsen*. The in-water method collected similar data using the Satlantic HyperOCR Profiler II deployed from a Zodiac well away from the upper-layer mixing caused by ship wash and shadowing. These methods both can compute water leaving radiance as well as attenuation, reflection, and remote sensing reflectance. This is possible for 255 bands centred in the visible spectrum from 350-800 nm (violet-near infrared).

HyperSAS - Above water radiometer

The HyperSAS above water radiometer was composed of two aimed radiance sensors on a swivelling platform and an incoming solar irradiance sensor mounted on a pole away from shade. The downward-looking sensor measured L_T —upwelling radiance from the water surface—and L_i , the downwelling diffuse sky radiance.

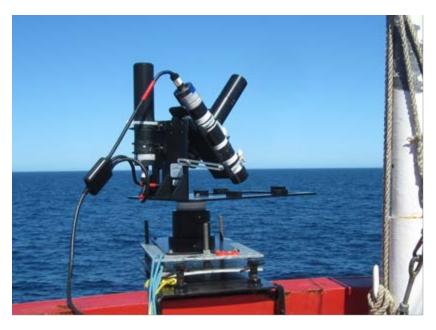


Figure 8.2. HyperSAS radiometer measuring above-water irradiance deployed on bow of the Amundsen.

The LT and Li sensors were mounted at equal angles away from nadir and zenith respectively (40° was used in this study) to properly compensate and remove sky glint from the L_T signal. The separate surface irradiance sensor measured total irradiance reaching the Earth's surface and therefore the total radiation that reaches the air-water interface.

Figure 8.3. HyperSAS sky irradiance sensor used during Leg 1a.

This system was deployed in calm seas on the front lip of the bow, aimed 90 to 130 degrees away from the solar azimuth (130 was optimal) and carefully monitored to not be influenced by ship shadowing or bow thruster wash. Sup-optimal values were used when ship orientation or operations required movement. Ancillary data collected included pitch, roll, compass heading (magnetic) and GPS points at all collection sites. The sensor was mounted at and around Rosette, Basic, Mooring and Full stations, as well as periods of

transit with calm seas and sunny skies. The versatility of the HyperSAS led to a great deal of data being collected during normal ship operations.

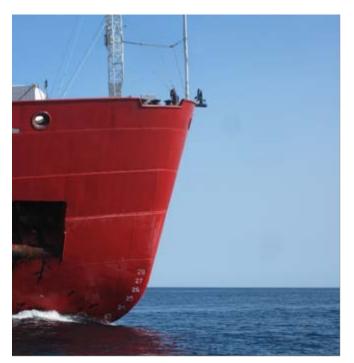


Figure 8.4. HyperSAS radiometer mounted 7.6 m above water surface to measure irradiance during Leg 1a.

HyperOCR Profiler II

The HyperOCR Profiler II is an in-water hyperspectral system that uses two immersed sensors and ancillary sensors to create a depth profile of upwelling radiance and downwelling irradiance to discern optical properties of a parcel of seawater. The system is unaffected by sky and sun glint but is more difficult to deploy, as it requires the use of a small boat away from the *Amundsen* and thus was only used at Basic, Mooring or Full stations.

The HyperOCR Profiler II acted as a CTD profiler, recording temperature, conductivity and pressure in addition to the two hyperspectral radiometers mounted on the unit. It transmitted real-time data to the base station operated on the boat where it was logged on a notebook computer. Data was collected on the descending cast, as the profiler was calibrated to freefall at a specific rate (0.3 m/s) and at a minimal tilt (<10°). Additionally, there was a sky irradiance sensor mounted on the boat similar to the HyperSAS setup.

The Profiler II was, like many optical systems, dependent on weather. A uniform sky condition (all clear or all cloudy) was preferable, with clear sky being optimal. Wave height can limit work performed on the Zodiac and foul weather made any operations unpractical. This deployment was also limited to daytime stations.

Figure 8.5. Deployment of the HyperOCR Profiler II from the Zodiac.

8.2.4 Meteorological observations

During Leg 1a, manual weather and sea state observations were recorded every 3 hours, including temperature, relative humidity, atmospheric pressure, wind speed and direction, visibility, cloud fractional coverage, wave period and wave height (M. Asplin's team, U. of Manitoba). Digital ceilometer (cloud height) and all sky camera records (15 min. intervals) were successfully recorded throughout the expedition. The profiling radiometer on board failed and no useful data was recorded.

Two weather balloons were successfully launched during Leg 1a (Figure 8.6). One was launched at 03:30 EST on 14 July and reached a maximum altitude of 18 km. The second was launched on 20 July outside of Churchill into a thunderstorm system at 18:00 reaching a maximum altitude of 27 km.

Figure 8.6. Weather balloon launches during Leg 1a in Hudson Bay.

8.3 Preliminary results

Two longitudinal and two transverse sections of salinity profiles along the Hayes – Nelson Rivers plume are shown in the figures below. Vertical dimensions are pressure (dBar) and only approximately corrected for atmospheric pressure. None of the data have been thoroughly subjected to quality control and inter-calibration between instruments, and should be viewed as only an approximation of the salinity distributions encountered. All charts were prepared using Ocean Data View (Schlitzer, R., Ocean Data View, http://odv.awi.de, 2010).

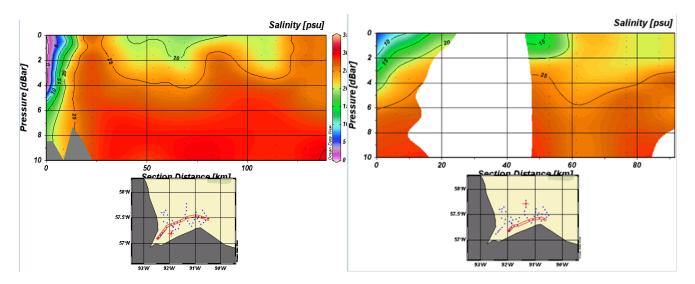


Figure 8.7. Longitudinal sections of salinity collected in the Hayes-Nelson Rivers plume following the 20 m isobath (left panel) and the 10 m isobath (right panel) in Hudson Bay during Leg 1a.

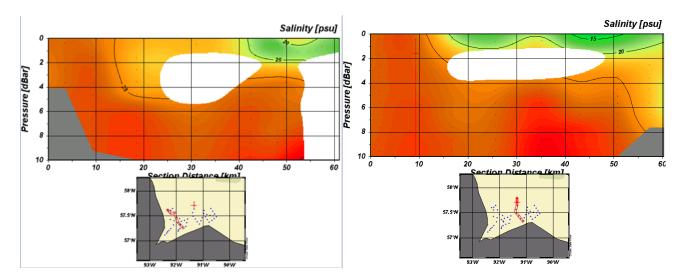


Figure 8.8. Transverse sections of salinity collected in the Hayes-Nelson Rivers plume 40 km from the mouth (left panel) and 80 km from the mouth (right panel) in Hudson Bay during Leg 1a.

8.3.1 Hyperspectral reflectance data

This data requires a great deal of processing, so this section will only display preliminary data. The following map shows the stations that have some optical data collected. The rest were not sampled due to station time (night or insufficient light) or poor weather. Fortunately, during this study many of the stations in the northwest were sampled, as were multiple river estuaries. Further processing is required to determine data quality and actual coverage.

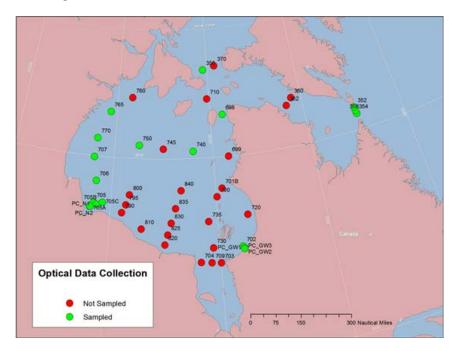


Figure 8.9. Map showing sites where optical data were collected in Hudson Bay during Leg 1a.

8.4 Comments and recommendations

A continuous record of spectral attenuation and absorption was attempted using surface waters piped to a spigot in the forward filtration laboratory (room# 610). Although the piping of the system was stainless steel, some rust apparently formed in the system and was carried at low but significant concentrations in the flow. It appears the stainless steel line suffers from the same problem as the Teflon line installed in 2007. During the first week of continuous flow-through measurements, rust formed a thin patina on the optical tubes and lenses of the ACS instrument which ultimately rendered all of the attenuation and absorption measurements unusable. Unless this problem can be rectified, the stainless steel in-ship sea water delivery system should not be used for measurements which may be deleteriously affected by, or with instruments which may be damaged by continuous exposure to low levels of suspended iron oxide and associated contaminants.

8.4.1 Hyperspectral reflectance data

Relative to much of the work conducted within the ArcticNet program, optical sampling is less dependent on ship and crew resources as it is on weather and timing. More daylight stations would help to increase spatial coverage, but it is understandably difficult to control. Deployment of the Profiler II was particularly dependent on use of the Zodiac and as such was more difficult particularly if it had mechanical difficulties and was constrained by station time.

The HyperSAS set-up was time consuming as the system must be deployed and dismantled during every sampling session. The bow was a very good location, but was subject to waves and therefore could not serve as a 'round the clock' location for the HyperSAS. Storage space on the foredeck may make it easier to deploy and retrieve in the future and be safer for sensitive equipment.

References

- Else, B.G.T., J.J. Yackel and T.N. Papakyriakou. 2008. Application of satellite remote sensing techniques for estimating air–sea CO2 fluxes in Hudson Bay, Canada during the ice-free season. Rem. Sens. Env. 112:3550–3562
- Granskog, M.A., R.W. Macdonald, Z.Z.A. Kuzyk, S. Senneville, C.-J. Mundy, D.G. Barber, G.A. Stern and Francois Saucier. 2009. Coastal conduit in southwestern Hudson Bay (Canada) in summer: Rapid transit of freshwater and significant loss of colored dissolved organic matter. J. Geophys. Res. 114(C08012)
- IOCCG (2000). Remote Sensing of Ocean Colour in Coastal, and Other Optically-Complex, Waters. Sathyendranath, S. (ed.), Reports of the International Ocean-Colour Coordinating Group, No. 3, IOCCG, Dartmouth, Canada.
- Mundy, C.J., M. Gosselin, M. Starr, and C. Michel. 2010. Riverine export and the effects of circulation on dissolved organic carbon in the Hudson Bay system, Canada. Limnol. Oceanogr. 55:315-323
- Saucier, F.J., Senneville, S., Prinsenberg, S., Roy, F., Smith, G., Gachon, P., Caya, P., Laprise, R. (2004) Modelling the sea ice-ocean seasonal cycle in Hudson Bay, Foxe Basin, and Hudson Strait, Canada. *Climate Dynamics* 23: 303-326

9 Inorganic carbon system analysis – Legs 1a

Project leaders: Lisa Miller¹ (<u>Lisa.Miller@dfo-mpo.gc.ca</u>) and Helmuth Thomas² (<u>helmuth.thomas@dal.ca</u>)

Cruise participants Leg 1a: Lisa Miller¹, and Conrad Coziol¹

¹ Institute of Ocean Sciences (IOS), Department of Fisheries and Oceans (DFO), 9860 West Saanich Road, P.O. Box 6000, Sidney, BC, V8L 4B2, Canada. ² Dalhousie University, Department of Oceanography, LSC Ocean Wing, 1355 Oxford St, PO Box 15000, Halifax, NS, B3H 4R2, Canada.

9.1 Methodology

Aqueous (sea and river water) samples were collected for both total inorganic carbon (TIC) and total alkalinity (A_T) analysis throughout Hudson Bay. These samples will be analyzed at the Institute of Ocean Sciences (DFO) and at Dalhousie University, and the results will allow calculating both pH and pCO_2 for comparison with independent measurements of pCO_2 and air-sea CO₂ flux by T. Papakyriakou's group (U. Manitoba), as well as long-term acidification and freshwater transport studies of the Arctic.

Up until 20 July, full profiles were collected, with single samples collected at each depth, at all Rosette stations. Surface samples for alkalinity (not using gas-clean methods) were also collected from some Zodiac and barge deployments, as well as from some helicopter deployments up some rivers.

After 20 July, the focus was primarily on surface waters, collecting water from each Primary Production or Nutrient Rosette only the surface, 10 m, and 60 m, with the surface sampled in duplicate. In addition, surface and 10 m samples were collected from the barge transect to the Nelson River (Stations B12, B8, and B6) using F. Wang's group (U. Manitoba) tracemetal clean Niskin. Finally, additional surface samples were collected by Zodiac at Stations 706, 705, 790, 830, and 840, again using the F. Wang's Niskin. Salinity samples were collected from all stations and depths that were not already being sampled by the G. McCullough's team (U. Manitoba).

Intercalibration samples were collected at the last station, #740. Duplicate samples, one bottle to go to IOS and one to go to Dalhousie for analysis, were collected from each depth, for a full profile.

Single samples from which both TIC and A_T can be analyzed were collected into glass bottles, most of which met the standards of Dickson et al. (2007). However, some bottles used just before20 July, as well as in the intercalibration cast, had plastic screw caps and could not take a reproducible head-space. All samples were poisoned with 100 μ L saturated HgCl₂ solution and stored in the dark in the refrigerated container on board for transport

back to Quebec City. The samples will be analyzed by coulometric titration for TIC and potentiometric titration for A_T , both according to Dickson et al. (2007).

Samples were also collected for S. Johannessen (DFO-IOS), who will be conducting photochemical experiments back at IOS. These were 1-L samples, filtered through 0.2 μ m polycarbonate and collected in duplicate along the Nelson River transect and at Stations 705b, 705c, 705, 800, 795, 790, 820, and 740. They were also refrigerated in the dark for transport back to Quebec City.

Reference

Dickson, A.G., Sabine, C.L. and Christian, J.R. (Eds.) 2007. Guide to best practices for ocean CO₂ measurements. PICES Special Publication 3, 191 pp.

10 Carbon and nutrients fluxes and marine productivity – Legs 1a, 1b, 2a, 2b, 3a, 3b and 3c

ArcticNet Phase 2 – Project titled *Marine Biological Hotspots: Ecosystem Services and Susceptibility to Climate Change*. http://www.arcticnet.ulaval.ca/pdf/phase2/tremblayJE marine ecosystem services.pdf

Project leader: Jean-Éric Tremblay¹ (Jean-Eric.Tremblay@bio.ulaval.ca)

Cruise participants Leg 1a: Jonathan Gagnon¹ and Amandine Lapoussière¹ **Cruise participants Legs 1b and 2a:** Simon Pineault¹ and Myriam Bergeron¹ **Cruise participant Leg 3a:** Jonathan Gagnon¹

Cruise participants Leg 3b: Jean-Éric Tremblay¹ and Jonathan Gagnon¹ **Cruise participants Leg 3c:** Tanya Brown², Mallory Carpenter³ and Joannie Ferland⁴ ¹ Université Laval, Département de biologie, Pavillon Alexandre-Vachon, 1045 avenue de la Médecine, Québec, QC, G1V 0A6, Canada.

² University of Victoria, Department of Biochemistry & Microbiology, Petch Bldg Room 207, 3800 Finnerty Road, Victoria, BC, V8P 5C2, Canada.

³ Memorial University, Department of Geography, St. John's, NL, A1B 3X9, Canada.

⁴ Université du Québec à Rimouski (UQAR) / Institut des sciences de la mer de Rimouski (ISMER), 310 allée des Ursulines, Rimouski, QC, G5L 3A1, Canada.

10.1 Introduction

The Arctic climate displays high inter-annual variability and decadal oscillations that modulate growth conditions for marine primary producers. Much deeper perturbations recently became evident in conjunction with globally rising CO₂ levels and temperatures (IPCC 2007). Environmental changes already observed include a decline in the volume and extent of the sea-ice cover (Johannessen et al. 1999, Comiso et al. 2008), an advance in the melt period (Overpeck et al. 1997, Comiso 2006), and an increase in river discharge to the Arctic Ocean (Peterson et al. 2002, McClelland et al. 2006) due to increasing precipitation and terrestrial ice melt (Peterson et al. 2006). Consequently a longer ice-free season was observed in both Arctic (Laxon et al. 2003) and subarctic (Stabeno & Overland 2001) environments. Models predict further reductions in ice cover (ACIA 2004). These changes entail a greater penetration of light into surface waters, which is expected to bolster phytoplankton production (Rysgaard et al. 1999), food web productivity and CO₂ drawdown by the ocean. At present, phytoplankton production varies by two orders of magnitude across the Canadian Arctic, but the forcing mechanisms are poorly understood and quantified.

10.1.1 Leg 1a - ArcticNet - 01 July to 02 August 2010 - Hudson Bay

The Hudson Bay system (i.e. Hudson Bay, Hudson Strait and Foxe Basin) is a large inland sea (1.23 x 10^6 km²; Granskog et al. 2007) located in the subarctic Canada. This system is

covered by sea ice from mid-October to early August (Gagnon & Gough 2005) and receives an important freshwater discharge (ca. 592 km³ y⁻¹) from the large drainage basin which surrounds it (ca. 3.1 x 10⁶ km²) (Déry et al. 2005). Its subarctic location and the presence of a seasonal ice cover make the Hudson Bay system particularly vulnerable to climate-related changes. Several studies have already reported a reduction in the sea-ice extent (Gough et al. 2004, Gagnon & Gough 2006), an increase in surface water temperature (Gagnon & Gough 2005), an earlier ice break-up and a delayed freeze-up (Gough et al. 2004, Gagnon & Gough 2005, Markus et al. 2009) in the Hudson Bay area. According to Joly et al. (2010), the ice-free season in Hudson Bay will be reduced to 7 to 9 weeks during the period from 2041 to 2070. These changes entail a longer growth season associated with a greater penetration of light into surface waters, which is expected to favor phytoplankton production (Rysgaard et al. 1999), food web productivity and CO₂ drawdown by the ocean. However, phytoplankton productivity is likely to be limited by light but also by allochtonous nitrogen availability. The supply of allochtonous nitrogen is influenced by climate-driven processes, mainly the large-scale circulation, river discharge, upwelling and regional mixing processes. These forcing mechanisms on phytoplankton productivity were poorly studied and quantified in the Hudson Bay system until now. In the global change context, it appears crucial to improve the knowledge of the environmental processes (i.e. mainly light and nutrient availability) interacting to control phytoplankton productivity in this subpolar inland sea.

The main goals for Leg 1a were to:

- Establish the horizontal and vertical distributions of phytoplankton nutrients and the influence of different processes (e.g. mixing, upwelling and biological processes) on these distributions.
- Experimentally assess causal relationships between phytoplankton productivity and the availability of light.
- Determine the uptake of different sources of inorganic nitrogen by phytoplankton.
- Experimentally assess the relationships between nitrogen concentration, temperature, photosynthesis and the kinetics of nitrogen uptake.

Ancillary objectives were to calibrate the *SeaPoint* fluorometer and *ISUS* nitrate probe attached to the Rosette.

10.1.2 Leg 1b – ArcticNet – 02 August to 12 August 2010 – Baffin Island and Canadian Arctic Archipelago

Leg 2a – ArcticNet/BP – 12 August to 26 August 2010 – Beaufort Sea

The environmental changes occurring in the Arctic entail a longer growth season associated with a greater penetration of light into surface waters, which is expected to favor phytoplankton production (Rysgaard et al. 1999), food web productivity and CO₂ drawdown by the ocean. However, phytoplankton productivity is likely to be limited by light but also by

allochtonous nitrogen availability. The supply of allochtonous nitrogen is influenced by climate-driven processes, mainly the large-scale circulation, river discharge, upwelling and regional mixing processes. These forcing mechanisms on phytoplankton productivity were poorly studied and quantified in the Canadian Arctic system until now. In the global change context, it appears crucial to improve the knowledge of the environmental processes (i.e. mainly light and nutrient availability) interacting to control phytoplankton productivity.

The main goals for this team for Leg 1b and Leg 2a were to:

- Establish the horizontal and vertical distributions of phytoplankton nutrients and the influence of different processes (e.g. mixing, upwelling and biological processes) on these distributions.
- Experimentally establish nutrient uptake by different phytoplankton communities (i.e. Baffin Bay and Beaufort Sea) with different light availability
- Measure the spatial and temporal variability of the natural abundance of carbon and nitrogen stable isotopes to assess the nitrogen status of phytoplankton communities.

An ancillary objective were to calibrate the *SeaPoint* fluorometer and *ISUS* nitrate probe attached to the Rosette.

10.1.3 Leg 3a – ArcticNet/BP – 23 September to 07 October 2010 – Beaufort Sea

Leg 3b – ArcticNet – 07 October to 22 October 2010 – Canadian Arctic Archipelago and Baffin Bay

Leg 3c – ArcticNet – 22 October to 31 October 2010 – Northern Labrador fjords

In the Canadian Archipelago, the productivity of phytoplankton is likely to be limited by light or the supply of allochtonous dissolved nitrogen, depending on ice conditions. The supply of allochtonous dissolved nitrogen is influenced by climate-driven processes, mainly the largescale circulation, river discharge, upwelling and regional mixing processes. Over most of the western Arctic, and especially the Beaufort Sea, the concentrations of dissolved inorganic nitrogen (i.e. nitrate, nitrite and ammonium) at surface remain low throughout the year and the phytoplankton possibly depend on local recycling and the dissolved organic nitrogen (DON; e.g. urea, amino acids and primary amines) supplied by rivers. A large portion of the phytoplankton biomass is typically located within subsurface chlorophyll maxima (SCM). SCM productivity is possibly in balance with the episodic supply of nitrate across the halocline and/or the supply of ammonium and nitrate by local recycling and nitrification, respectively. Despite the importance of SCM for the food web and CO₂ fluxes, little is known about their structure, turnover and susceptibility to environmental variability and change.

The main goal of this project during Leg 3 was to determine the horizontal and vertical distributions of nutrients and to establish the influence of different processes (e.g. mixing,

upwelling and biological processes) on nutrient concentrations. Ancillary objectives were to calibrate the *SeaPoint* fluorometer and *ISUS* nitrate probe attached to the Rosette.

10.2 Methodology

Samples for inorganic nutrients (ammonium, nitrite, nitrate, orthophosphate and orthosilicic acid) were taken at all Rosette stations (See page 99) to establish detailed vertical profiles. Samples were stored at 4°C in the dark and analyzed for nitrate, nitrite, orthophosphate and orthosilicic acid within a few hours on a Bran+Luebbe AutoAnalyzer 3 using standard colorimetric methods adapted for the analyzer (Grasshoff et al. 1999). Additional samples for ammonium determination were taken at stations where incubations were performed and processed immediately after collection using the fluorometric method of Holmes et al. (1999).

Samples for the natural abundance of ¹⁵N and ¹³C in particulate organic matter were taken at surface (*ca*. 5 m) and at the depth of the chlorophyll maximum at stations where incubations were performed. Twelve to twenty-two liters per sampled depths were filtered onto 47 mm pre-combusted GF/F filters with a peristaltic pump. The filters were then dried at 60°C during 48 h. Isotopic composition will be determined in laboratory using an elemental analyzer coupled with an isotopic ratio mass spectrometer. These data will be used for nitrogen uptake calculations and to assess the nitrogen status of phytoplankton communities.

At each station, water samples from 5-8 depths in the water column were filtered onto Whatman GF/F filters for chlorophyll *a* (chl *a*) determination. Concentrations of chl *a* were determined on board the ship on a 10-AU Turner Designs fluorometer, after 24 h extraction in 90% acetone at 4°C in the dark (acidification method; Parsons et al. 1984). The fluorometer was calibrated using chl *a* extract from *Anacystis nidulans* (Sigma). These data will be used to calibrate the *SeaPoint* fluorometer coupled to the CTD-Rosette system.

10.2.1 Leg 1a – ArcticNet – 01 July to 02 August 2010 – Hudson Bay

The relationship between light intensity and the uptake of C and N by phytoplankton (lightgradient incubation in Table 10.1 from surface (*ca.* 5 m) and chlorophyll maximum depths was assessed using dual labelling with stable isotopes of C and N in four light-gradient modules (10 light intensities per module). Temperature was maintained at *in situ* levels with a chilling circulator. Two sodium lights were used to illuminate the four modules. Samples from all modules were spiked with ¹³C-bicarbonate; two modules were amended with ¹⁵Nnitrate and two with ¹⁵N-ammonium. After incubation of 4 to 6 h, samples were filtered onto 24 mm pre-combusted GF/F filters. All filters were dried at 60°C and stored for post-cruise determination of isotopic enrichment and particulate organic carbon and nitrogen using an elemental analyzer coupled with an isotopic ratio mass spectrometer.

Station	Cast	Date	UTC	Nuts	Natural abundance	Light gradient	N₂ fixation	Kinetics	Chlorophyll <i>a</i>
356	003	07/07/2010	08:44	Х	Х	Х			Х
354	004	07/07/2010	11:08	Х					
352	005	07/07/2010	13:35	Х	Х	Х			Х
362	006	08/07/2010	07:56	Х	Х	Х			Х
360	007	08/07/2010	11:11	Х	Х	Х			Х
370	800	09/07/2010	07:06	Х					
350	010	09/07/2010	15:44	Х	Х	Х	Х		Х
710	011	10/07/2010	04:20	Х					
698	012	10/07/2010	16:26	Х					
699	013	11/07/2010	03:59	Х	Х	Х	Х		Х
701b	015	11/07/2010	16:45	Х					
720	016	12/07/2010	09:26	Х					
702	019	13/07/2010	16:36	Х	Х	Х	Х		Х
703	021	15/07/2010	02:01	Х					
709	023	15/07/2010	08:10	Х	Х	Х	Х		Х
704	024	15/07/2010	12:31	Х					
730	025	15/07/2010	18:09	Х	Х	Х	Х		Х
735	027	16/07/2010	04:40	Х					
745	030	17/07/2010	07:38	Х	Х	Х	Х	Х	Х
750	031	17/07/2010	15:50	Х					
760	032	18/07/2010	04:01	Х					
765	034	18/07/2010	13:50	Х	Х	Х	Х		Х
770	035	19/07/2010	00:10	Х					
707	037	19/07/2010	09:52	Х	Х	Х	Х		Х
706	040	21/07/2010	13:14	Х	Х	Х	Х		Х
705a	048	23/07/2010	11:17	Х	Х		Х		Х
705b	049	23/07/2010	17:17	Х	Х		Х		Х
705c	050	23/07/2010	21:03	Х	Х		Х		Х
705	051	24/07/2010	10:58	Х	Х	Х	Х		Х
800	054	28/07/2010	01:30	Х					
795	055	28/07/2010	05:08	Х					
790	056	28/07/2010	09:50	Х	Х	Х	Х		Х
810	058	29/07/2010	18:07	Х					
820	060	29/07/2010	04:28	Х	Х	Х	Х		Х
825	061	29/07/2010	08:50	Х					
830	062	29/07/2010	14:00	Х					
835	063	29/07/2010	18:19	Х					
840	064	29/07/2010	00:04	Х	Х	Х	Х	Х	Х
740	066	30/07/2010	14:56	Х	Х	Х			Х

Table 10.1. List of sampling stations visited and measurements carried out for carbon and nutrient concentrations and fluxes during Leg 1a in Hudson Bay.

Duplicate samples for labelled nitrogen (N₂) fixation were collected at surface (*ca*. 5 m) and incubated 24 h in two 600 ml bottles inoculated with 1 ml of ¹⁵N₂ through twin-valve bottle caps. Bottles were placed in an incubator illuminated by sun-simulating fluorescent tubes maintained at *in situ* temperature with a chilling circulator. Samples were then filtered onto 25 mm pre-combusted GF/F filters and dry 48 h at 60°C. N₂ uptake will be determined post-cruise using an elemental analyzer coupled with an isotopic ratio mass spectrometer.

The effect of temperature on carbon, nitrate and ammonium uptake was determined in two incubators maintained at 5 and 10°C, respectively, with high-capacity chilling circulators. Illumination was provided by sun-simulating fluorescent tubes. For each incubator, bottles were spiked at 6 different concentrations with the target ¹⁵N-labelled nitrogen source and a constant concentration of ¹³C-bicarbonate. Samples were incubated during 6 h and then filtered onto 25 mm pre-combusted GF/F filters and dried 48 h at 60°C. Post-cruise determination of isotopic enrichment and particulate organic carbon and nitrogen will be assessed using an elemental analyzer coupled with an isotopic ratio mass spectrometer.

10.2.2 Leg 2a – ArcticNet/BP – 12 August to 26 August 2010 – Beaufort Sea

Leg	Station	Cast	Date	Nuts	Natural abundance	Chlorophyll a	Incubation
1b	301	70		Х	Х	Х	Х
1b	302	71		Х	Х	Х	Х
1b	303	73		Х			Х
1b	304	75		Х			
1b	305	77		Х	Х	Х	
1b	310	78		Х			
1b	312	79		Х			
1b	314	81		Х			
2a	BP10-18	1		Х		Х	
2a	BP10-14	3		Х		Х	
2a	BP10-15	4		Х			
2a	BP10-10	5		Х			
2a	BP10-12	6		Х		Х	
2a	BP10-09	9		Х		Х	Х
2a	BP10-04	11		Х			
2a	BP10-07	14		Х			
2a	BP10-05	15		Х	Х		
2a	BP10-11	16		Х			
2a	BP10-01	17		Х		Х	
2a	BP10-02	18		Х			Х
2a	BP10-08	20		Х			
2a	BP10-06	22		Х	Х	Х	
2a	BP10-13	26		Х		Х	
2a	BP10-03	28		Х			
2a	BP10-16	31		Х			
2a	BP10-17	32		Х			

Table 10.2. List of sampling stations and measurements for carbon and nutrient fluxes during Legs 1b and 2a.

The Si:N consumption ratio is higher in the Beaufort Sea, because of the higher Si:N dissolved ratio in this region (≈2) compared to Baffin Bay (≈1). This difference could be explained by a different taxonomic composition between the regional phytoplankton communities (mostly diatoms) or by a more important light limitation for nitrogen uptake at deep chlorophyll maximum in the Beaufort Sea. The relationship between light intensity and

the nutrient uptake by phytoplankton from chlorophyll maximum depths was assessed using kinetic incubations in two light intensities (surface and chlorophyll maximum average light intensities). Temperature was maintained at 2°C with a chilling circulator. Water for incubations was enriched in nutrients with deep filtered water or enriched-nutrient solutions. Incubation durations were between 24-48 hours with a sampling interval of 6 hours. Samples were analyzed using the Bran+Luebbe AutoAnalyzer 3 using standard colorimetric methods adapted for the analyzer (Grasshoff et al. 1999). There were some experimental issues for the incubations, so the calculation of nutrient uptake for the two light intensities will not be done. Incubations were coupled with filtrations for particulate organic carbon and nitrogen, total particulate phosphorus (24mm pre-combusted GFF filters, then dried at 60°C for post-cruise analysis using an elemental analyzer coupled with an isotopic ratio mass spectrometer), biogenic silica (0.8 µm polycarbonate filters, then frozen at -20°C for post-cruise analysis) and chlorophyll a.

10.2.3 Leg 3a – ArcticNet/BP – 23 September to 07 October 2010 – Beaufort Sea

Leg 3b – ArcticNet – 07 October to 22 October 2010 – Canadian Arctic Archipelago and Baffin Bay

Leg 3c – ArcticNet – 22 October to 31 October 2010 – Northern Labrador fjords

Samples for inorganic nutrients (ammonium, nitrite, nitrate, orthophosphate and orthosilicic acid) were taken at all Rosette stations (Table 10.2 and Table 10.3) to establish detailed vertical profiles.

Station ID	Cast #	Date	Time UTC	Nutrients
437	006	10/01/2010	02:43	Х
410	008	10/01/2010	07:36	Х
412	009	10/01/2010	09:21	Х
414	010	10/01/2010	10:53	Х
416	011	10/01/2010	12:19	Х
418	012	10/01/2010	13:36	Х
408	017	10/07/2010	22:32	Х
407	018	10/07/2010	04:09	Х
405	022	10/08/2010	20:15	Х
450	023	10/09/2010	06:53	Х
308	025	10/11/2010	04:22	Х
304	026	10/12/2010	20:22	Х
324	028	10/14/2010	16:33	Х
323	029	10/14/2010	20:01	Х
115	031	10/15/2010	23:29	Х
113	034	10/16/2010	08:00	Х
111	037	10/16/2010	13:43	Х
110	038	10/16/2010	17:17	Х
109	039	10/16/2010	19:34	Х
107	042	10/17/2010	04:26	Х
105	044	10/17/2010	14:39	Х

Table 10.3. List of sampling stations and measurements for carbon and nutrients during Legs 3a and 3b.

S	Station		St	art	St	ор	Donth
ID	Туре	Region	Latitude N	Longitude W	Latitude N	Longitude W	Depth (m)
600	Basic	Nachvak Fiord	59° 05' 28"	63° 26' 13"	59° 05' 23"	63° 26' 13"	207
602	Basic	Nachvak Fiord	59° 03' 24"	63° 51' 99"	59° 03' 21"	63° 51' 96"	165
604	Nutrients	Nachvak Fiord	58° 59' 88"	63° 53' 58"	58° 59' 88"	63° 53' 59"	55
610	Nutrients	Saglek Fiord	58° 30' 09"	62° 41' 38"	58° 29' 94"	62° 41' 25"	130
613	Nutrients	Saglek Fiord	58° 29' 03"	63° 13' 11"	58° 29' 04"	63° 13' 08"	255
615	Basic	Saglek Fiord	58° 19' 16"	63° 32' 44"	58° 19' 17"	63° 32' 43"	132
617	Basic	Saglek Fiord	58° 30' 09"	62° 41' 38"	58° 29' 94"	62° 41' 25"	132
630	Basic	Okak Bay	57° 28' 33"	62° 26' 78"	57° 28' 32"	62° 26' 79"	50
631	Nutrient	Okak Bay	57° 29' 66"	62° 11' 40"	57° 29' 61"	62° 11' 44"	87
632	Nutrient	Okak Bay	57° 34' 10"	62° 03' 10"	57° 34' 10"	62° 03' 09"	83
633	Basic	Okak Bay	57° 36' 30"	61° 54' 26"	57° 36' 23"	63° 54' 24"	178
620	Basic	Anaktalak Bay	56° 24' 03"	61° 12' 71"	56° 24' 05"	61° 12' 68"	70
622	Nutrient	Anaktalak Bay	56° 25' 03"	61° 44' 05"	56° 25' 08"	61° 44' 05"	83
623	Nutrient	Anaktalak Bay	56° 26' 80"	61° 56' 47"	56° 26' 79"	61° 56' 49"	95
624	Basic	Anaktalak Bay	56° 25' 22"	62° 04' 25"	56° 25' 22"	62° 04' 26"	62

Table 10.4. List of sampling stations and measurements for carbon and nutrients during Leg 3c.

References.

ACIA (2004) Impacts of a warming Arctic. Cambridge University Press.

Comiso (2006) Geophys Res Lett 33, L18504, doi:10.1029/2006GL027341

Comiso et al. (2008) Geophys Res Lett 35, L01703, doi:10.1029/2007GL031972

- Déry et al. (2005) J Climate 18:2540-2557
- Gagnon & Gough (2005) Arctic 58:370–382
- Gagnon & Gough (2006) Climate Res 32:177–186

Gough et al. (2004) Arctic 57:299-305

Granskog et al. (2007) Cont Shelf Res 27:2032–2050

Grasshoff et al. (1999) Methods of seawater analyses, Weinheim, New-York

Hansen, H.P. et F. Koroleff (1999) Determination of nutrients, p. 159-228. In K. Grasshoff,

K.Kremling, and M. Ehrhardt [eds.], Methods of seawater analysis, 3rd ed. Wiley-VCH.

Holmes & al. (1999) Can. J. Fish. Aquat. Sci. 56, 1801-1808

Holmes et al. (1999) Can J Fish Aquat Sci 56:1801–1808

IPCC (2007) Climate change 2007: The physical science basis. Cambridge University Press, Cambridge and New York

Johannessen et al. (1999) Science 286:1937-1939

Joly et al. (2010) Clim Dyn, doi:10.1007/s00382-009-0731-4

Laxon et al. (2003) Nature 425:947–950

Markus et al. (2009) J Geophys Res 114, C12024, doi:10.1029/2009JC005436

McClelland et al. (2006) Geophys Res Lett 33, L06715, doi:10.1029/2006GL025753

Overpeck et al. (1997) Science 278:1251-1256

Parsons et al. (1984) A manual of chemical and biological methods for seawater analysis. Pergamon Press, Toronto

Peterson et al. (2002) Science 298:2171-2174

Peterson et al. (2006) Science 313:1061–1066

Rothrock et al. (1999) Geophys. Res. Lett. 26, 3469-3472

Rysgaard et al. (1999) Mar Ecol Prog Ser 179:13-25

Stabeno & Overland (2001) EOS 82:317-321

11 Molecular microbial diversity in the Canadian Arctic – Legs 1a, 3a and 3b

ArcticNet Phase 2 – Project titled Marine Biological Hotspots: Ecosystem Services and Susceptibility to Climate Change. http://www.arcticnet.ulaval.ca/pdf/phase2/tremblayJE_marine_ecosystem_services.pdf

Project leader: Connie Lovejoy¹ (<u>connie.lovejoy@bio.ulaval.ca</u>)

Cruise participants Leg 1a: Estelle Pedneault¹ and Bruno Courtemanche¹ **Cruise participants Legs 3a & 3b**: Emmanuelle Médrinal¹ and Mary Thaler¹ ¹ Université Laval, Département de biologie, Pavillon Alexandre-Vachon, 1045 avenue de la Médecine, Québec, QC, G1V 0A6, Canada.

11.1 Introduction

Microbes are a heterogeneous group that includes bacteria, archaea and small single celled protists, and are key to understanding the dynamics of marine ecosystems. They are numerically the most abundant organisms in Arctic seas and despite their small size they account for the bulk of biomass. Marine microbes form the basis of marine food webs and play an important role in the global carbon and nitrogen cycles as well as in many other nutrient cycles. While these communities are highly diverse, the majority of organisms cannot be cultured, and are virtually impossible to distinguish morphologically. Molecular tools must therefore be used to describe their genetic and functional diversity. Clone libraries, denaturing gradient gel electrophoresis, qPCR and fluorescent *in situ* hybridization are all examples of such tools. The study of different genes, their function, diversity, and expression leads to a better understanding of the detailed role of microbes in our ecosystems. Recent advances, applying molecular based techniques to probe DNA collected from the sea have revealed surprising diversity of both prokaryotic and eukaryotic microbes in all systems investigated.

Previous data from the North Water (NOW), Canada Basin, Beaufort Sea and Norwegian Arctic waters has revealed distinct and diverse microbial communities at different depths and among marine systems that harbour a pool of microbial genes implicated in nutrient cycles and food webs.

The goal for the 2010 Expedition in Hudson Bay and through the Canadian Arctic was to collect samples for DNA- and RNA-based analyses and conventional and epifluorescent microscopy.

11.1.1 Leg 1a - ArcticNet - 01 July to 02 August 2010 - Hudson Bay

The first objective was to collect microbial DNA and ancillary data from the Hudson Bay, which is a freshwater and coastal system influenced sub-arctic marine environment, and to

compare this to contrasting Arctic systems. The second objective was to obtain RNA samples from the same sites to investigate expression of key genes under different oceanographic conditions. The cruise path of the CCGS *Amundsen* on Leg 1a was ideal for these objectives.

11.2 Methodology

The sampling strategy was to obtain microbial and other biological data from different water masses in the water column, such as the upper mixed layer, the Chlorophyll maximum, the nitracline and the deep layer. In addition, the sampling choices were based on readouts from the CTD's oxygen, temperature, salinity and fluorescence probes. Biologically significant features were identified during the downcast of the CTD-Rosette. All variables were sampled using standard techniques:

- DNA: Deoxyribonucleic acids, for biodiversity analysis using serial filtration, eukaryotes on 3 μ m polycarbonate filters and prokaryotes on 0.2 μ m Sterivex filters.
- RNA: Ribonucleic acids, for enzymes expression using RNase cleaned serial filtration, similar as for DNA.
- Chl a: Chlorophyll a, for concentration estimation.
- HPLC: High Pressure Liquid Chromatography, for pigment analysis.
- DAPI: 4'6-diamino-2-phenylindole, for pico and nano plankton concentration estimation using epifluorescence microscopy.
- FISH: Fluorescence in situ Hybridization, applied to eukaryotes and prokaryotes respectively, for concentration estimation of specific microbial groups.
- Virus: Virus-like particles (as well as bacteria plus archaea), for concentration estimation using SYBR Gold and microscopy.
- FNU: Fluorescence Normarski Utermohl, for protist identification.

11.2.1 DNA and RNA

Samples for DNA and RNA were collected by filtering seawater onto a 3 µm polycarbonate filter and a 0.2 µm Sterivex cartridge (Fisher Scientific) using a peristaltic pump. This method allowed separating the large and small size fractions of the microbial community.For RNA, 4 L were filtered at 4°C to prevent degradation of the fragile RNA molecule. Filters were stored in RLT buffer (Qiagen) with ß-mercaptoethanol, flash-frozen in liquid nitrogen, and then stored at -80 °C. For DNA, 6 L of water were filtered at room temperature. Filters were stored in lysis buffer (50 mM tris, 40 mM EDTA and 0.75 M sucrose) at -80 °C.

DNA for Guelph (Leg 3): Only at the surface, samples for DNA were collected for researcher L. N'Guessan at the University of Guelph using the sample method as above.

11.2.2 Chlorophyll a and HPLC

While other teams onboard the *Amundsen* collected water column samples for chlorophyll *a*, the depths they sampled were not always the same as for microbial diversity. It was therefore decided to collect chlorophyll samples from each depth at every station. 500 ml of seawater was filtered through a glass fibre filter and stored in darkness at -80°C. In addition, the same quantity of water was pre-filtered through a 3 μ m polycarbonate filter before filtering onto a glass fibre filter, in order to sample only the <3 μ m size fraction of the photosynthetic community. Chlorophyll *a* will be extracted with ethanol and quantified at Université Laval.

Samples for HPLC analyses where collected at the surface and chlorophyll maximum. 2 l of seawater was filtered through a glass fibre filter, flash-frozen in liquid nitrogen, and then stored at -80 °C. In addition, we pre-filtered the same quantity of water through a 3 μ m polycarbonate filter before filtering onto a glass fibre filter, in order to sample only the <3 μ m size fraction.

11.2.3 Epifluorescent Microscopy

Slides were made for epifluorescent microscopy at each station and depth sampled. These slides will be used to estimate bacterial and eukaryote abundance. Seawater was fixed with 2.5 % glutaraldehyde and processed 1-24 hours after sampling. For eukaryotic organisms, 50 ml of fixed sample was filtered through a 0.8 µm black polycarbonate filter and stained with DAPI, a nucleic acid stain. This filter was mounted on slide using a drop of immersion oil and stored in darkness at -20 °C. An identical procedure was followed for bacteria, except that 15 ml were filtered onto a 0.2 µm black polycarbonate filter.

11.2.4 Fluorescent in situ Hybridization (FISH)

FISH is a technique that uses fluorescent-labelled nucleic acid probes to identify a specific phylogenetic group of organisms under the microscope. Samples for FISH were collected in duplicate for eukaryotes and bacteria at each station and depth sampled. Seawater was fixed with 3.7 % formaldehyde and processed 6-24 hours after sampling. For eukaryotic organisms, 90 ml of fixed sample was filtered onto a 0.8 μ m polycarbonate filter. For bacteria, 10 ml was filtered onto a 0.2 μ m polycarbonate filter. Filters were air-dried and stored at -20 °C.

11.2.5 Conventional Light Microscopy

At each station and at surface and chlorophyll maximum, 225 ml of seawater was collected and fixed using FNU fixative (1 % paraformaldehyde, 0.1 % glutaraldehyde). At Université

Laval, these samples will be allowed to sediment in Utermöhl chambers and larger organisms, such as diatoms and dinoflagellates, will be identified to the highest possible taxonomic resolution on an inverted microscope.

11.2.6 Plankton net

A phytoplankton net (35 µm pore size) was deployed at each station. The net was deployed vertically to 50 m depth. Sub-samples from the phytoplankton net were fixed with FNU (45ml) and with Lugol iodine (50ml) for use in light microscopy. The rest of the sample was filtered through a cellulose acetate filter and stored in ethanol at 4 °C in the dark.

11.2.7 Grazing experiment (Leg 3)

Grazing experiments using fluorescently-labelled bacteria (FLBs) were carried out at selected stations and depths following the protocols obtained from Vaqué and Unrein (Institut Ciencies del Mar, Barcelona) with slight alterations. Such grazing experiments give a semi-quantitative estimate of the consumption of bacteria by naturally occurring eukaryotic assemblages. An appropriate concentration of FLBs was added to replicate seawater samples, and the subsampled at 0 minutes, 45 minutes and 120 minutes. Subsamples were taken as described in "Epifluorescent Microscopy" (no subsamples were taken for FISH).

Leg 1a - ArcticNet - 01 July to 02 August 2010 - Hudson Bay

In total, 17 stations were sampled during Leg 1a (Table 11.1), including 15 stations where four depths were sampled for all variables and two additional stations were sampled for most variables.

		Station				Num	per of sa (amples 1 per d		n analys	sis	
Date in 2010	Station type	Station number	Cast number	Depth (m)	DNA (< 3 µm & > 3 µm)	RNA (< 3 µm & > 3 µm)	Chl a (< 3 µm & total)	HPLC (< 3 µm & total)	DAPI (Prokaryotes & Eukaryotes)	FISH (Prokaryotes & Eukaryotes)	Virus	FNU
07.07	Nutrient	354	004	572	4&4	0	4&4	0	4&4	4&4	0	2
09.07	Basic	350	009	388	4&4	4&4	4&4	2&2	4&4	4&4	0	2
10.07	Nutrient	710	011	278	4&4	0	4&4	0	4&4	4&4	0	2
11.07	Basic	699	014	83	4&4	4&4	4&4	2&2	4&4	4&4	4	2

Table 11.1. Summary of stations sampled for molecular microbial diversity in Hudson Bay during Leg 1a.

		Station				Numb	perofsa (amples 1 per de		n analys	sis	
Date in 2010	Station type	Station number	Cast number	Depth (m)	DNA (< 3 µm & > 3 µm)	RNA (< 3 µm & > 3 µm)	Chl a (< 3 µm & total)	HPLC (< 3 µm & total)	DAPI (Prokaryotes & Eukaryotes)	FISH (Prokaryotes & Eukaryotes)	Virus	FNU
12.07	Lovejoy	Umq	017	110	4&4	4&4	4&4	2&2	4&4	4&4	4	2
13.07	Mooring	702	020	135	4&4	4&4	4&4	2&2	4&4	4&4	4	2
15.07	Basic	709	023	88	4&4	4&4	4&4	2&2	4&4	4&4	4	2
15.07	Basic	735	026	178	4&4	4&4	4&4	2&2	4&4	4&4	4	2
4&4	Basic	745	029	184	4&4	4&4	4&4	2&2	4&4	4&4	4	2
18.07	Mooring	765	033	104	4&4	4&4	4&4	2&2	4&4	4&4	4	2
19.07	Mooring	707	038	101	4&4	4&4	4&4	2&2	4&4	4&4	4	2
21.07	Mooring	706	041	78	4&4	4&4	4&4	2&2	4&4	4&4	4	2
23.07	Full	705a	048	34	3&3	3&3	3&3	2&2	3&3	3&3	4	2
24.07	Mooring	705	052	64	4&4	4&4	4&4	2&2	4&4	4&4	4	2
28.07	Basic	790	057	36	4&4	4&4	4&4	2&2	4&4	4&4	4	2
28.07	Basic	820	059	53	4&4	4&4	4&4	2&2	4&4	4&4	4	2
29.07	Basic	840	065	175	4&4	4&4	4&4	2&2	4&4	4&4	4	2
Total n	umber of san	nples			134	118	134	60	134	134	56	34

Leg 3a - ArcticNet/BP - 23 September to 07 October 2010 - Beaufort Sea

Leg 3b – ArcticNet – 07 October to 22 October 2010 – Canadian Arctic Archipelago and Baffin Bay

Table 11.2. Summary of stations sampled for molecular microbial diversity during Legs 3a and 3b.

Date	Station	Cast #	Bottle #	Depth (m)	Feature	Grazing Experiment
Leg 3a						
27/09/2010	Ice Core					
28/09/2010	NWBI-1	5	2	369	bottom	*
			11	100	nitricline	*
			13	60/55	chl max	*
29/09/2010	Ice Core					
29/09/2010	Ice Core					
01/10/2010	437	7	1,2	349	bottom	*
			3,4	230	ox. Min	*
			5,6	80	Temp min	*
			7,8	60	nitricline	*
			9,10	37	chl max	Yes
			11,12	0	surface	*
06/10/2010	408	17	1,2	195	bottom	*
			12,13	46	chl max	Yes
			23,24	2.5	surface	*
07/10/2010	407	19	1,2	385	bottom	
			3,4	200	ox. Min.	*
			5,6	80	nitricline	*

Date	Station	Cast #	Bottle #	Depth (m)	Feature	Grazing Experiment
			7,8	56	chl max	*
			9,10	38	halocline	*
			11,12,13	0.5	surface	Yes
08/10/2010	405	20	1,2	604	bottom	*
			3,4	170		*
			5,6	55		*
			7,8,9	40		Yes
			10,11,12	2	surface	*
Leg 3b						
09/10/2010	450	23	1,2	90	bottom	*
			14,15	18	chl. Max	*
			23,24	1	surface	*
11/10/2010	308	24	1,2	538	bottom	*
			3,4	450	ox feature	*
			5,6	300	ox feature	*
			7,8	60	nitricline	*
			9,10	22	halocline/temp max	*
			11,12,13	1	surface	Yes
12/10/2010	304	27	1,2	297	bottom	*
12/10/2010	304	21	5,6	240	Atlantic water	*
			5,0 7,8	130	Oxygen min.	*
				18	halocline	*
			11,12			
4.4/4.0/4.0	000	00	13,14,15	1	surface	Yes
14/10/10	323	30	1,2	789	bottom	*
			3,4	420	Atlantic water	*
			5,6	100	temp min	*
			7,8	20	temp max	
			9,10,11		surface	Yes
16/10/10	115	32	1,2	647	bottom	*
			3,4	420		*
			5,6	340		*
			7,8	250	warm layer	*
			9,10	75	temp feature	*
			11,12	50	cold layer	*
			13,14	25	halocline	*
			15,16	1	surface	Yes
16/10/10	111	36	1,2	594	bottom	*
			3,4	220	warm water	*
			5,6	60	temp min	*
			7,8	30	temp max	*
			9,10,11	2	surface	*
17/10/10	108	41	1,2	457	bottom	*
· · · · •			3,4	210	Atlantic water	*
			5,6	160		*
			3,0 7,8	60	chl max	Yes
			9,10,11	1	surface	*
17/10/10	105	45	1,2	314	bottom	*
17/10/10	100	40	1,2 3,4	314 150	2nd thermocline	*
						*
			5,6 7 9	100	temp	*
			7,8	50	thermocline	*
			9,10,11	1	surface	

11.3 Preliminary results

It is currently not feasible to conduct further analysis on board for most of the samples, and results of the microbial surveys will be known only after extensive laboratory work at U. Laval. The epifluorescence microscope on board the *Amundsen* was used for non-exhaustive counting of prokaryotes, viruses and small flagellates. The access to these data gave immediate insight on different regions sampled, and they are still in process.

The samples that were collected for molecular and microscopic analyses, will provide a more detailed understanding of the phylogeny, structure, and function of microbial communities in the Canadian Arctic.

11.4 Comments and recommendations (Leg 1)

One fume hood onboard should be designated to manipulate concentrated acids (i.e., dilutions to obtain a working stock) and set up with a specific filter for this type of chemicals.

Problems were also encountered relative to the use of the fume hood in room 553: (1) its efficiency was not optimal (weak aspiration of chemical vapors) leading to dispersion in the room and inhalation by users; (2) its users, the Hintelmann and Lovejoy groups, were using non-compatible chemicals at the same time.

12 Phytoplankton biomass and primary production – Legs 1a, 1b, 3a, 3b and 3c

ArcticNet Phase 2 – Project titled *Marine Biological Hotspots: Ecosystem Services and Susceptibility to Climate Change.* <u>http://www.arcticnet.ulaval.ca/pdf/phase2/tremblayJE_marine_ecosystem_services.pdf</u>

Project leaders: Michel Gosselin¹ (<u>michel_gosselin@uqar.ca</u>) and Michel Poulin² (<u>mpoulin@mus-nature.ca</u>)

Cruise participants Legs 1a and 1b: Joannie Ferland¹ and Mathieu Ardyna¹ **Cruise participants Legs 3a and 3b**: Joannie Ferland¹ and Marjolaine Blais¹ ¹ Université du Québec à Rimouski (UQAR) / Institut des sciences de la mer de Rimouski (ISMER), 310 allée des Ursulines, Rimouski, QC, G5L 3A1, Canada.

12.1 Introduction

Primary production plays a central role in the Arctic Ocean as it supplies organic matter to the higher trophic levels, including the arctic cod key specie as well as marine mammals. Marine ecosystems in Polar Regions are particularly sensitive to any change in primary production due to their low number of trophic links (Grebmeier et al. 2006, Moline et al. 2008, Post et al. 2009). Primary production is extremely sensitive to climate variability and change (Arrigo et al. 2008, Pabi et al. 2008). Phytoplankton is also a key factor in ocean biogeochemistry as it acts as the power source for the biological pump of the atmosphere/ocean carbon cycle. Therefore, any modification of the phytoplankton production and community will play a critical role in the response of the climate change.

The Arctic ecosystem is already undergoing climate changes as the shrinking of its sea ice cover, the loss of ice thickness (Stroeve et al. 2007, Kwok et al. 2009) and early melt/late freeze-up of the ice (Markus et al. 2009), and increase of the hydrological cycle (Peterson et al. 2006, Serreze et al. 2006).

The general objectives of this team for Legs 1a and 1b was to:

- Determine the spatial and temporal variability of phytoplankton production, biomass, abundance and communities in the Hudson Bay system, the Canadian Arctic archipelago, the Beaufort Sea and in Baffin Bay.
- Determine the role of environmental factors on phytoplankton dynamics and its variability.

12.2 Methodology

The following optical and phytoplankton measurements were conducted:

- Continuous downwelling incident irradiance, every 10 minutes, with a Li-I-COR sensor 2 pi.
- Transparency of the water with a Secchi disk.
- Profiles of light in the water column with a profiler of natural fluorescence (PNF 300).
- In Legs 1 and 2, concentration of dissolved (DOC) and total (TOC) organic carbon with a Shimadzu TOC-5000 analyzer.
- In Legs 1 and 2, concentrations Dissolved Organic Carbon (COD) / Nitrogen (NOD) with a Shimadzu-2100 analyzer.
- In Leg 3, concentrations of dissolved organic carbon (DOC), total organic carbon (TOC), total dissolved nitrogen (TDN) and total nitrogen (TN) with a Shimadzu TOC-V_{CPN} analyzer
- Chlorophyll a and phaeopigment concentrations with a Turner Designs fluorometer (model 10-AU) for 3 size classes : >0.7 μm, >5 μm, >20 μm.
- Concentration of particulate organic carbon (POC) /nitrogen (PON) with a CHN analyzer.
- Phytoplankton pigment signature using the high performance liquid chromatography method (HPLC).
- Abundance and taxonomic composition of phytoplankton with the inverted microscopy method.
- Abundance of pico- and nano-phytoplankton and heterotrophic bacteria using a flux cytometer.
- Phytoplankton production using the ^{14}C assimilation method for 2 size-fractions: >0.7 μm and >5 $\mu m.$

At each station, water samples for these measurements were collected with Niskin bottles attached on the CTD-Rosette. Incident PAR (photosynthetically available radiation) was continuously recorded with Li-Cor 2pi sensor. Light profiles in the water column were carried out with a PNF-300 and the transparency of the water was measured with a Secchi disk at every station to determine the photic depths, except for some stations at which the ship arrived during the night.

Size fractioned (<0.2 μ m, >0.7 μ m,>5 μ m) primary production experiments were conducted to estimate daily primary production at 7 optical depths (depths corresponding to 100%, 50%, 30%, 15%, 5%, 1%, and 0.2% of the surface irradiance) following JGOFS protocol for simulated *in situ* incubation.

Samples will be processed and results of Chl *a* biomass and primary production will be analyzed at the laboratory in Rimouski.

 Chlorophyll *a* results were shared with P. Larouche (DFO-IML; Leg 1a) and with J.-É. Tremblay's team (U. Laval; Legs 1 and 3) for calibration of their chlorophyll *a* fluorescence sensors. • In addition, zooplankton was sampled for J. Gagné (DFO-IML) during Leg 1a in collaboration with L. Fortier's team (U. Laval). This collaboration also allowed additional dinoflagellate sampling for A. Rochon's team (UQAR) during Leg 1a.

12.2.1 Leg 1a – ArcticNet – 02 July to 02 August 2010 – Hudson Bay Leg 1b – ArcticNet – 02 August to 12 August 2010 – Baffin Island and Canadian Arctic Archipelago

During Leg 1, 32 stations located in the Hudson Bay System, along the coast of Baffin Island and in the Northwest Passage were visited. Twenty (20) incubations were conducted to determine primary production rates (Table 12.1). Moreover, nitrogen status of phytoplankton was determined on 12 occasions at the depth of 50% surface irradiance, and at the depth of the Chl *a* maximum.

The team also participated in the VIP community visit at Churchill as the phytoplankton and nutrients station. As part of the *School on board program*, the team fully participated by giving a short lecture and holding four laboratory activities (twice) for chlorophyll *a* concentration measurements: Secchi disk/CTD/Rosette operation, filtration/extraction, fluorescence, and calculations.

Station ID	Station type	Latitude N	Longitude W	Date	PP	N Status	Chl a	CHN	DOC	Taxonomy	Cytometry	HPLC	Secchi disk	PNF300	Zoo
356	Nutrient	60°48.341	64°43.495	07/07/2010			X	Х	Х	X	Х				
354	Nutrient	60°58.234	64°46.312	07/07/2010					Х		Х				
352	Nutrient	61°09.194	64°48.358	07/07/2010	Х		X	Х	Х	X	Х				
362	Nutrient	62°05.158	71°43.019	08/07/2010			X	Х	Х	X	Х				
360	Nutrient	62°25.503	71°04.599	08/07/2010	Х		Х	Х	Х	X	Х				
350	Basic	64°26.457	80°27.768	09/07/2010			X	Х	Х	X	Х		X	Х	Х
710	Nutrient	62°57.880	80°12.903	10/07/2010			X	Х	Х	X	Х				
698	Nutrient	62°07.351	78°41.817	10/07/2010			X	Х	Х	X	Х				
699	Basic	59°59.899	78°26.244	11/07/2010	Х	X	Х	Х	Х	X	Х		X	Х	Х
702	Mooring	55°24.535	77°55.859	12/07/2010	Х	X	Х	Х	Х	X	Х		X	Х	Х
709	Basic	54°42.709	80°46.790	15/07/2010	Х		Х	Х	Х	Х	Х				Х
730	Nutrient	55°26.877	80°33.311	15/07/2010			X	Х	Х	X	Х		X	Х	
735	Basic	56°47.606	80°49.876	16/07/2010	Х		X	Х	Х	X	Х		X	Х	Х
740	Nutrient	60°22.114	81°59.157	29/07/2010	Х		X	Х	Х	X	Х				Х
745	Basic	60°30.345	85°00.917	17/07/2010	Х	X	X	Х	Х	X	Х		X	Х	Х
750	Nutrient	60°40.754	87°28.480	17/07/2010			X	Х	Х	X	Х				Х
765	Basic	62°18.267	90°40.248	18/07/2010	Х		Х	Х	Х	X	Х		X	Х	Х
770	Nutrient	60°56.099	91°47.727	18/07/2010											Х
707	Mooring	59°58.165	91°57.051	19/07/2010	Х	X	X	Х	Х	X	Х		X	Х	Х
706	Mooring	58°46.688	91°32.096	21/07/2010	Х		X	Х	Х	X	Х		X	Х	Х
705a	Full	57°26.501	91°54.550	23/07/2010	Х		X	Х	Х	X	Х		X	Х	Х
705	Mooring	57°40.210	91°36.194	24/07/2010	Х		X	Х	Х	X	Х		X	Х	Х
790	Basic	57°14.884	88°52.964	28/07/2010	Х		Х	Х	Х	X	Х		X	Х	Х
820	Basic	55°41.295	84°52.508	29/07/2010	Х		X	Х	Х	X	Х			Х	Х
840	Basic	58°24.660	83°19.020	29/07/2010	Х		X	Х	Х	X	Х		X	Х	Х
850	Nutrient	62°8.072	81°23.989	30/07/2010			X	Х	Х	X	Х				Х
301	Basic	74°11.162	83°57.012	07/08/2010	Х		Х	Х	Х	X	Х	X	X	Х	
302	Nutrient	74°9.684	86°10.517	07/08/2010			Х								
303	Nutrient	74°13.339	89°36.649	07/08/2010	Х		Х	Х	Х	Х	Х	X	Х	Х	
305	Basic	74°19.716	93°24.654	08/08/2010	Х		Х	Х	Х	Х	Х	X	Х	Х	
310	Basic	71°17.608	97°41.432	09/08/2010	Х		Х	Х	Х	Х	Х	Х	Х	Х	
314	Nutrient	69°0.181	106°35.968	11/08/2010			Х	Х	Х	Х	Х	X	X	Х	

Table 12.1. Sampling operations conducted for phytoplankton biomass and primary production during Legs 1a and 1b.

1.1.1 Leg 3a – ArcticNet/BP – 23 September to 07 October 2010 – Beaufort Sea

Leg 3b – ArcticNet – 07 October to 22 October 2010 – Canadian Arctic Archipelago and Baffin Bay

Leg 3c – ArcticNet – 22 October to 31 October 2010 – Northern Labrador fjords

Table 12.2. Sampling operations conducted for phytoplankton biomass and primary production during Legs 3a, 3b and 3c.

Station #	Cast	Date	Positi	ion (min)	Chl	orophyl	la	POC/PON	DOC	тос	HPLC	Cells	Cells	Pico.	Bact.	Primary p	roduction
		(jj-month-yy)	Latitude (N)	Longitude (W)	>0.7um	>5um	>20um	>0.7um			>0.7 µm	Lugol	Formol	flow cyto	flow cyto	>0.7 µm	>5 µm
NBWI-1	5	28-sept-10	74°40.267	128°32.636	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		
437	6	30-sept-10	71°46.781	126°32.533	Х	Х	Х	х	Х	Х	Х	Х	Х	Х	Х	Х	Х
418	12	01-oct-10	71°9.836	128°10.170	Х	Х	Х	х	Х	Х	Х	Х	Х	Х	Х		
408	17	06-oct-10	71°18.707	127°34.813	Х	Х	Х	х	Х	Х	Х	Х	Х	Х	Х	Х	Х
407	18	07-oct-10	71°1.045	126°2.246	Х	Х	Х	х	Х	Х	Х	Х	Х	Х	Х		
405	21	08-oct-10	70°38.777	123°1.945	Х	Х	Х	х	Х	Х	Х	Х	Х	Х	Х	Х	Х
450	23	09-oct-10	72°3.100	119°46.590	Х	Х	Х	х	Х	Х	Х	Х	Х	Х	Х		
308	25	11-oct-10	74°6.889	108°25.979	Х	Х	Х	х	Х	Х	Х	Х	Х	Х	Х	Х	Х
304	26	12-oct-10	74°15.121	91°31.057	Х	Х	Х	х	Х	Х	Х	Х	Х	Х	Х	Х	Х
324	28	14-oct-10	73°52.645	80°10.304	Х	Х	Х	х	Х	Х	Х	Х	Х	Х	Х		
323	29	14-oct-10	74°11.218	79°46.559	Х	Х	Х	х	Х	Х	Х	Х	Х	Х	Х	Х	Х
115	31	15-oct-10	76°20.048	71°11.112	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
111	37	16-oct-10	76°17.574	73°16.561	Х	Х	Х	х	Х	Х	Х	Х	Х	Х	Х		
108	40	16-oct-10	76°16.205	74°43.556	Х	Х	Х	х	Х	Х	Х	Х	Х	Х	Х	Х	Х
105	44	17-oct-10	76°20.26	75°48.948	Х	Х	Х	х	Х	Х	Х	Х	Х	Х	Х	Х	Х

Station #	Cast	Date	Positi	on (min)	Chl	orophyll	а	POC/PON	DOC	тос	HPLC	Cells	Cells	Pico.	Bact.	Primary pr	oduction
		(jj-month-yy)	Latitude (N)	Longitude (W)	>0.7um	>5um	>20 um	>0.7um			>0.7 µm	Lugol	Formol	flow cyto	flow cyto	>0.7 µm	>5 µm
600	47	24-oct-10	59°5.293	63°26.131	Х	Х	Х	х	Х	Х	Х	Х	Х	Х	Х	х	Х
602	49	24-oct-10	59°3.239	63°51.959	Х	х	Х	x	Х	Х	Х	Х	Х	Х	Х	х	Х
617	51	25-oct-10	58°19.166	62°41.365	Х	Х	Х	x	х	х	Х	Х	х	Х	Х	х	Х
615	56	25-oct-10	58°19.166	63°32.412	Х	х	Х	X	Х	х	Х	х	х	Х	Х	х	Х
633	57	26-oct-10	57°36.292	61°54.251	Х	Х	Х	x	х	х	Х	Х	х	Х	х	х	х
630	60	26-oct-10	57°28.333	62°26.783	Х	х	Х	х	Х	Х	Х	х	Х	Х	Х	х	х
624	61	27-oct-10	56°25.217	62°4.254	Х	Х	Х	х	х	х	Х	Х	Х	Х	X	х	Х
620	65	28-oct-10	56°24.029	61°12.712	Х	Х	Х	x	х	х	Х	Х	Х	Х	Х	Х	Х

12.3 Preliminary results

12.3.1 Leg 1a – ArcticNet – 01 July to 02 August 2010 – Hudson Bay

Leg 1b – ArcticNet – 02 August to 12 August 2010 – Baffin Island and Canadian Arctic Archipelago

Preliminary results from Chl *a* measurements show that there was large spatial variability in phytoplankton biomass. The freshwater influenced southern Hudson Bay generally presented twice lower Chl *a* biomass than Hudson Strait, Foxe Basin and Lancaster Sound. The heterogeneity of the sea ice cover could constitute part of the explanation for this spatial variability in Chl *a* biomass.

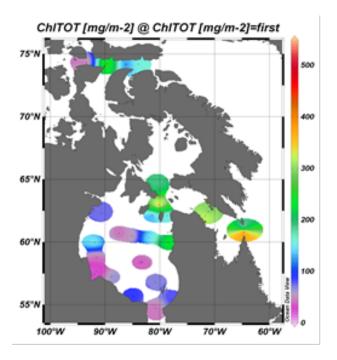


Figure 12.1. Surface cholorophyll a in Hudson Bay, Hudson Strait and Lancaster Sound measured during Legs 1a and 1b.

1.1.2 Leg 3a – ArcticNet/BP – 23 September to 07 October 2010 – Beaufort Sea
 Leg 3b – ArcticNet – 07 October to 22 October 2010 – Canadian Arctic Archipelago and Baffin Bay

Leg 3c – ArcticNet – 22 October to 31 October 2010 – Northern Labrador fjords

Chlorophyll *a* concentrations were measured in different regions of the Canadian Arctic Ocean. Values were integrated over 100 m or down to the bottom depth when it was < 100 m. Concentrations ranged from 20 to 130 mg m⁻² (Figure 1). The phytoplankton biomass was dominated by large cells (> 5 μ m) in all regions sampled.

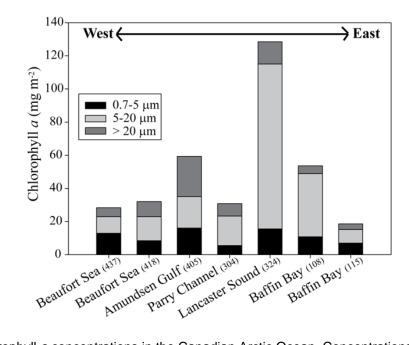


Figure 12.2. Chlorophyll *a* concentrations in the Canadian Arctic Ocean. Concentrations were integrated over the upper 100 m, except at Station 418 where they were integrated over 55 m.

Chlorophyll *a* concentrations were measured at the mouth and at the head of each fiord. Values were integrated over 100 m or down to the bottom depth when it was < 100 m. Concentrations ranged from 20 to 60 mg m⁻² (Figure 14). The phytoplankton biomass was dominated by small cells (0.7-5 μ m) in Nachvak Fiord and Anaktalak Bay and by large cells (>20 μ m) at the head of the Saglek Fiord and Okak Bay.

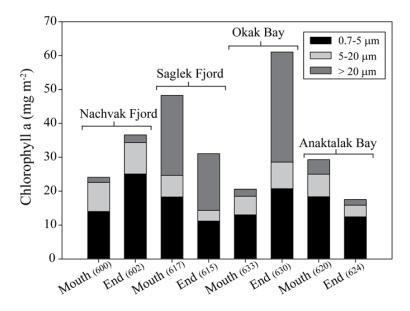


Figure 12.3. Chlorophyll *a* concentrations in the four fiords of Nunatsiavut visited during Leg 3c. Concentrations were integrated over the upper 100 m, except at Station 630, 620 and 624 where they were integrated over 38 m, 69 m and 53 m, respectively.

12.4 Comments and recommendations

Particular thanks are given to the crew members who helped build a frame to support and secure the incubator on the foredeck during Leg 1. They also managed, with the help of the Quebec-Ocean team, to transfer the continuous sea surface water flow system from the rusted and warm waters flowing from the firefighter system pump towards a more direct and cleaner surface intake.

Under ice-covered conditions, the foredeck incubator should be connected to the continuous sea surface water flow system which provides clean water to the atmosphere and mercury teams. It should be noted that the seawater from the firefighter system pump is rusted and too warm to be used during incubations.

The Health and Security committee of the CCGS *Amundsen* requested to increase the height of the incubator freeboard in order to reduce freezing of the foredeck.

References

- Arrigo KR, van Dijken G, Pabi S (2008) Impact of a shrinking Arctic ice cover on marine primary production. Geophys Res Lett 35:L19603
- Grebmeier JM, Overland JE, Moore SE, Farley EV, Carmack EC, Cooper LW, Frey KE, Helle JH, McLaughlin FA, McNutt SL (2006) A major ecosystem shift in the northern Bering Sea. Science 311:1461-1464
- Kwok R, Cunningham GF, Wensnahan M, Rigor I, Zwally HJ, Yi D (2009) Thinning and volume loss of the Arctic Ocean sea ice cover: 2003-2008. J Geophys Res 114:C07005, doi:10.1029/2009JC005312, 2009
- Markus T, Stroeve JC, Miller J (2009) Recent changes in Arctic sea ice melt onset, freezeup, and melt season length. J Geophys Res 114:C12024
- Pabi S, van Dijken GL, Arrigo KR (2008) Primary production in the Arctic Ocean, 1998-2006. J Geophys Res 113, C08005, doi:10.1029/2007JC004578
- Peterson BJ, McClelland J, Curry R, Holmes RM, Walsh JE, Aagaard K (2006) Trajectory Shifts in the Arctic and Subarctic Freshwater Cycle. Science 313:1061-1066
- Moline MA, Karnovsky NJ, Brown Z, Divoky GJ, Frazer TK, Jacoby CA, Torrese JJ, Fraser WR (2008) High latitude changes in ice dynamics and their impact on polar marine ecosystems. Ann N Y Acad Sci 1134:267-319
- Post E, Forchhammer MC, Bret-Harte MS, Callaghan TV, Christensen TR, Elberling B, Fox AD, Gilg O, Hik DS, Hoye TT, Ims RA, Jeppesen E, Klein DR, Madsen J, McGuire AD, Rysgaard S, Schindler DE, Stirling I, Tamstorf MP, Tyler NJC, van der Wal R, Welker J, Wookey PA, Schmidt NM, Aastrup P (2009) Ecological Dynamics Across the Arctic Associated with Recent Climate Change. Science 325:1355-1358
- Serreze MC, Barrett AP, Slater AG, Woodgate RA, Aagaard K, Lammers RB, Steele M, Moritz R, Meredith M, Lee CM (2006) The large-scale freshwater cycle of the Arctic. J Geophys Res 111:C11010, doi:10.1029/2005JC003424
- Stroeve J, Holland MM, Meier W, Scambos T, Serreze M (2007) Arctic sea ice decline: Faster than forecast. Geophys Res Lett 34:L09501

13 Zooplankton and ichtyoplankton – Legs 1a, 1b, 3a, 3b and 3c

ArcticNet Phase 2 – Project titled *Marine Biological Hotspots: Ecosystem Services and Susceptibility to Climate Change*.

<u>http://www.arcticnet.ulaval.ca/pdf/phase2/tremblayJE_marine_ecosystem_services.pdf</u> ArcticNet Phase 2 – Project titled *Freshwater-Marine Coupling in the Hudson Bay IRIS*. <u>http://www.arcticnet.ulaval.ca/pdf/phase2/barber_freshwater-marine_coupling.pdf</u>

Project leaders: Louis Fortier¹ (<u>louis.fortier@bio.ulaval.ca</u>) and BP (Leg 2a)

Cruise participants Legs 1a and 1b: Cyril Aubry¹, Marianne Falardeau-Côté¹ and Marie-Claude Perreault¹

Cruise participants Legs 2a: Dominique Robert¹, Caroline Bouchard¹, Makoto Sampei¹ and Keita Suzuki¹

Cruise participants Legs 3a and 3b: Maxime Geoffroy¹ and Hélen Cloutier¹ **Cruise participants Leg 3c:** Maxime Geoffroy¹, Hélen Cloutier¹, Tanya Brown² and Esteban Estrada³

¹ Université Laval, Québec-Océan, Pavillon Alexandre-Vachon local 2078, 1045 avenue de la Médecine, Québec, QC, G1V 0A6, Canada.

² University of Victoria, Department of Biochemistry & Microbiology, Petch Bldg Room 207, 3800 Finnerty Road, Victoria, BC, V8P 5C2, Canada.

³ Royal Military College, PO Box 17000, Station Forces, Kingston, ON, K7K 7B4, Canada.

13.1 Introduction

The primary objectives of the zooplankton program were to:

- Sample the overall zooplankton assemblage over the entire water column.
- Sample the ichthyoplankton community (focusing on the dominant species Arctic cod) in the surface (0-90 m) layer.

The resulting sample sets will allow assessing zooplankton abundance by species and developmental stages for each region and station visited and to increase the size of arctic cod larval dataset (length-at-age) based on otoliths analysis.

Secondary field objectives for Leg 1 were to use zooplankton samples to:

- Study qualitatively and quantitatively the egg production and nauplii development for *Oithona similis, Pseudocalanus* spp., *Microcalanus* spp. and *Oncea borealis* species.
- Sort and weight main micro-zooplankton taxa from selected samples in order to estimate stage-specific biomass (G. Darnis and L. Fortier).

13.2 Methodology

13.2.1 Zooplankton assemblages

The zooplankton assemblage integrated over the entire water column was collected at by deploying the 5-Net Vertical Sampler (5NVS or Monster Net – Figure 13.1) from 10 m above the bottom to the surface at a retrieval rate of 30-40 m min⁻¹. The 5NVS carried four $1-m^2$ aperture nets (three with 200-µm mesh and one with 500 µm mesh), and one (two in Leg 1) 50-µm mesh cylindrical nets of 0.1 m diameter, for the collection of the entire mesozooplankton size spectrum. Flow meters were installed on each square net to calculate abundances. The 50 µm mesh sample (copepod eggs and nauplii) and the 500 µm mesh sample (macrozooplankton, including jellies) were preserved in formalin. The three 200 µm mesh samples were processed as follows:

In Leg 1: One of the three 200 μ m mesh sample was split in 2 subsamples: one was preserved in formalin and the other half kept frozen for biomass measurement. Another 200 μ m mesh sample and the other 50 μ m mesh sample were used as live tows for incubations of gravid females, as well as for individual dry weight measurements. The third 200 μ m mesh sample was provided to the contaminant team (G. Stern's group, DFO-FWI) for the assessment of contaminant levels (for Leg 1a only; on Leg 1b, it was preserved in formalin).

In Leg 2a: Two of the three 200-µm mesh samples were preserved in formalin and the third one was provided to the ArcticNet contaminant team (G. Stern' s group, DFO-FWI) for the assessment of contaminant levels. A fraction of one of the two 200-µm mesh samples was also taken and preserved frozen (-20°C) for biomass estimation.

In Leg 3: One of the three 200 μ m mesh sample was preserved in formalin, another one was used to calculate the dry weight of the zooplankton assemblage and the last one was used to select crustaceans for bar coding. The latter samples were given to F. Dufresne (UQAR).

Figure 13.1. Zooplankton and fish sampling gear used during Leg 1. Left: $2 \times 1 - m^2$ Tucker net and Right: $4 \times 1 - m^2$ Monster net. (Photos were taken during previous ArcticNet expeditions).

13.2.2 Ichtyoplankton and mesozooplankton community

The ichthyoplankton and mesozooplankton assemblages in the 0-90 m surface layer were sampled with the Double Square Net sampler (DSN or Tucker Net – Figure 13.1), a rectangular metal frame carrying side by side two 6-m long, $1-m^2$ mouth aperture, square-conical nets, and towed at 20 m min⁻¹ and 2-3 knots. One was 750-µm mesh while the second one was 500-µm mesh. A 50-µm mesh cylindrical net of 0.1 m diameter was also attached to the frame. The zooplankton (minus fish larvae) from the 750-µm mesh net was provided fresh to the contaminant team (G. Stern' s group, DFO-FWI) on Legs 1 and 2a, and to F. Dufresne (UQAR) in Leg 3 to provide crustaceans for bar coding. The zooplankton (minus fish larvae) from the other 500-µm mesh and 50-µm mesh nets was preserved in formalin for further analysis of the zooplankton assemblage in the layer occupied by fish larvae.

All fish were sorted at sea and preserved in 95% ethanol. For each station, a subset of up to 25 larvae of Arctic cod per net was photographed over millimetric paper and measured (length and body height at the anus).

In addition, the biomass of adult fish along the track of the ship was monitored continuously with the EK60 echosounder. The EK60 signal will be processed in the laboratory to assess fish biomass following the methodology of Benoit et al. (2008).

13.2.3 Moored sediment traps

Finally, sediment traps were recovered and deployed for measurement of the vertical carbon fluxes as part of the mooring program. The traps provide information on the annual flux of carbon (including zooplankton fecal fluxes), as well as annual collections of entrapped zooplankton (swimmers).

Leg 1a – ArcticNet – 01 July to 02 August 2010 – Hudson Bay

Leg 1b – ArcticNet – 02 August to 12 August 2010 – Baffin Island and Canadian Arctic Archipelago

To study qualitatively and quantitatively the egg production and nauplii development for *Oithona similis, Pseudocalanus* spp., *Microcalanus* spp. and *Oncea Borealis* species, gravid females were selected from live tows, and placed individually in small petri dish filled with filtered sea water. They were then kept in an incubator at a selected temperature. Water was changed every day and food was provided from 20 μ m filtered seawater. Changes in the development of the eggs were monitored every day. Unfortunately, it was impossible to keep any individual alive more than few days, and therefore the development of the eggs and nauplii could not be assessed.

During Leg 1, sampling was performed at as many stations as possible, but winds and waves limited opportunities of the Tucker net deployments in one area.

Overall zooplankton assemblages were sampled at 18 stations during Leg 1 while ichtyoplankton and mesozooplankton community was collected at 17 stations (Table 13.1).

Date	Station ID	Latitude N	Longitude W	Depth (m)	Tucker Net	Monster Net	Incubation	Copepods Dry Weight
2010-07-09	350	64º 26.26	080º 27.62	380	Х	Х	Х	
2010-07-11	699	59º 59.84	078º 26.28	83	Х	Х	Х	
2010-07-13	702	55º 25.22	077º 54.75	133	Х	Х	Х	Х
2010-07-15	709	54º 43.17	080º 45.94	89	Х	Х	Х	Х
2010-07-16	735	56º 47.56	080º 50.14	184	Х	Х	Х	Х
2010-07-17	745	60º 30.40	085º 00.84	186	Х	Х	Х	Х
2010-07-18	765	62º 18.44	090º 39.63	103	Х	Х	Х	Х
2010-07-19	707	59º 58.14	091º 57.00	106	Х	Х	Х	Х
2010-07-21	706	58º 46.95	091º 32.35	78	Х	Х	Х	
2010-07-22	705a	57º 25.5	091º 53.5	35	Х	Х	Х	
2010-07-24	705	57º 39.91	091º 36.31	57	Х	Х	Х	Х
2010-07-28	790	57º 14.859	088º 52.849	40	Х	Х	Х	Х
2010-07-29	820	55º 41.55	084º 53.58	53		Х	Х	

Table 13.1. Summary of sampling activities and field experiments of the zooplankton group in Hudson Bay during Leg 1.

Date	Station ID	Latitude N	Longitude W	Depth (m)	Tucker Net	Monster Net	Incubation	Copepods Dry Weight
2010-07-30	840	58º 24.73	083º 18.08	177	Х	Х	Х	
2010-08-07	301	74º 11.254	083º 52.757	669	Х	Х	Х	
2010-08-08	305	74º 19.686	093º 25.544	168	Х	Х		Х
2010-08-09	310	71º 17.622	097º 39.949	141	Х	Х		
2010-08-10	312	69º 09.534	100º 42.093	49	Х	Х		
2010-07-13 (river)	GW1a	55º 16.092	077º 46.228	4.8	Х			
2010-07-13 (river)	GW1b	55º 15.955	077º 46.228	5	Х			
2010-07-22 (river)	B8	57º 08.638	092º 23.297	19.3	XX			
2010-07-22 (river)	D7	57º 13.004	091º 54.14	13.5	Х			
TOTAL					17 (5)	18	15	9

Also, 4 river stations sample were collected in Hudson Bay (Leg 1a) with ring nets aboard the barge. Two of these stations were sampled with a 50 cm diameter ring equipped with a 64- μ m mesh sized net, while the two others were sampled with a 1-m diameter ring equipped with a 500 μ m mesh sized net.

As part of the mooring program in Hudson Bay and Lancaster Sound, one sediment trap has been recovered and four have been deployed for measurement of the vertical carbon fluxes. The traps provide information on the annual flux of carbon (including zooplankton fecal fluxes), as well as annual collections of entrapped zooplankton (swimmers).

Leg 2a – ArcticNet/BP – 12 August to 26 August 2010 – Beaufort Sea

All 18 stations of the BP Pokak sampling grid were visited and sampled for zooplankton assemblages.

Objective	Set #	Туре	Description	No. of samples / stations	Status
Zooplankton	1	vertical	200 µm mesh	17 samples	Onboard until Nov
	2	vertical	200 µm mesh	17 samples	Debark 26 Aug with MS
	3	vertical	500 µm mesh	17 samples	Debark 26 Aug with MS
	4	vertical	50 µm mesh	15 samples	Onboard until Nov
Ichtyoplankton and mesozooplankton	5	oblique	500 µm mesh	18 samples	Onboard until Nov
	6	oblique	50 µm mesh	18 samples	Onboard until Nov
	7	oblique	Larvae 750 µm	18 stations	Onboard until Nov
	8	oblique	Larvae 750/500	18 stations	Onboard until Nov
Carbon flux	9	sediment traps	Mooring G-09	48 samples	Debark 26 Aug with MS

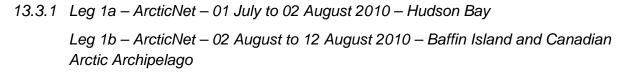
Table 13.2. Summary table of the sample sets remaining with the zooplankton group.

Leg 3a - ArcticNet/BP - 23 September to 07 October 2010 - Beaufort Sea

Leg 3b – ArcticNet – 07 October to 22 October 2010 – Canadian Arctic Archipelago and Baffin Bay

Leg 3c – ArcticNet – 22 October to 31 October 2010 – Northern Labrador fjords

A total of 11 stations (Table 13.3) were sampled during Leg 3a and 3b and 8 stations during Leg 3c (Table 13.4). Two sediment traps have been recovered and three have been deployed for measurement of the vertical carbon fluxes as part of the mooring program. The traps provide information on the annual flux of carbon (including zooplankton fecal fluxes) in the Beaufort Sea, as well as annual collections of entrapped zooplankton (swimmers).


Table 13.3. Summary of sampling activities and field experiments of the zooplankton group during Leg3 a
and b.

Date	Station	Latitude N	Longitude W	Depth (m)	Tucker Net	Monster Net
2010-10-01	437	71º 47.100	126º 34.400	348	Х	Х
2010-10-07	407	71º 00.440	125º 59.720	394	Х	Х
2010-10-08	405	70º 38.923	123º 00.664	608	Х	Х
2010-10-09	450	72º 03.110	119º 46.700	102	Х	Х
2010-10-11	308	74º 06.463	108º 25.371	552		Х
2010-10-12	304	74º 12.820	091º 29.510	305	Х	Х
2010-10-14	323	74º 11.970	079º 43.330	778	Х	Х
2010-10-16	115	76º 20.420	071º 09.690	202	Х	Х
2010-10-16	111	76º 17.660	073º 16.920	565	Х	Х
2010-10-17	108	76º 15.880	074º 45.300	464	Х	Х
2010-10-17	105	76º 19.150	075° 50.720	322	Х	Х
TOTAL					10	11

Table 13.4. Zooplankton sampling stations using the Tucker trawl, vertical Monster and Hydrobios nets during Leg 3c.

Station				St	art	St	ор	Depth
ID	Туре	Region	Net	Latitude N	Longitude W	Latitude N	Longitude W	(m)
600	Basic	Nachvak Fiord	Tucker, Monster, Hydrobios	59° 05' 75"	63° 26' 34"	59° 05' 35"	63° 26' 33"	-192
602	Basic	Nachvak Fiord	Tucker, Monster, Hydrobios	59° 03' 19"	63° 49' 55"	59° 03' 38"	63° 50' 83"	-161
615	Basic	Saglek Fiord	Tucker, Monster, Hydrobios	58° 19' 54"	63° 31' 92"	58° 19' 14"	63° 32' 69"	-131
617	Basic	Saglek Fiord	Tucker, Monster, Hydrobios	58° 30' 06"	62° 41' 35"	58° 30' 25"	62° 41' 11"	-131
630	Basic	Okak Bay	Tucker, Monster, Hydrobios	57° 27' 73"	62° 25' 10"	57° 27' 73"	62° 27' 85"	-45
633	Basic	Okak Bay	Tucker, Monster, Hydrobios	57° 36' 25"	61° 52' 82"	57° 36' 55"	61° 54' 24"	-149
620	Basic	Anaktalak Bay	Tucker, Monster, Hydrobios	56° 23' 96"	61° 12' 49"	56° 24' 04"	61° 12' 43"	-70
624	Basic	Anaktalak Bay	Tucker, Monster, Hydrobios	56° 25' 65"	62° 03' 42"	56° 25' 62"	62° 03' 56"	-62

13.3 Preliminary results

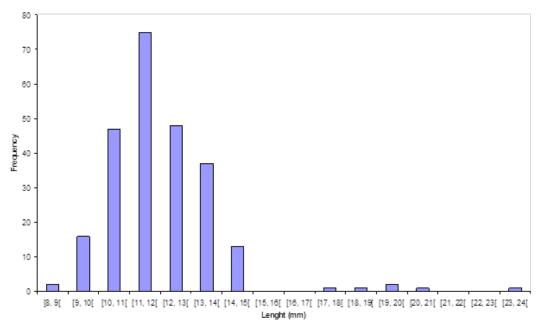
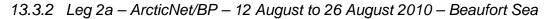
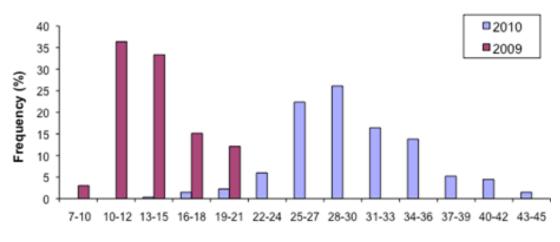




Figure 13.2. Size-frequency distribution of the Arctic cod (*Boreogadus saida*) larvae measured during Leg 1.

Standard length (mm)

Figure 13.3. Size-frequency distribution of young-of-the-year Arctic cod (*Boreogadus saida*) measured during leg 2a 2010, compared to that of individuals captured during the same period in 2009.

Figure 13.4. Distribution of Arctic cod juveniles (*Boreogadus saida*) in the BP Pokak sampling grid. Surface of bubbles is proportional to abundance (number 100 m⁻³). Maximum abundance (St. BP10-001): 5.3 juveniles 100 m⁻³; minimum abundance (St. BP10-009): 0.1 juvenile 100 m⁻³.

13.3.3 Leg 3a – ArcticNet/BP – 23 September to 07 October 2010 – Beaufort Sea

Leg 3b – ArcticNet – 07 October to 22 October 2010 – Canadian Arctic Archipelago and Baffin Bay

Figure 13.5. Size-frequency distribution of the Arctic cod (*Boreogadus saida*) larvae measured during Legs 3a and 3b.

13.4 Comments and recommendations

All operations were conducted with success. However, we experienced a problem with the 500 HP winch reset that may have altered sampling depth. This issue should be looked at. As usual, special care should be taken under ice conditions to prevent any damage to nets and sample, and a backwash should be asked of the bridge for vertical tows.

Reference

Benoit et al. (2008), Journal of Geophysical Research - Oceans. doi:10.1029/2007JC004276)

14 Marine Wildlife Observer program – Legs 2a and 2b

Project leaders: BP

Cruise participants Legs 2a and 2b: Golder Associates Limited¹, IMG-Golder Corporation², Inuvik community resident³ and Ulukhaktok community resident⁴ ¹ Golder Associates Ltd., Yellowknife (NWT)

² IMG-Golder Corporation, Inuvik (NWT)

³ Community resident, Inuvik (NWT)

⁴ Community resident, Ulukhaktok (NWT)

14.1 Introduction

The Marine Wildlife Observer (MWO) Program conducted for BP Exploration Operating Company Limited (BP) by IMG-Golder Corporation (IMG-Golder) was designed to gather baseline data on the occurrence of marine wildlife in an offshore area of the Beaufort Sea. The area of interest consisted of Exploration Licences (ELs) 451, 453, 446 and 449.

During Leg 2, the objective of the program was to collect data that could be analysed to describe distribution and relative abundance of marine wildlife in the ELs. To achieve this objective, MWOs recorded wildlife sightings in the area of interest while scientific operations were carried out from the CCGS *Amundsen*. The collected data will contribute to baseline knowledge of the use of the area by marine wildlife and may be included in future Environmental and Social Impact Assessments submitted for oil and gas activities in the Southern Beaufort Sea.

During Leg 3a, The objective of the Marine Wildlife Observation program was to gain a better understanding of wildlife diversity and abundance in the region spanning the open water central to eastern Beaufort Shelf, and the northern Beaufort sea ice pack.

14.2 Methodology

14.2.1 Leg 2a – ArcticNet/BP – 12 August to 26 August 2010 – Beaufort Sea

Leg 2b – ArcticNet/BP – 26 August to 23 September 2010 – Beaufort Sea

Marine wildlife observations occurred every day of Legs 2a and 2b once the CCGS Amundsen entered the area of interest (Leg 2a from 14 August through 25 August and Leg 2b from 26 August through 20 September). Four MWOs performed scheduled watches (or shifts) for a total of 14 hours each day between 06:00 and 20:00 hours (MDT). Two teams of two MWOs switched on and off one and two-hour shifts throughout the day to allow time for breaks and data downloading (Table 14.1).

			Marine Wildlife Observer							
24 Hour	12 Hour		Team 1			Team 2				
Clock (MDT)	Clock (MDT)	Roger	James	Notes	Robin/ Katelyn	Michele	Notes			
00:00-06:00	00:00-06:00									
06:00-06:30	06:00-06:30	WATCH 1	WATCH 1	**Toolbox						
06:30-07:00	06:30-07:00	WATCH 1	WATCH 1							
07:00-07:30	07:00-07:30	WATCH 1	WATCH 1							
07:30-08:00	07:30-08:00	WATCH 1	BIRD 1		7:30 BR	EAKFAST				
08:00-08:30	08:00-08:30	8:00 BRI	EAKFAST		WATCH 1	WATCH 1	Toolbox			
08:30-09:00	08:30-09:00	DATA	DATA		WATCH 1	WATCH 1				
09:00-09:30	09:00-09:30	DATA	DATA		WATCH 1	WATCH 1				
09:30-10:00	09:30-10:00				WATCH 1	WATCH 1				
10:00-10:30	10:00-10:30	WATCH 2	WATCH 2		DATA	DATA				
10:30-11:00	10:30-11:00	WATCH 2	WATCH 2		DATA	DATA				
11:00-11:30	11:00-11:30	WATCH 2	WATCH 2							
11:30-12:00	11:30-12:00	WATCH 2 WATCH 2			11:30 LUNCH					
12:00-12:30	12:00-12:30	12:00	LUNCH		BIRD 2	WATCH 2				
12:30-13:00	12:30-1:00	DATA	DATA		WATCH 2	WATCH 2				
13:00-13:30	1:00-1:30	DATA	DATA		WATCH 2	WATCH 2				
13:30-14:00	1:30-2:00				WATCH 2	WATCH 2				
14:00-14:30	2:00-2:30	WATCH 3	WATCH 3		DATA	DATA				
14:30-15:00	2:30-3:00	WATCH 3	WATCH 3							
15:00-15:30	3:00-3:30	WATCH 3	WATCH 3							
15:30-16:00	3:30-4:00	WATCH 3	WATCH 3							
16:00-16:30	4:00-4:30	DATA	DATA		WATCH 3	WATCH 3				
16:30-17:00	4:30-5:00				WATCH 3	WATCH 3				
17:00-17:30	5:00-5:30	WATCH 4	WATCH 4		DATA	DATA				
17:30-18:00	5:30-6:00	WATCH 4	WATCH 4		5:30 D	INNER				
18:00-18:30	6:00-6:30	6:00 D	INNER		WATCH 4	WATCH 4				
18:30-19:00	6:30-7:00				WATCH 4	WATCH 4				
19:00-19:30	7:00-7:30				WATCH 4	WATCH 4				
19:30-20:00	7:30-8:00				BIRD 3	WATCH 4				
20:00-20:30	8:00-8:30				DATA	DATA				
20:30-21:00	8:30-9:00				Daily Re	porting				
21:00-21:30	9:00-9:30									
22:00-00:00	10:00-00:00									

Table 14.1. Marine Wildlife Observers schedule for Leg 2a.

During Leg 2b, the first MWO watches in the day were shifted to start at 08:00 and 10:00 hours, respectively for teams 1 and 2 (two hours later than during Leg 2a), to optimize the use of daylight hours. Daily watch periods ended accordingly at 20:00 and 22:00 hours, respectively for the two teams (Table 14.2).

		Marine Wildlife Observer							
24 Hour	12 Hour		Team 1		Team 2				
Clock (MDT)	Clock (MDT)	Katelyn	Michele	Notes	Roger	James	Notes		
00:00-06:00	00:00-06:00								
06:00-06:30	06:00-06:30								
06:30-07:00	06:30-07:00								
07:00-07:30	07:00-07:30								
07:30-08:00	07:30-08:00				7:30 BR	EAKFAST			
08:00-08:30	08:00-08:30				BIRD 1	WATCH 1	Toolbox		
08:30-09:00	08:30-09:00				WATCH 1	WATCH 1			
09:00-09:30	09:00-09:30				WATCH 1	WATCH 1			
09:30-10:00	09:30-10:00				WATCH 1	WATCH 1			
10:00-10:30	10:00-10:30	WATCH 1	WATCH 1	**Toolbox	DATA	DATA			
10:30-11:00	10:30-11:00	WATCH 1	WATCH 1		DATA	DATA			
11:00-11:30	11:00-11:30	WATCH 1	WATCH 1						
11:30-12:00	11:30-12:00	WATCH 1	WATCH 1		11:30	UNCH			
12:00-12:30	12:00-12:30	12:00	LUNCH		WATCH 2 WATCH 2				
12:30-13:00	12:30-1:00	DATA	DATA		WATCH 2	WATCH 2			
13:00-13:30	1:00-1:30	DATA	DATA		WATCH 2	WATCH 2			
13:30-14:00	1:30-2:00				BIRD 2	WATCH 2			
14:00-14:30	2:00-2:30	WATCH 2	WATCH 2		DATA	DATA			
14:30-15:00	2:30-3:00	WATCH 2	WATCH 2						
15:00-15:30	3:00-3:30	WATCH 2	WATCH 2						
15:30-16:00	3:30-4:00	WATCH 2	WATCH 2						
16:00-16:30	4:00-4:30	DATA	DATA		WATCH 3	WATCH 3			
16:30-17:00	4:30-5:00				WATCH 3	WATCH 3			
17:00-17:30	5:00-5:30	WATCH 3	WATCH 3		DATA	DATA			
17:30-18:00	5:30-6:00	WATCH 3	WATCH 3		5:30 D	INNER			
18:00-18:30	6:00-6:30	6:00 D	INNER		WATCH 4	WATCH 4			
18:30-19:00	6:30-7:00				WATCH 4	WATCH 4			
19:00-19:30	7:00-7:30				WATCH 4	WATCH 4			
19:30-20:00	7:30-8:00				WATCH 4	WATCH 4			
20:00-20:30	8:00-8:30	WATCH 4	WATCH 4						
20:30-21:00	8:30-9:00	WATCH 4	WATCH 4						
21:00-21:30	9:00-9:30	WATCH 4	WATCH 4						
22:00-00:00	10:00-00:00	WATCH 1	BIRD 3						
22:00-22:30		DATA	Reporting						

Table 14.2. Marine Wildlife Observers schedule for Leg 2b.

14.2.2 Leg 3a – ArcticNet/BP – 23 September to 07 October 2010 – Beaufort Sea

One Wildlife Observer conducting 12-hour shifts during daylight hours executed observations from the bridge of the *Amundsen*. The shift times varied depending on sunrise and sunset hours in the vessel's survey area.

Marine wildlife observations were made all day from the bridge, regardless whether the vessel was stationary or in-transit. Watches were discontinued when visibility was poor due to weather conditions or on rare occasions when all four MWOs needed to attend Health and Safety or other crew meetings. During each watch, one of the two MWOs was positioned on the port side of the bridge and the other on the starboard side. Each MWO

was responsible for surveying the area on their side of the vessel unless otherwise specified by protocol (explained below).

Two types of observations were carried out each day: marine mammal and seabird observations. Marine mammal observations were completed eight times per day during the blue WATCH blocks depicted in Table 14.1. Seabird observations were completed three times per day during the red BIRD blocks shown in Table 14.1.

14.2.3 Marine mammal observations

When the vessel was moving, marine mammal observations consisted of scanning the water from the bow (0°) to the stern (180°), focusing on the water ahead and to the side of the moving vessel (to 90° or 270° depending on the location of the MWO. When the vessel was stationary, MWOs distributed their focus evenly around the entire port or starboard side of the vessel (to 180°). To ease the strain on the observers' eyes, two types of scanning techniques were used to detect marine mammals: U and S scans (Figure 14.1). While the MWOs scanned the water parallel to the horizon when using the S scan method (in s-shaped lines), the U scans consisted of scanned lines perpendicular to the horizon (shaped like the letter u). The sequence of the two scan patterns was decided by the individual MWO. Scans were performed using a combination of the naked eye and reticle binoculars. Big eye binoculars were used to identify distant marine wildlife sightings made during these scans.

During the scheduled seabird watches, one MWO continued to perform marine mammal observations but shifted focus of their scans to cover the port and starboard sides of the vessel (from 270° to 90°). During these marine mammal watches, the MWO was located in the centre of the bridge.

Opportunistic seabird sightings (i.e., seabird sightings outside a scheduled seabird watch) were also recorded during the scheduled marine mammal observations.

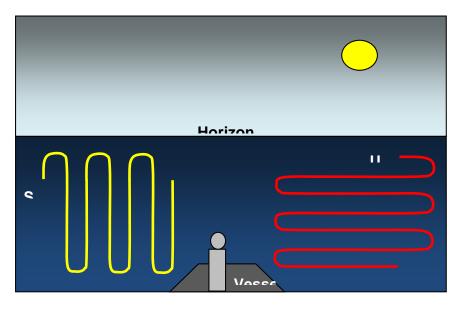


Figure 14.1. S and U scanning techniques used by marine Wildlife Observers during marine mammal observations.

14.2.4 Seabird observations

Seabird watches were completed three times a day: in the morning, at noon and in the evening (Table 14.1). Each watch consisted of two 10-minute intervals and was completed by one of the two MWOs on watch. When the vessel was moving, surveys consisted of a continuous scan of the water in a 300 m wide transect at a 90° angle from the bow (0°) along the side of the vessel (Figure 14.2). When the vessel was stationary, observations were made by scanning the 300 m wide transect from the bow (0°) to the stern of the vessel (180°; thereby doubling the transect area).

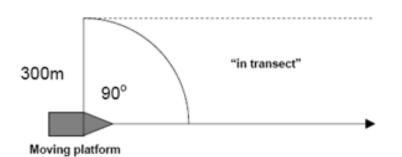


Figure 14.2. Seabird observations conducted by Marine Wildlife Observers on a moving vessel using a 90° scan, covering a 300 m transect from a moving vessel.

In order not to overestimate the bird density, flying birds were not recorded continuously throughout the 10-minute period. When many flocks were present, MWOs used 'snapshot' counts in certain intervals to record flying birds during the watch period. The number of snapshots performed during each 10-minute period was dependent on the speed of the

vessel (the slower the vessel, the more snapshots). Snapshot counts were not used for occasional flocks. Sightings of flying birds were recorded indicating whether the snapshot method was used or not.

14.2.5 Data recording and storage

All marine mammal and seabird sightings as well as environmental conditions and vessel information (speed, direction etc.) were recorded using handheld computers (iPAQs). Environmental condition, marine mammal and seabird observation forms (that were created prior to the field program) were uploaded to the screen of the handheld computer and completed by the MWOs during their watch periods. Bluetooth GPS units were used to record the locations of sightings. Additionally, Garmin GPS units were used as a backup. Photographs of sightings were taken when possible using a Nikon D300.

All completed data forms were downloaded to a laptop at the end of every watch period (depicted as green DATA blocks in Table 14.1) by each MWO. At the end of each day, all compiled data underwent quality assurance and quality control (QA/QC), back-up copies were produced and daily reports were compiled.

One iPAQ related technical issue was noted, analysed and resolved. It was not possible to download information from the iPAQ computers to the laptop if the time recorded on the data forms of the two iPAQs was identical. The solution chosen to overcome this problem was to manually change the time to the next minute (if two forms had the identical time). This allowed the forms to download properly on the laptop.

14.3 Preliminary results

14.3.1 Leg 2a – ArcticNet/BP – 12 August to 26 August 2010 – Beaufort Sea Leg 2b – ArcticNet/BP – 26 August to 23 September 2010 – Beaufort Sea

Marine mammal sighting summary

In Leg 2a, two different species of marine mammals were observed during scheduled marine mammal watches: bowhead whale (*Balaena mysticetus*) and ringed seal (*Pusa hispida*).

In Leg 2b, four different species of marine mammals were observed during scheduled marine mammal watches: bowhead whale (*Baleana mysticetus*) beluga whale (*Delphinapterus leucas*), ringed seal (*Pusa hispida*) and bearded seal (*Erignathus barbatus*).

Unidentified whales and seals were also recorded when MWOs were unable to identify the animals due to one or a combination of the following factors:

- poor visibility due to environmental conditions;
- the mammal was too far away; and/or
- the mammal dove under water.

During Leg 2a, there were approximately 53 sightings of a total of 102 individual marine mammals (not corrected yet for re-sightings) during scheduled marine mammal watches, most of them ringed seals. Four polar bears (*Ursus maritimus*) were observed outside of the scheduled MWO watch periods: one adult bear was observed swimming in the water when the vessel was in transit from Kugluktuk to the area of interest (on 14 August) and one female with two cubs was observed in the ice pack north of the area of interest when the vessel went to the ice to avoid heavy seas (on 18 August).

During Leg 2b, there were approximately 47 sightings of a total of 139 individual marine mammals (not corrected yet for re-sightings) during scheduled marine mammal watches on Leg 2b, most of them ringed seals.

Seabird sighting summary

In Leg 2a, a total of 15 seabird species were observed either during scheduled seabird watches or opportunistically during scheduled marine mammal watches. Species observed were: arctic tern (*Sterna paradisaea*), black-legged kittiwake (*Rissa tridactyla*), brant (*Branta bernicla*), common eider (*Somateria mollissima*), common loon (*Gavia immer*), glaucous gull (*Larus hyperboreaus*), herring gull (*Larus argentatus*), king eider (*Somateria spectabilis*), long-tailed duck (*Clangula hyemalis*), long-tailed jaeger (*Stercorarius longicaudus*), pacific loon (*Gavia pacifica*), pomarine jaeger (*Stercorarius pomarinus*), red-throated loon (*Gavia stellata*), and thick-billed murre (*Uria lomvia*). Additional sightings of unknown loons, murres, sandpipers and completely unidentified birds were also recorded during Leg 2a.

In Leg 2b, a total of 24 seabird and three land bird species were identified, either during scheduled seabird watches or opportunistically during scheduled marine mammal observations. Recorded seabird species were american golden plover (*Pluvialis dominica*), thick billed-murre (*Uria lomvia*), arctic loon (*Garvia arctica*), arctic tern (*Sterna paradisaea*), black-legged kittiwake (*Rissa tridactyla*), brant (*Branta bernicla*), common eider (*Somateria mollissima*), common loon (*Gavia immer*), common murre (*Uria aalge*), dovekie (*Alle alle*), glaucous gull (*Larus hyperboreus*), herring gull (*Larus argentatus*), king eider (Somateria spectabilis), , long-tailed duck (*Clangula hyemalis*), long-tailed jaeger (*Stercorarius longicaudus*), northern fulmar (*Fulmarus glacialis*), pacific loon (*Gavia pacifica*), pomarine jaeger (*Sterocarius pomarinus*), Sabine's gull (*Xema sabini*), semi-palmated sandpiper (*Calidris pusilla*), short-tailed shearwater (*Puffinus tenuirostris*), snow goose (*Chen caerulescens*), Thayer's gull (*Larus thayeri*), and yellow-billed loon (*Gavia adamsii*). Recorded land bird species were: lapland longspur (*Calcarius lapponicus*), snow bunting (*Plectrophenax nivalis*), and peregrine falcon (*Falco peregrinus*). Additional sightings of

unknown ducks, eiders and gulls were recorded as well as a number of completely unidentified birds.

Some birds could not be identified due to one, or a combination of the following factors:

- poor sightability due to environmental conditions;
- the bird was too far away; and/or
- the bird was flying too fast.

There were approximately 221 sightings of a total of 745 individual birds (not corrected yet for re-sightings) during Leg 2a, most commonly black-legged kittiwakes and glaucous gulls.

There were approximately 672 sightings of a total of 3 245 individual birds (not corrected yet for re-sightings) during Leg 2b, most commonly black legged-kittiwakes and glaucous gulls.

14.3.2 Leg 3a – ArcticNet/BP – 23 September to 07 October 2010 – Beaufort Sea

Observations were carried out over a period of 13 days in the Beaufort Sea. Three of these days were spent in the ice pack near multi-year ice floes. The total numbers of species observed over the survey period are summarized in Table 14.3 A total of 13 mammals and 255 birds were observed. Marine mammal sightings were limited to days when the *Amundsen* was in the northern ice pack except for a single Ringed Seal sighting on the first day of operations. The Glaucous Gull was the most frequently observed bird species.

Species	Number of Sightings	Number of Individuals
Mammals:		
Polar Bear	6	8
Ringed Seal	5	5
Birds:		
Arctic Tern	7	29
Black Brant	1	10
Glaucous Gull	51	99
Long-tailed Jaeger	1	6
Northern Fulmar	1	1
Pacific Loon	5	6
Parasitic Jaeger	11	82
Snowy Owl	11	3
UnID Gull	2	17
UnID Jaeger	1	1
UnID Tern	1	1

Table 14.3. Summary of wildlife observed in the Beaufort Sea during Leg 3a.

Environmental conditions were generally favourable for the first part of the survey period, with visibility and weather conditions deteriorating at the end of the Leg. Mid-day environmental updates are summarized in Table 14.4

Observation Log							
Day	1	2	3	4	5	6	7
Start Date UTC	09/24/10	09/25/10	09/26/10	09/27/10	09/28/10	09/29/10	09/30/10
Start Time UTC	6:35pm	2:11pm	1:55pm	2:29pm	2:22pm	1:59pm	1:59pm
Update Time	6:52pm	5:27pm	5:25pm	8:15pm	7:52pm	7:57pm	7:52pm
Water depth (m)	430	72	648	374	400	590	24
Wave Height (m)	0.5-1.0	1.0-2.0	0.5-1.0	<0.1	<0.1	<0.1	1.0-2.0
Sea State	2 - smooth wavelets (0.1 - 0.5m)	4 - Moderate waves, some spray	3 - Slight - small white caps	0.5 - Ripples (<0.1m)	0 - Glassy (0m)	0.5 - Ripples (<0.1m)	4 - Moderate waves, some spray
Obstructions to Visibility	Patchy/Var iable Fog	Patchy/Var iable Fog	Patchy/Var iable Fog	Patchy/Var iable Fog	Patchy/Var iable Fog	Patchy/Var iable Fog	Patchy/Var iable Fog
Cloud Cover	95%	80%	75%	70%	30%	50%	60%
Wind Direction	NE	SE	SE	Variable	SE	SE	W
Wind Force (Beaufort)	3 - Gentle Breeze (7- 10knots)	5 - Fresh breeze (17- 21knots)	3 - Gentle Breeze (7- 10knots)	1 - Light air (1-3kts)	3 - Gentle Breeze (7- 10knots)	1 - Light air (1-3kts)	6 - Strong breeze (22-27kts)
Visibility (m)	500	500	100	500	1500	1500	1500
Sunglare	No glare	Weak glare	Strong glare	No glare	Strong glare	No glare	Weak glare
Sun glare angle FROM	0	9	2	0	2	0	9
Sun glare angle TO	0	3	2	0	2	0	9
Sightability	Medium	Medium	Medium	Medium	High	Medium	Medium
Ice Visible	No	No	No	Yes	Yes	Yes	No
Ice Cover Within ~1000m	0	0	0	>75%	>75%	>75%	0
Comments			N71.00 W135.22	N74.36 W128.47	N74.26 W129.06	N74.42 W128.12	N71.55 W125.20
Observation Log Day	8	9	10	11	12	13	
Start Date UTC	10/01/10	10/02/10	10/03/10	10/04/10	10/05/10	10/06/10	•
Start Time UTC	2:00pm	2:03pm	2:03pm	1:56pm	1:57pm	1:57pm	-
Update Time	7:52pm	1:34am	7:55pm	7:55pm	8:13pm	7:58pm	-
Water depth (m)	238	8.4	80	217	16.8	297	-
Wave Height (m)	<0.1	0.5-1.0	0.5-1.0	1.0-2.0	0.5-1.0	0.5-1.0	-
Sea State Obstructions to	1 - Small wavelets (0-0.1m) Patchy/Var	4 - Moderate waves, some spray Thick fog	4 - Moderate waves, some spray Patchy/Var	5 - Rough, larger waves (2.4-4m)	4 - Moderate waves, some spray Patchy/Var	3 - Slight - small white caps Patchy/Var	
Visibility	iable Fog		iable Fog	700/	iable Fog	iable Fog	-
Cloud Cover	50%	100%	90%	70%	95%	75%	-
Wind Direction Wind Force (Beaufort)	W 3 - Gentle Breeze (7- 10knots)	SW 6 - Strong breeze (22-27kts)	NE 5 - Fresh breeze (17-	E 6 - Strong breeze (22-27kts)	E 6 - Strong breeze (22-27kts)	NE 5 - Fresh breeze (17-	
			21knots)	· · ·	· · ·	21knots)	-
Visibility (m)	2000 Strong	100	2000	750	1500 Week glare	2000 Wook glaro	-
Sunglare Sun glare angle	glare 4	No glare	No glare	Weak glare	Weak glare	Weak glare	-
		<u> </u>		-	_		

Table 14.4. Selected environmental variables recorded during mid-day observations during Leg 3a.

Observation Log Day	1	2	3	4	5	6	7
FROM							
Sun glare angle TO	4	0	0	2	2	10	
Sightability	Medium	Poor	Medium	Poor	Poor	Medium	
Ice Visible	No	No	No	No	No	No	
Ice Cover Within ~1000m	0	1	0	0	0	0	
Comments	N71.25 W127.42	N69.51 W133.20	N70.54 W134.24	N71.47 W129.30	N71.55 W125.21	N71.22 W127.21	

15 Bioacoustics research program – Legs 2a and 3a

ArcticNet Phase 2 – Project titled *Impacts of Global Warming on Arctic Marine Mammals*. <u>http://www.arcticnet.ulaval.ca/pdf/phase2/ferguson_marine_mammals.pdf</u>.

Project leaders: ArcticNet and BP

Cruise participants Leg 2a & 3a: BP

15.1 Introduction

Since 2002, ArcticNet has deployed passive hydrophones on sub-surface oceanographic moorings in the Amundsen Gulf and Mackenzie Shelf region. The number of ArcticNet hydrophones and the individual nature of the hydrophones limit the data to point detections over an annual cycle.

In 2008, Imperial Oil Resources Ventures Limited (IORVL) initiated a seasonal Bioacoustics Research Program in the Canadian Beaufort Sea that involved the deployment of an array of Marine Autonomous Recording Units (MARUs) to record the sounds of marine mammals, with a particular focus on bowhead whales (*Balaena mysticetus*). The array was located in Exploration Licence (EL) 446 and in a control area east of EL 446. The work was continued in 2009 with the deployment of an array in EL 446.

In 2010, BP Exploration Operating Company Limited (BP) committed to a third year of data collection in the Canadian Beaufort, specifically in EL 449 and 451, located adjacent to, and east of EL 446. During 2010, the data collection was expanded to include both bowhead and beluga whales (*Delphinapterus leucas*). The specific program objectives for 2010 included the collection of:

- Continuous audio data at a sampling rate of 2 kHz with the intent of determining the temporal and spatial occurrence and relative levels of acoustic activity of vocalizing bowhead whales in the area of interest.
- A subsample of audio data at a sampling rate of 16 kHz with the intent of determining the temporal and spatial occurrence of vocalizing beluga whales in the area of interest.
- Continuous audio data at a sampling rate of 2 kHz to quantify the spatio-temporal dynamics of the ambient noise environment throughout the area of interest.

The data collected will allow compiling three (3) years of information on bowhead whale presence and movement in EL 446, 449 and 451. It will also establish an initial understanding of beluga presence in EL 449, specifically in the deep offshore waters using a passive acoustic system. This information can be used to complement annual acoustic data collected by ArcticNet, and add to the growing body of knowledge around bowhead and beluga habitat use in this area. This information is useful from a habitat use perspective and to understand the potential implications of industry activities in this area of the

Canadian Beaufort. This information may also be used to design mitigative measures and monitoring programs by industry and Canadian regulators in the future.

15.2 Methodology

An *autonomous recording unit (ARU)* is a digital audio recorder that can be programmed to record on a desired daily schedule and deployed for periods of weeks or months in a remote environment. The marine autonomous recording units (MARUs) used in this project are packaged in positively buoyant glass spheres. A MARU is deployed by being dropped to the seafloor with an anchor such that the MARU floats a few meters above the bottom.

Figure 15.1. Marine Autonomous Recording Unit deployed in the Beaufort Sea during Leg 2a.

Underwater sounds are recorded through a hydrophone (underwater microphone) mounted outside the sphere. These analog sound data are conditioned, digitized, and stored in a binary digital audio format on electronic storage media. At the conclusion of the deployment, the MARU is sent an acoustic command to release itself from its anchor, and it floats to the surface for recovery. After the device is recovered, its recorded audio data are extracted and stored on a server for analysis.

The locations of the recorders are known and the speed of sound underwater can be calibrated using ArcticNet Rosette data. With this information, it will be possible to compute estimates of the locations of bowheads vocalizing in and near the array based on differences among recorders in the arrival times of individual bowhead sounds, provided the bowhead call is recorded on three or more recording units.

The configuration and equipment parameters are critical for determining where bowhead whales are relative to the study area and how many animals are present at a minimum. Depending on the behaviour and density of bowhead whales in the area, it may be possible to determine whether bowheads are moving through or staying the study area. The configuration also enables quantitative characterization of the spatio-temporal dynamics of the ambient noise environment.

An experimental GPS development option, chosen by BP, incorporates a GPS tracking system into each MARU. The system is intended to activate when the MARU is released for recovery to aid in locating the unit during a normal recovery operation. After surfacing and acquiring a GPS fix, the system is expected to broadcast the MARU location to a hand-held receiver, up to a distance of 8 kilometres depending upon environmental conditions. This system was provided as a development project only on an experimental best-effort basis.

15.2.1 Deployment (Leg 2a)

When multiple MARUs are deployed in an array configuration, all units are synchronized at the start and end of deployment and the extracted data are merged into synchronized, multi-channel audio files.

Figure 15.2. Synchronizing the MARUs on the deck of the *Amundsen* before deployment on 15 August 2010 in Leg 2a.

Figure 15.3. MARU deployment from the CCGS Amundsen (photo: J. Barrette, ArcticNet).

The array configuration chosen for the 2010 program included 12 MARUs spread over the shelf, slope and deepwater, with 10 MARUs set in an array separated by 5 nautical miles (Figure 15.4).

Figure 15.4. MARU array configuration over BP lease blocks EL 449 and EL 451 in the Beaufort Sea.

Eight of the 12 MARUs (LF1-8) were programmed to continuously record at a sampling rate of 2 kHz for an effective frequency bandwidth of 1000 Hz. This frequency band is the range of best acoustic propagation and covers the majority of bowhead vocalizations. This sampling rate also captures some lower frequency beluga vocalizations. Four MARUs (HF2-5) recorded on an approximate 25% duty cycle at a sampling rate of 16 kHz for an effective frequency bandwidth of 8000 Hz. This frequency band covers a wider range of beluga vocalizations in addition to the majority of bowhead vocalizations. Vocalizing belugas cannot be located with this deployment configuration because beluga calls do not propagate far enough to enable localization with the array geometry.

All 12 MARUs were deployed successfully during Leg 2a on 15 August 2010 (Table 15.1).

Site		anned itude N		anned itude W	Deployment Time		ctual tude N		ctual itude W	Water depth (m)
LF1	70	48.246	134	19.777	0520	70	48.294	134	19.749	70
LF2	70	50.782	134	32.896	0555	70	50.80	134	32.89	78
HF2	70	52.246	134	28.300	0617	70	52.24	134	28.40	80
LF3	70	53.307	134	46.051	0655	70	53.31	134	46.06	107
HF5	70	53.410	135	22.420	0807	70	53.393	135	22.44	525
HF4	71	00.240	135	22.420	0851	71	00.311	135	22.549	640
LF4	70	55.811	134	58.855	0957	70	55.932	134	58.478	345
HF3	70	55.832	134	46.550	1024	70	55.855	134	46.458	228
LF7	70	58.292	134	45.772	1048	70	58.338	134	45.986	304
LF6	70	55.803	134	32.901	1119	70	55.845	134	32.933	101
LF5	70	53.244	134	19.869	1151	70	53.271	134	17.950	103
LF8	70	50.711	134	06.744	1450	70	50.72	134	06.99	110

Table 15.1. Summary of MARU deployments in the BP lease blocks in the Beaufort Sea during Leg 2a.

15.2.2 Recovery (Leg 3a)

The MARUs were retrieved during Leg 3a on 25 and 26 September 2010.

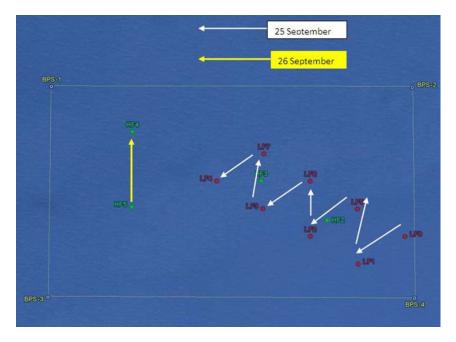


Figure 15.5. Retrieval plan for the MARUs deployed in the Beaufort sea during Leg 2a and recovered in Leg 3a on 25-26 September.

On 25 September 2010, nine of the 10 MARUs surfaced as expected and were retrieved with little or no trouble. The tenth MARU, from site LF2, (5th of 10 sites visited), responded to its acoustic interrogation, but did not appear on the surface in the expected time period. The process of communication was repeated continuously for over an hour; each time receiving the expected acoustic response but with the MARU not surfacing. With continued communication indicating that the unit was almost certainly still on the sea floor; it was decided between the chief scientist and the Cornell field specialist that further attempts would continue to yield the same results and that in the interest of maintaining the project time-table it would be best to move on to the next location.

On 26 September, the final two MARU locations were visited with the successful retrieval of HF4 and HF5. The 11 and 12 MARUs retrieved were detected at their expected positions, and surfaced within 200m of their deployment locations, within close visual range of the vessel. To avoid confusion; all locations refer to the deployed coordinates of the MARU. Due to the fact that there can be a significant amount of ship movement and drift of the MARU between the time of release and the time it is finally located on the surface, the most certain coordinates are those of deployment. If the MARUs had not responded at the expected locations and a search had to be made to locate them; that data would be included and those coordinates would have been used as the recording location (Table 15.2).

Site	-	Actual titude N		ctual gitude W	Deployed date	Retrieved date	Retrieval time	Water depth (m)
LF1	70	48.294	134	19.749	08/15/2010	09/25/2010	1023	70
LF2	70	50.80	134	32.89	08/15/2010	Not recovered		78
HF2	70	52.24	134	28.40	08/15/2010	09/25/2010	1252	80
LF3	70	53.31	134	46.06	08/15/2010	09/25/2010	1620	107
HF5	70	53.393	135	22.44	08/15/2010	09/26/2010	??	525
HF4	71	00.311	135	22.549	08/15/2010	09/26/2010	??	640
LF4	70	55.932	134	58.478	08/15/2010	09/25/2010	1905	345
HF3	70	55.855	134	46.458	08/15/2010	09/25/2010	1657	228
LF7	70	58.338	134	45.986	08/15/2010	09/25/2010	1803	304
LF6	70	55.845	134	32.933	08/15/2010	09/25/2010	1531	101
LF5	70	53.271	134	17.950	08/15/2010	09/25/2010	1114	103
LF8	70	50.72	134	06.99	08/15/2010	09/25/2010	0840	110

Table 15.2. Summary of MARUs deployments and retrievals in the Beaufort Sea.

Table 15.3. MARU release times during recovery operations in the Beaufort Sea during Leg 3a.

Depth	Time to surface
70m	8 minutes
79m	12 minutes
82m	12 minutes
101m	13 minutes
107m	13 minutes
240m	15 minutes
304m	16 minutes
345m	18 minutes
525m	21 minutes
640m	22 minutes

Once onboard, the MARUs were then synchronized to assist in the analysis process and powered down. Over the following days, each MARU was disassembled, opened, and the hard-drives and temperature loggers removed for transport to Ithaca, NY by the Field Applications Specialist. The MARUs were then sealed, re-assembled, and packed for shipping to Ithaca upon return of the *Amundsen* to Quebec City.

16 Contaminants sampling program – Legs 1a and 2a

ArcticNet Phase 2 – Project titled *Effects of Climate Change on Contaminant Cycling in the Coastal and Marine Ecosystems*.

http://www.arcticnet.ulaval.ca/pdf/phase2/stern_contaminants.pdf.

Project leaders: Gary A. Stern^{1,2} (<u>Gary.Stern@dfo-mpo.gc.ca</u>), Feiyue Wang² and BP (Leg 2a)

Cruise participants Leg 1a: Gary A. Stern^{1,2}, Joscelyn N.-L. Bailey^{1,2}, Jeff Latonas², Pam Godin^{1,2}, Debbie Armstrong² and Joanne Delaronde¹

Cruise participants Leg 2a: Marc Cadieux², Amanda Chaulk², Marcos Lemes² and Allison MacHutchon¹

¹ Fisheries and Oceans Canada (DFO), Freshwater Institute (FWI), 501 University Crescent, Winnipeg, MB, R3T 2N6, Canada.

² University of Manitoba, Centre for Earth Observation Science (CEOS), 460 Wallace Building, Winnipeg, MB, R3T 2N2, Canada.

16.1 Introduction

16.1.1 Mercury and methyl mercury in biota

The main purpose behind the collection of zooplankton for this study is to link physical and biological processes to mercury (Hg) levels in the food web and to target the pelagic food web biomagnification and bioaccumulation of mercury with stable isotopes and fatty acids. All biological samples collected will be measured for total mercury and MeHg along with stable isotopes to place organisms into their associated trophic levels. These analyses will be performed at the Freshwater Institute, DFO, Winnipeg.

Organisms associated with benthic (sea floor) environments often have higher methyl mercury concentrations than pelagic (water column) organisms. Methyl mercury is the most toxic form of mercury and there is evidence suggesting that the transformation of less toxic forms of mercury to methyl mercury primarily occurs near the water-sediment interface at the seafloor. Thus, to better understand how mercury enters the food chain in the benthic environment, total and methyl mercury in sea floor sediments and benthic biota was measured.

16.1.2 Mercury and methyl mercury in water

Mercury (Hg) levels in marine mammals and fish are an ongoing concern in Arctic regions because of their inclusion in traditional subsistence diets among indigenous peoples in northern regions. This research on Hg in the Arctic is focused on determining the environmental processes responsible for the distribution and speciation of Hg in Arctic marine ecosystems, for the purpose of supporting the development of strategies to lessen the impact of Hg on human and ecosystem health. The main purpose of this program is to understand the uptake of mercury into the aquatic food chain.

16.1.3 Sedimentation and flux dynamics of contaminates in Hudson Bay (Leg 1a)

The vertical flux of contaminants in the water column plays a significant role in their fate and eventual sequestration into aquatic sediments. To better understand how the fate of contaminants like mercury (Hg) may vary thought time, the flux of contaminants will be investigated by examining aquatic sediments collected during Leg 1a. This sampling should fill in a knowledge gap noticed during prior sampling, analysis and distribution.

16.1.4 Permafrost degradation and carbon inputs from rivers of Hudson Bay (Leg 1a)

The amount of surface soil organic carbon (SOC) contained in cryosolic soils is significant and these current carbon sinks may become sources as temperatures in the north are expected to rise and as permafrost degradation increases with climate change. This release of carbon into the river systems draining into Hudson Bay may significantly alter the carbon cycle of this region and may contribute to alterations in primary productivity and ocean atmospheric interfaces. With increased warming in the Arctic, there is the potential for vast amounts of SOC to enter the system and ultimately change the input of terrigenous and petrogenic carbon into coastal seas. By sampling the entire coastal river system of the Hudson Bay during Leg 1a, an improved analysis of permafrost dynamics relative to climate, temperature and vegetation will be possible.

16.1.5 Gaseous elemental mercury (Leg 1)

The interaction of mercury between the water column and the atmosphere could either be a source or sink to the mercury in the water column. Monitoring continuous atmospheric levels during Leg 1 in Hudson Bay will further the understanding of this exchange at the surface.

16.2 Methodology

16.2.1 Mercury and methyl mercury in biota

Zooplankton was collected using the vertically towed Monster net (200 μ m) designed for integrated water column sampling and the oblique Tucker net (750 μ m) which provided water column zooplankton samples from the upper 100 m layer. Immediately after collection, individual zooplankton species are sorted into plastic vials and frozen at -20°C.

Leg 1a – ArcticNet – 01 July to 02 August 2010 – Hudson Bay

Biological samples were collected throughout the Hudson Bay at Basic, Full and Mooring stations along the cruise transect (Table 16.1).

Table 16.1. Zooplankton sampling for contaminants analyses conducted in Hudson Bay and river systems	
during Leg 1a.	

Station ID (Description)	Date	Latitude N	Longitude W	Tow (mesh size in μm)	Bottom depth (m)	Tow depth (m)
350 (S. Hampton I.)	10/07/14	64°26.26	080°27.62	Vertical (200)	380	370
				Oblique (750)		
699 (Puvirnituq area)	11/07/14	59°59.84	078°26.28	Vertical (200)	83	73
				Oblique (750)		
702 (Great Whale R. area)	14/07/14	55°25.22	077°54.75	Vertical (200)	133	123
				Oblique (750)		
709 (James B.)	16/07/14	54°43.17	080°45.94	Vertical (200)	89	79
				Oblique (750)		
735 (W. of Belcher I.)	17/07/14	56°47.56	080°50.14	Vertical (200)	184	174
				Oblique (750)		
745 (SW of Coats I.)	17/07/14	60°30.40	085°00.83	Vertical (200)	186	176
				Oblique (750)		
765 (Chesterfield In.)	19/07/14	62°18.58	090°39.63	Vertical (200)	103	93
				Oblique (750)		
707 (NE of Churchill)	20/07/14	59°58.14	091°57.00	Vertical (200)	96	86
				Oblique (750)		
706 (E of Churchill)	22/07/14	58°46.95	091°32.35	Vertical (200)	78	68
				Oblique (750)		
705 A (Nelson R.)	23/07/14	57°25.5	091°53.5	Vertical (200)	35	25
				Oblique (750)		
705 Mooring (Nelson R.)	25/07/14	57°39.91	091°36.31	Vertical (200)	57	47
				Oblique (750)		
790	29/07/14	57°14.859	088°52.849	Vertical (200)	40	30
				Oblique (750)		
840 (Cental Hudson B.)	30/07/14			Vertical (200)	177	157
				Oblique (750)		

Leg 2a - ArcticNet/BP - 12 August to 26 August 2010 - Beaufort Sea

Zooplankton samples were collected during Leg 2a throughout the study area at stations BP10-001 to BP10-018.

16.2.2 Sediments and benthic fauna

Leg 1a - ArcticNet - 01 July to 02 August 2010 - Hudson Bay

Box cores were deployed and retrieved onboard the *Amundsen*. When retrieved, two 10centimeter diameter push cores were taken using PVC piping with the assistance of a negative pressure pump to reduce core compaction. Duplicate push cores were subsampled at 0.5 cm intervals for the initial 10 cm and 1.0 cm intervals thereafter. During Leg 1a, only Site 840 was sampled at depth; however, surface sediment samples were taken at all box core locations (Table 16.2). Box cores were shared with MUN, UQAR and U. Laval teams.

Station ID (Description)	Date	Latitude N	Longitude W	Bottom depth (m)	Sample type	Sampled depth (cm)
709 (James B.)	16/07/14	54°43.17	080°45.94	89	Surface	Surface
735 (W of Belcher Is.)	17/07/14	56°47.56	080°50.14	184	Surface	Surface
745 (SW of Coats I.)	17/07/14	60°30.40	085°00.83	186	Surface	Surface
707 (NE of Churchill)	20/07/14	59°58.14	091°57.00	96	Surface	Surface
706 (E of Churchill)	22/07/14	58°46.95	091°32.35	78	Surface	Surface
705 A (Nelson R.)	23/07/14	57°25.50	091°53.50	35	Surface	Surface
705 M (Nelson R.)	25/07/14	57°39.91	091°36.31	57	Surface	Surface
840 (Cental Hudson B.)	30/07/14	58°24.73	083°18.08	177	Push Core x2	(27.5A, 27B)

Table 16.2. Box core sediments sampling for contaminants analyses conducted in Hudson Bay and river systems during Leg 1a.

Leg 2a - ArcticNet/BP - 12 August to 26 August 2010 - Beaufort Sea

Benthic organisms were collected using the Agassiz trawl and boxcores at 17 basic stations (Table 16.3). Sediment from the box core was sieved using a 500 µm screen. Organisms were identified by P. Archambault's team (UQAR), frozen in Ziploc bags, and will be analyzed for total and methyl mercury at the Freshwater Institute in Winnipeg, MB. Two push cores (10cm diameter) were inserted into a single box core at Station 14. For the first push core, Falcon tubes were used to collect sediment at 2 cm intervals. The tubes were centrifuged at 2500 rpm to extract the pore water which was subsequently analyzed for total mercury in the onboard PILMS container lab. Sediment was collected from the second push core at 1 cm intervals for the first 10 cm, and 2 cm intervals for the next 10 cm. Sediment samples from the second push core were frozen in Ziploc bags and will be analyzed for mercury in Winnipeg.

Station # *	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Agassiz	Х	Х	Х	Х	Х	Х	Х		Х	Х	Х	Х	Х	Х	Х	Х		Х
Boxcore	Х	Х		Х	Х		Х		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Push cores														Х				

Table 16.3. Benthic sampling stations used for mercury analysis during Leg 2a.

*Station # is equivalent to BP10-0XX

16.2.3 Mercury and methyl mercury in water

Samples from the 10 m depth to the seafloor were collected with the ship-based CTD-Rosette in PVC 'Niskin-style' sample bottles. Supplementary 'Surface' samples from 0 to 10 m in depth were collected using a PVC Niskin water sampling bottle (General Oceanics, Miami, Florida) from the Zodiac within three hours of the Rosette collection. High resolution profiles for 'total Hg' (Hg_T) were generated and some stations were sampled for methylmercury for both filtered, unfiltered and particulates. At each depth sampled, water was also collected for δ^{18} O analysis in tightly sealed glass scintillation vials. After collection of δ^{18} O samples, bottles were further sealed with parafilm and stored at 4°C.

Particulate samples were collected using 20-L closed containers from the Rosette. These were brought back to the clean lab and both filtered and unfiltered total mercury and methyl mercury samples were collected using Nalgene filter cups. The remaining 10-11 liters were then filtered through 0.45 μ m PP filters using the Masterflex peristaltic pumps. Volume filtered was measured at the end.

Leg 1a - ArcticNet - 01 July to 02 August 2010 - Hudson Bay

Hudson Bay has high suspended particles so numerous filters were needed to get through the samples. An attempt was made to use a 0.2 μ m Teflon filter but was unsuccessful. Water samples were collected from the marine water column in Hudson Bay from twenty-nine locations (Table 16.4).

Date	Station	Sample depth (m)	Latitude N	Longitude W	Bottom depth (m)	Cast #
07-Jul-10	356	330				
07-Jul-10	352	400				3
08-Jul-10	362	280	62°05.058	71°42.720	410	5
08-Jul-10	360	330	62°26.160	71°04.800	280	6
09-Jul-10	350	370			342	7
10-Jul-10	698	130	62°05.969	78°42.708	376	10
10-Jul-10	710	268	62°57.950	80°13.043	140	12
11-Jul-10	701B	100	58°25.163	79°22.192	278	11
11-Jul-10	699	75	59°59.890	78°26.231	110	15
12-Jul-10	720	78	57°00.122	76°53.381	85	13
13-Jul-10	702	97	55°25.663	77°55.387	88	16
14-Jul-10	703	40	54°40.850	79°57.433	107	19
15-Jul-10	709	83	54°42.930	80°46.774	49	21
15-Jul-10	704	21	54°45.383	81°42.233	93	23
15-Jul-10	730	85	55°26.986	80°33.692	27	24
15-Jul-10	735	173	56°47.747	80°50.383	95	25
17-Jul-10	745	175	60°30.395	85°00.941	183	27
18-Jul-10	760	128	63°03.367	88°24.960	186	28
18-Jul-10	765	91	62°17.918	90°39.833	135	32
19-Jul-10	707	95	59°58.067	91°57.134	104	34
21-Jul-10	706	72	58°47.224	91°31.207	106	36
23-Jul-10	705a	27	57°25.298	91°53.603	79	40
24-Jul-10	705	43	57°40.498	91°34.853	34	48
27-Jul-10	800	109	58°10.417	88°14.922	53	51
28-Jul-10	790	30	57°14.863	88°52.549	119	54
29-Jul-10	820	41	55°41.611	84°54.372		56
29-Jul-10	840	165	58°24.605	83°18.116	52	60
30-Jul-10	740	137	60°22.261	81°58.301		64

Table 16.4. Water sampling for contaminants analyses conducted in Hudson Bay and river systems during Leg 1a.

Leg 2a – ArcticNet/BP – 12 August to 26 August 2010 – Beaufort Sea

Samples were collected from the marine water column in BP lease area in the Beaufort Sea from six locations (Table 16.5). One water sample, at transmissivity max, was filtered in tandem through at 0.2 and 0.45 μ m filter.

Latitude	Longitude	Bottom depth (m)	Cast #
70° 55.3	134° 26.0	101	003
70° 55.110	134° 51.439	248	011
71° 5.205	135° 33.91	839	014
71° 1.783	135° 48.438	444	015
70° 51.134	135° 0.160	124	018
71° 59.952	135° 36.557	700	023
	70° 55.3 70° 55.110 71° 5.205 71° 1.783 70° 51.134	70° 55.3 134° 26.0 70° 55.110 134° 51.439 71° 5.205 135° 33.91 71° 1.783 135° 48.438 70° 51.134 135° 0.160	70° 55.3 134° 26.0 101 70° 55.110 134° 51.439 248 71° 5.205 135° 33.91 839 71° 1.783 135° 48.438 444 70° 51.134 135° 0.160 124

Table 16.5. Stations sampled for total Hg during Leg 2a.

16.2.4 Permafrost degradation and carbon inputs from rivers of Hudson Bay

A total of 16 rivers were sampled by helicopter in order to gain access further inland to fresh river water and permafrost sites. Fresh, not brackish, river water samples were collected for trace metals, δ^{18} O, salinity and suspended sediments for further analysis. A portable pump with a filter plate was used to run and collect 20 liters of flowing river water through a Whatman GF/F filter to separate out the DOM. Filters were then freeze-dried for further analysis back in Winnipeg. GPS coordinates were also recorded (Table 16.6).

Once on site, a metal rod 1.5 meters in length was used to locate the permafrost as well as to determine the thickness of the active layer. Once permafrost was located, a soil pit was established to analyze the soil profile and active layer characteristics and to extract samples from each soil horizon for further lab analysis. A seven-centimeter by 11-centimeter section was cut out of the active layer with one-centimeter sections being extracted down to the frozen layer. Once core was extracted and removed it was bagged and immediately put in a cooler with freeze packs to preserve the core. In order to properly assess vegetation a variation of the Braun Blanchet method was used. Abundance percentage was recorded for a one meter by one-meter section, randomly selected at the permafrost site to represent the area.

	Site GPS Location # Latitude N Longitude W		GPS		Field Work				
Date			Core	AL (cm)	Water (L)	Trace	Salinity	δ ¹⁸ Ο	
10-Jul	Pavungnituk River	PAVR	60°03.870 77°13.040	Y	43	20	Y	Y	Y
10-Jul	Kogaluk River	KOGR	56°36.770 77°28.964	Ν	N/A	20	Y	Y	Y

Table 16.6. Permafrost and river water sampling for contaminants analyses conducted in Hudson Bay river systems during Leg 1a.

10-Jul	Polemund River	POLR	59°26.860 77°18.820	Ν	N/A	20	Y	Y	Y
11-Jul	Inuksuak River	INUR	58°27.745 78°04.785	Y	14	20	Y	Y	Y
12-Jul	Nastapoka River	NASR	56°55.280 76°26.750	Ν	32	20	Y	Y	Y
12-Jul	Little Whale River	PWR	55°58.093 76°40.529	Y	29	20	Y	Y	Y
13-Jul	Great Whale River	GWR	55°16.836 77°34.802	Ν	41	20	Y	Y	Y
18-Jul	Josephine River	JOSR	63°08.320 90°59.560	Y	46	20	Y	Y	Y
18-Jul	Wilson River	WILR	62°20.443 93°08.563	Ν	N/A	20	Y	Y	Y
18-Jul	Ferguson River	FEGR	62°05.229 93°21.637	Ν	N/A	20	Y	Y	Y
19-Jul	Tha-Anne River	THAR	60°33.480 94°55.210	Ν	N/A	20	Y	Y	Y
19-Jul	Thlewiaza River	THLR	60°31.060 95°01.060	Y	22	20	Y	Y	Y
	Churchill River	CHUR	60°31.109 95°01.096	Ν	N/A	20	Y	Y	Y
	Nelson River	NELR	N/A	Ν	N/A	Ν	Ν	Ν	Ν
28-Jul	Severn River	SEVR	55°52.833 87°49.667	Ν	N/A	Y	Y	Y	Y
28-Jul	Winisk River	WSKR	55°09.300 85°18.950	Ν	N/A	Y	Y	Y	Y

16.2.5 Gaseous elemental mercury (Leg 1a)

During Leg 1a, a Tekran 2537 was continuously monitoring gaseous elemental mercury from 03 July through to 01 August 2010. The lamp was changed and adjusted and calibrated at the beginning of the trip.

16.3 Preliminary results

Zooplankton collected during Leg 1a included: Euphausiacea, *Limacina helicina*, *Clione limacina*, *Themisto libellula*, *Calanus* sp., *Sagitta* sp., *Onisimus* sp., *Anonyx* sp., *Pandalus* sp., *Euchaeta* sp., *Hyperoche* sp., *Ammodytes* sp. and unknown larval fish species.

Zooplankton collected during Leg 2a included: *Calanus* sp., *Clione limacina*, *Limacina helicina*, *Liparis* sp., *Paraeuchaeta* sp., *Sagitta* sp., *Themisto* sp., Amphipods, Decapods, Euphausiaceans, Ostracods, and jellyfish including Cnidarians and Ctenophores.

16.4 Comments and recommendations

It is imperative that the cleanliness of the Rosette bottles be tested on a regular basis. At the beginning of Leg 1a, the bottles were tested by leaving Milli-Q water inside for an hour or more and tested the contaminants levels. Some of the bottles were very high (3-4 ppt). The bottles were cleaned with Triton-X and warm water, left for 6-10 hours, then rinsed well. This successfully removed any contamination.

17 BP contaminants sampling program –Leg 2a

Project leaders: Gary A. Stern^{1,2} (Gary.Stern@dfo-mpo.gc.ca) and BP

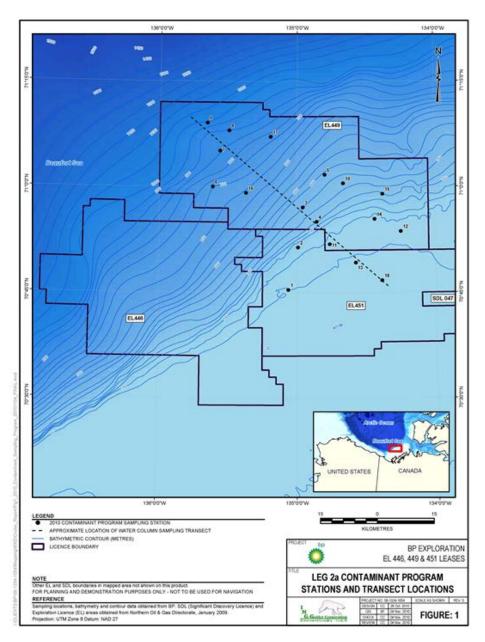
Cruise participants Leg 2a: IMG Golder Corporation³ and AXYS Technologies⁴ ¹ Fisheries and Oceans Canada (DFO), Freshwater Institute (FWI), 501 University Crescent, Winnipeg, MB, R3T 2N6, Canada. ² University of Manitoba, Centre for Earth Observation Science (CEOS), 460 Wallace Building,

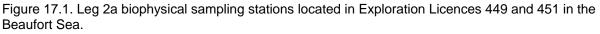
² University of Manitoba, Centre for Earth Observation Science (CEOS), 460 Wallace Building, Winnipeg, MB, R3T 2N2, Canada.

³ IMG-Golder Corporation (Golder Associates Ltd), Suite 102, 2535 – 3 Avenue S.E., Calgary, AB, T2A 7W5, Canada. 2640 Douglas Street, Victoria, BC, V8T 4M1, Canada.
 ⁴AXYS Technologies Inc, 2045 Mills Road, Sidney, BC, V8L 5X2, Canada.

17.1 Introduction

The 2010 contaminants program was jointly designed by BP Exploration Operating Company Limited (BP) and IMG-Golder Corporation (IMG) and conducted by ArcticNet and IMG. The 2010 program was based on the 2009 Imperial Oil Resources Ventures Limited (IORVL) that collected sediment, water column, and biological samples for laboratory analysis. The 2010 contaminants program was improved based on lessons learned in 2009, and expanded to include additional requirements related to interpretation and analysis for environmental and biophysical baseline reporting.


The BP led 2010 contaminant program was focused on petroleum hydrocarbons, other organic compounds (including potential emerging contaminants), organic and inorganic carbon (and to some extent, carbonate system parameters), metals (including elements that have the potential to bioaccumulate), sediment particle size distribution, sediment porosity and moisture content, total suspended solids in the water column carbonate, and radiometric dating of sectioned cores from the upper 40-50 cm of the sediment column. The ArcticNet-led component contributed mercury and methyl mercury analyses. Many of the ArcticNet analyses were performed onboard using the *Amundsen*'s Portable In-situ Laboratory for Mercury Speciation (PILMS) laboratory.


The 2010 strategy for sampling and analysis was consistent with the work performed in 2009, with an expanded focus on understanding sediment and water column contaminants in Exploration Licences (ELs) 449 and 451. This included attention to processes that govern exchange or mixing of different contaminants between water masses on the shelf or over the continental slope, and flux (transfer) of different contaminants between water column and seabed (including specific metals and organic compounds that bioaccumulate).

The objective of the BP-led Leg 2a contaminant program was to collect a comprehensive set of sediment and biological samples at up to 18 stations, and water column samples at up to eight stations, in the project area. The samples were obtained in a way that would facilitate the combination of the 2009 and 2010 sample analyses results into one dataset.

17.2 Methodology

The Leg 2a biophysical sampling stations and water column transect are shown in Figure 17.1.

17.2.1 Water column sampling (Large-Volume)

Sample collection

Large-volume sampling was conducted at eight (8) of the 18 biophysical stations during Leg 2a, at up to four depths of interest (Table 17.1). They form a SE to NW transect across the

shelf to deeper water on the slope. Large-volume (bulk) sampling was conducted to obtain samples for different types of analysis (Table 17.2) that will occur after the field period. At each station where this water sampling took place, the procedure involved the following steps:

- On arrival at the station, the submersible pump was lowered over the rail on the port side of the foredeck, to roughly 42 m below surface, and the tubing flushed for 2 minutes.
- Once flushed, water was collected into three 20-L stainless steel carboys.
- The tubing was raised to roughly 10 m below surface, and flushed for another 2 minutes.
- Once flushed, water was pumped into four 20-L stainless steel carboys. The extra 20-L carboy was filled from this depth to allow for a duplicate processing sample on the large-volume sample parameters at 10 m depth.
- Water from the two deeper depths (waters of Pacific and Atlantic origin with core properties that were distinct and unambiguous) were obtained with 12 specially prepared 12-L Niskin sampling bottles on the ArcticNet CTD-Rosette system. Six bottles were triggered on the Rosette at each depth of interest during a dedicated cast.
- Water was drawn directly from the Niskin bottles into six 20-L stainless steel carboys (three per depth) after these bottles were transferred to wall racks from the Rosette.
- All carboys were rinsed prior to collection from the first sampling station and the same carboys used for each depth. The carboys were not rinsed between stations.
- Collected water was processed in the foredeck lab.

The 12-L Niskin bottles were moved from wall racks and installed on the Rosette as the "normal" 12-L bottles were being rotated to the wall racks for the dedicated BP cast. The bottles were prepared at AXYS Technologies in Sidney (BC) before transfer to Quebec City for loading on the ship. This involved special cleaning (multiple clean/rinse cycles, and proofing by analyzing for ultra low level organics until the target compounds were not detectable). The bottles were also low level trace metal, or GeoTrace bottles when they were purchased. GeoTrace bottles have Teflon-coated external springs, sprayed Teflon lining, aluminum Nico-press sleeves on lanyards, and Teflon O-rings on the top and bottom of each bottle (these seal the bottle between the end stopper and the barrel).

The actual sampling depths were determined by monitoring temperature, salinity, nitrate, fluorescence, and dissolved oxygen as the Rosette was being lowered through the water column. Six bottles were triggered coming up from the bottom of the cast at or close to core depth, based on properties observed on descent for the two water types of interest (waters of Pacific and Atlantic origin, at roughly 33.1 ppt and 34.5 ppt, respectively). Depending on location along the transect from on the shelf to bottom of the slope, water of Pacific origin was sampled between 120-125 m and 135-140 m. Some anomalies in oxygen and nitrate suggested fingering and other structure at core depth, but these differences were ignored for selecting the trigger depth. Water of Atlantic origin was typically sampled at 300 m or close to the bottom of the cast if station depth was shallower.

Station ID	Sample date	10 m ^(a)	42 m	Pacific Water	Atlantic Water	Small Volume Quality Control Samples
BP10_003	24-Aug-10	Yes	Yes	Yes	Yes	hold time check duplicate ^(d) - 10 m
BP10_004	17-Aug-10	Yes	Yes	Yes	Yes	none at this station
BP10_007	18-Aug-10	Yes	Yes	Yes	Yes	field blank ^(e) – 10 m duplicate – Atlantic
BP10_009	16-Aug-10	Yes	Yes	Yes ^(b)	Yes ^(b)	duplicate10 m
BP10_011	20-Aug-10	Yes	Yes	—	—	none at this station
BP10_013	23-Aug-10	Yes	Yes	_		travel ^(f) and field blank 42 m
BP10_016	22-Aug-10	Yes	Yes	Yes ^(c)	Yes ^(c)	none at this station
BP10_018	15-Aug-10	Yes	Yes	_		none at this station

Table 17.1. Stations where the water column was sampled for the BP contaminant program during Leg 2a.

^(a) A duplicate sample was collected for large volume SPE column sampling at 10 m depth.

^(b) Samples collected on 17 August.

^(c) Samples collected on 24 August, when CTD/rosette failed during planned sampling on 22 August.

^(d) Duplicate samples - prepared by filling a second set of bottles. Duplicates are preserved similar to other water samples and shipped to the appropriate laboratory for analysis.

^(e) Field blanks - prepared by filling a set of sample bottles with distilled water (from the lab) in the field. Field blanks are preserved similar to other water samples and shipped to the appropriate laboratory for analysis.

(f) Travel blanks - prepared by filling a set of sample bottles with distilled water (from the lab) and transported to and from the field without being opened. Travel blanks are preserved similar to other water samples and shipped to the appropriate laboratory for analysis.

"-" means "sample not collected"

Sampling for Solid Phase Extraction (SPE) processing

The following process was used for the SPE processing:

- Collected water was processed using three Infiltrex 300 systems.
- The flow rate was set to one litre per minute. Twenty litres of sample water were pumped through the SPE processing system for waters collected at 10 m and 42 m depth below surface. 32 L of sample water was pumped through this system for waters collected at the two deeper depths to compensate for the reduced number of site samples. This meant that a total volume of 160 L of water was passed through the filter and column at each depth.
- During pumping, manual checks were made to ensure that flow rate and totalizer was calibrated correctly.
- The same process was repeated for waters collected from each depth. A duplicate sample was collected from seawater obtained with the pump at 10 m below surface.

The same columns and filters were used for the same depth or same type of seawater at each station. This meant that a composite sample from all stations sampled was produced for analysis on parameters of interest at 10 m in the mixed layer, at 42 m in the mixed layer, in water of Pacific origin (where the sampling depth varied somewhat based on the core properties of this layer), and in water of Atlantic origin.

Sampling for Total Suspended Solid (TSS)

Total Suspended Solid (TSS) sampling was conducted as follows:

- Collected water was processed using the same pumping system as that for the SPE column sampling.
- Fifteen to 18 L of seawater was typically pumped from the carboys through a preweighed 1 µm filter loaded into a 142 mm flat disc filter holder. The exact volume of pumped water (typically 16 L) was recorded.
- Once pumped dry, the filter paper was carefully removed and the entire contents replaced back into the filter pouch.

Sample storage onboard

After completion of SPE processing in the foredeck container, columns and filters were wrapped in aluminum foil and packed in a cooler chest. Before transporting to shore at the end of Leg 2a, freezer packs were added to this cooler chest the evening before the transfer, and air bubble cushioning was placed around the wrapped columns and filters. The cooler chest was then sealed and taped shut. Chain of custody documentation was part of this process.

Table 17.2. Parameters measured in the water column for the BP contaminant sampling program in Leg 2a.

Parameter/Group	Container	Preservatives	Storage
Small-Volume			
alkalinity dissolved inorganic carbon	250 mL	50 µL HgCl₂	2-6°C
(DIC)			
рН	100 mL	_	25°C water bath for onboard analysis
total organic carbon (TOC)	60 mL	2 mL 50% H ₂ SO ₄	2-6°C
dissolved organic carbon (DOC)	60 mL	2 mL 50% H ₂ SO ₄	filtered onboard 2-6°C
salinity	500 mL	_	2-6°C
sulphide (part of salinity package)	250 mL	1 mL ZnAc; 10N NaOH	2-6°C
metals (total)	120 mL	2 mL 50% HNO₃	2-6°C
metals (dissolved)	120 mL	2 mL 50% HNO3	filtered onboard 2-6°C
Large-Volume			
total suspended solids (TSS)	ca. 16 L volume pumped through filter paper	_	filtered onboard and kept filter paper and filtrate 2-6°C
total petroleum hydro-carbons (from particulate)		—	2-6°C
PAHs and alkylated PAHs (from filtrate)	bulk composite	_	2-6°C
PAHs and alkylated PAHs (from particulate)	sampling 20L	_	2-6°C
alkanes (from filtrate)	-	_	2-6°C
alkanes (from particulate)		_	2-6°C

"-" means "preservative not used."

17.2.2 Water column sampling (Small-Volume)

Sample collection

Small-volume sampling was conducted at eight stations forming a transect from the shelf to deeper water, at up to four depths of interest. This matched the depths (or water layers) selected for the large-volume sampling and SPE processing. The small-volume samples will be analyzed for the parameters listed in Table 17.2. At each of the stations in question, the procedure for small-volume sampling consisted of the following steps:

- When the ship arrived on station, the submersible pump was lowered over the rail on the port side of the foredeck to a water depth roughly 42 m below surface, and the tubing flushed for 2 minutes.
- Once flushed, water for the large-volume sampling was collected (see above).
- Following collection of the large-volume sample for SPE processing, water was collected for the small-volume samples from the tubing attached to the pump.
- The submersible pump was raised to a water depth of 10 m below surface, and the tubing flushed for another 2 minutes.
- Once flushed, water was again collected for the large-volume sample, followed by water for the small-volume samples.
- During this time no other sampling activities were occurring on deck.
- All sample bottles were rinsed three times prior to filling. Samples were preserved on deck except for total alkalinity and dissolved inorganic carbon (DIC), which were preserved in the aft lab.
- As dissolved metals and dissolved organic carbon (DOC) required filtering, these samples were collected in a separate 250 mL container, then filtered and preserved in the aft laboratory. Samples were filtered through a 0.45 µm filter using a hand operated vacuum pump.
- pH was measured onboard in the aft lab with a ThermoScientific Orion 610 pH meter. Hold time was four hours or less. Any gas bubbles on the inside surface of the 100 mL sample bottle, after equilibration at 25°C in a constant temperature bath, were removed by slowly rotating the sample bottle and inverting it several times. A ThermoScientific 9102SC refillable Ag/AgCI combination electrode and ThermoScientic automatic temperature compensation (ATC) probe (as specified for this electrode and the Orion pH meter), attached to an articulated arm, were lowered into the equilibrated sample. The electrode and ATC probe were not touched until the pH was stable for several minutes and then the value was recorded. High accuracy pH 7 and pH 10 buffers, traceable to NTIS standards, were used for calibrating the pH meter on a regular basis. It was not possible to use TRIS seawater buffers for this purpose.
- The process for obtaining deeper water samples was explained above. It involved a dedicated CTD-Rosette cast that began after pumping over the side was finished on the foredeck. Water was drawn from one of the six bottles fired at each depth after they were rotated from the rosette to the wall racks. Preservatives were added in the rosette room to samples that did not require filtering. The two samples that required this processing were taken to the aft lab with the rest of the samples, the filtering was done, and preservatives added.

• Quality control samples were collected as outlined in Table 17.2.

The only exception to the above procedure was the small-volume sampling that took place at the first station during Leg 2a. At this station, the water required for the small-volume samples was pumped into a 20-L carboy, taken to the aft lab and a peristaltic pump with Teflon tubing used to slowly pump water into the sample bottles after the rinsing step.

Total alkalinity and pH samples were also obtained on an opportunity basis from a full CTD/rosette cast at station 8, to replicate water column sampling that ArcticNet carried out at a deep water station during the 2009 program.

Sample storage onboard

Water samples were packed into cooler chests and stored at 4°C onboard. Before transfer to shore at the end of Leg 2a, freezer packs were added, and the cooler chests taped shut. Chain of custody documentation was part of this process.

17.2.3 Sediment sampling

Sample collection

The sediment sampling strategy involved multiple locations on the shelf and slope that were either typical of those depths, or were situated at specific features (such as the mud volcano) that were distinct or unique. Sediment sampling was conducted at all 18 biophysical stations occupied during Leg 2a (Table 17.3 and Figure 17.1). Sub-sampling was undertaken for the parameters shown in Table 17.4.

Station	Sample date	Sample depth (m)	Box Core	Push Core	Benthic	Quality control samples
BP10_001	21Aug-10	74	Yes	_	Yes	—
BP10_002	21-Aug-10	133	Yes	Yes	Yes	triplicate box cores ^(a)
BP10_003	24-Aug-10	380	Yes	—	Yes	—
BP10_004	17-Aug-10	246	Yes		Yes	—
BP10_005	19-Aug-10	432	Yes		Yes	duplicate samples from one box core ^(b)
BP10_006	22-Aug-10	722	Yes		Yes	—
BP10_007	19-Aug-10	848	Yes		Yes	—
BP10_008	22-Aug-10	899	Yes		-	—
BP10_009	17-Aug-10	945	Yes		Yes	—
BP10_010	16-Aug-10	334	Yes	_	Yes	—
BP10_011	21-Aug-10	88	Yes		Yes	_
BP10_012	16-Aug-10	80	Yes	Yes	Yes	—
BP10_013	23-Aug-10	72	Yes	_	Yes	duplicate samples from one box core

Table 17.3. Stations where the sediments and benthic fauna were sampled for the BP contaminant program during Leg 2a.

Station	Sample date	Sample depth (m)	Box Core	Push Core	Benthic	Quality control samples
BP10_014	15-Aug-10	96	Yes	_	Yes	triplicate samples from one box core ^(c)
BP10_015	15-Aug-10	260	Yes		Yes	—
BP10_016	23-Aug-10	628	Yes		Yes	—
BP10_017	25-Aug-10	735	Yes		Yes	—
BP10_018	15-Aug-10	68	Yes	_	Yes	_
(a)			Disc	rata sats i	of sub-sam	oles collected from three senarate box core

Discrete sets of sub-samples collected from three separate box cores.

Analytical duplicates.

The surface was divided into three sections, and sub-sampled.

"-" means "sample not collected."

(b)

(c)

The procedure at each site where sub-sampling took place consisted of the following steps:

- Sediment was obtained with a box corer (50 cm x 50 cm) deployed by Coast Guard and ArcticNet personnel.
- Prior to first use, the box corer (including core boxes) was washed with laboratorygrade detergent and rinsed using seawater. On a daily basis, at a minimum, the core boxes were re-washed and re-rinsed.
- Between cores, the corer was thoroughly rinsed with seawater.
- Care was taken when assembling, deploying and recovering the box corer to avoid contact with the edge or inside surface of the core box.
- Upon retrieval, the box core was assessed for acceptability by ArcticNet and IMG personnel (i.e., properly closed or triggered jaw, with a relatively undisturbed and visually uncontaminated sediment surface).
- Acceptable samples were left for a short period of time to allow standing water to drain off naturally. If that did not occur, a pre-cleaned Teflon tube was used to siphon this water out of the box.
- Typically, the core box was visually divided in half with the top 1 to 2 cm used for contaminant sampling (the other half of the core was used by the Benthic Ecology team. Additional box cores were obtained for QA/QC purposes and for push coring (see below).
- Utensils or implements for transferring sediment to sample containers or bags were washed with laboratory-grade detergent and rinsed with distilled water before use.
- Samples for AVS-SEM analysis were collected using a Teflon spatula and stored in labsupplied 60 mL glass jars.
- Samples for hydrocarbon analysis were collected using a stainless steel spoon and stored in lab-supplied 250 mL glass jars.
- Samples for metal analysis, carbon content, and grain size were collected using a Teflon spatula and stored in Ziploc bags.
- Samples for BTEX and F1 to F4 analysis were collected with a stainless steel spoon and stored in lab-supplied 60 mL glass jars.
- An additional glass jar and Ziploc bag (as often as possible) were filled with sediment for archive samples.
- A field log sheet was completed characterizing the sample.
- Quality control samples were collected as outlined in Table 17.3.

In addition to sub-sampling from the top 1 to 2 cm of the box core surface, push cores were collected at Sites BP10_002 and BP10_003. A series of push coring tubes were inserted into an undisturbed box core surface, and rotated slowly downward to the bottom of the core box, then retrieved by removing sediment from around the core tubes so the bottom of each tube could be capped. The capped tube was then extracted or pulled out or away from any sediment remaining in the core box. Stainless steel coring tubes were used for sediment being analyzed for hydrocarbons and other organics. Acrylic coring tubes were used for sediment being analyzed for AVS-SEM, metals, carbon, grain size, porosity and radiometric dating.

Sample storage onboard

Sediment samples were packed into cooler chests and stored either in a -20°C freezer or a 4°C refrigerator onboard, depending on the analysis parameter (Table 17.4). Before transfer to shore at the end of Leg 2a, freezer packs were added, and the coolers taped shut. Chain of custody documentation was part of this process.

Parameter/Group	Container	Preservatives	Storage
Maxxam			
grain size			2-6°C
porosity		_	2-6°C
moisture content	1 x sediment bag	_	2-6°C
carbon content (TOC, TIC, TC)			2-6°C
metals (total)	-		2-6°C
acid volatile sulphides – simultaneously extracted metals (AVS-SEM)	1 x 60 mL glass jar	—	2-6°C
BTEX and F1-F4 fractions	1 x 60 mL glass jar	_	2-6°C
AXYS			
total petroleum hydrocarbons (TPH)		—	frozen
acid/base/neutral extractable organic compounds (ABNEO)	1 × 250ml slass	_	frozen
polycyclic aromatic hydro- carbons (PAHs), alkylated PAHs, and alkanes	1 x 250ml glass jar	_	frozen
total polychlorinated biphenyls (PCBs)	-	_	frozen
radiometric dating	1 x sediment bag		frozen

Table 17.4. Parameters measured in the sediments for the BP contaminant sampling program in Leg 2a.

"-" means "preservative not used."

17.2.4 Benthic sampling

Sample collection

Benthic sampling for contaminants was conducted at the 17 locations (Table 17.3 and Figure 17.1). This part of the contaminant program occurred on an opportunity or incidental basis, since it involved material provided by ArcticNet personnel. The goal was to obtain as much faunal material (tissue) as possible for analysis on the parameters listed in Table 17.5. The BP team received a large amount of assistance from the ArcticNet Benthic Ecology Team in this regard. The process at each location for benthic sampling was somewhat different than sediment and water column sampling, as most of the samples were collected with an Agassiz trawl.

Parameter/Group	Container	Preservatives	Storage
AXYS			
TPH	whole comple collected	—	frozen
PCBs - detailed analysis	whole sample collected,	—	frozen
PAHs and alkylated PAHs	 wrapped in tin foil then placed in Ziploc bag 	—	frozen
alkanes		_	frozen
metals	whole sample collected, wrapped in Ziploc bag	_	frozen

Table 17.5. Parameters measured in benthos for the BP contaminant sampling program in Leg 2a.

"—" means "preservative not used."

Note: Sub-samples for porosity were obtained during push coring only.

Sub-samples for radiometric dating were obtained during push coring only.

The benthic samples received from ArcticNet (with the exception of station BP10-012), were largely sorted and identified to species level (i.e., many of the samples obtained are discreet species samples). Most of the samples are echinoderm species (sea stars [genera – *lcasterias, Ctenodiscus, Pisaster, Pontaster, Solaster, Psilaster, Urasterias*], brittle stars [*Ophiopleura* spp.], basket star [*Gorgoncephalus* sp.]), with some isopods (*Saduria* sp.), bivalves (*Delectopecten* sp., *Astarte* sp.), annelid fanworms (*Pectinaria* sp.) and several fish (eelpout, *Lycodes* sp.).

Sixty-eight faunal samples were obtained for tissue analysis at AXYS Analytical in Sidney (BC), including 52 samples wrapped in foil, bagged, labelled and frozen for PCB and hydrocarbon (TPH, PAH, alkylated PAH, and alkane) analysis, as well as 16 samples bagged (no foil), labelled and frozen for metals analysis.

In addition, 29 faunal samples were packaged, labelled, frozen and provided to Dr. A. Borisenko (University of Guelph) for DNA fingerprinting.

Sample storage onboard

The benthic samples were stored in a -20°C freezer onboard. Prior to transfer ashore at the end of Leg 2a, the samples were packed into cooler chests; ice packs were added, and the coolers taped shut. Chain of custody documentation was part of this process.

18 Mercury cycling in the Arctic – Legs 1b

ArcticNet Phase 2 – Project titled *Effects of Climate Change on Contaminant Cycling in the Coastal and Marine Ecosystems*. http://www.arcticnet.ulaval.ca/pdf/phase2/stern_contaminants.pdf.

Project leader: Vincent St. Louis (Vince.StLouis@ualberta.ca)

Cruise participant Leg 1b: Igor Lehnherr¹

¹ University of Alberta, Department of Biological Sciences, Edmonton, AB, T6G 2E9, Canada.

18.1 Introduction

Concentrations of the neurotoxin mono-methylmercury (MMHg) are increasing in many marine mammals of the Canadian Arctic to levels that may be toxic to Northern peoples consuming these animals as part of a traditional diet. One of the key processes resulting in the contamination of biota with mercury (Hg) is the formation of methylated Hg species, such as MMHg, from inorganic Hg(II) species which themselves are not as readily bioaccumulated. The objective of this project within ArcticNet is to determine the source of this MMHg to arctic marine foodwebs and builds on work completed during previous ArcticNet expeditions (2005-2007). Previous work has demonstrated that MMHg is produced in marine waters of the Canadian Arctic Archipelago, with in situ production accounting for approximately half of the MMHg present at these sites. However, the transfer of MMHg from bulk seawater into the foodweb appears to be remarkably efficient, suggesting that perhaps organisms at the base of the foodweb are exposed to greater concentrations of MMHg than what is measured in bulk seawater. One hypothesis is that particulate matter in the water column provides a favorable microenvironment for the production of MMHg such that MMHg is concentrated on particles and organisms feed on detritus are in fact exposed to higher concentrations of MMHg than what would be predicted from bulk water measurements.

The objectives during this cruise were to quantify particulate-bound MMHg as well as refine existing protocols for sampling and quantifying various methylated forms of mercury. Total Hg (THg), MMHg, dimethyl Hg (DMHg) and dissolved gaseous elemental mercury (DGEM) were also quantified in seawater to continue building a baseline against which potential future changes in the distribution of aqueous Hg species can be compared. The overall understanding of Hg cycling in the Arctic will be enhanced, allowing to better predict changes in this cycle as climate change continues to impact the Arctic.

18.2 Methodology

18.2.1 Sample collection and processing:

At each station, the water column was sampled at four different depths: the surface, subsurface chlorophyll maximum, oxycline and bottom, using the ship's CTD-Rosette system. From each depth water was collected in separate acid-washed bottles for total Hg, monomethyl Hg (MMHg), particulate-bound MMHg, DMHg, total methylated Hg (MeHg) and DGEM using standard ultra-clean procedures such as the "clean hands, dirty hands" protocol. THg and MeHg samples were preserved by acidification, MMHg samples were frozen and DMHg and DGEM were captured on carbo and gold traps, respectively, using purge and trap techniques. Particles for MMHg analysis were collected on 0.2 µm cellulose nitrate membranes, which were then frozen. All samples were processed immediately after collection. Water was also collected and filtered for dissolved organic carbon (DOC) and particulate organic carbon (POC) because in many cases, sampling was carried out deeper than the primary production team who routinely quantify these parameters.

Station ID	Cast #	Depths sampled (m)	Work Conducted
Station 301	069	1, 25, 315, 663	Full suite of samples
Station BIO	074	1, 22, 100, 275	Full suite of samples
Station 305	077	1, 25, 80, 157	Full suite of samples
Station 310	078	1, 32, 70, 126	Full suite of samples
Station 312	n/a	n/a	Rosette broke down, so no samples were collected
Station 314	081	1, 25, 50, 102	Full suite of samples minus DMHg and DGEM due to time constraints

Table 18.1. Summary of stations sampled for mercury cycling measurements during Leg 1b.

18.3 Preliminary Results

Due to the complex analytical nature of the work, it was not feasible to analyze any of the samples while on board of the CCGS *Amundsen*. Therefore, data or results will be obtained after samples are returned to the *Biogeochemistry Lab* and the *Low-Level Mercury Analytical Laboratory* at the University of Alberta for Hg analysis using various isotope dilution mass-spectroscopy techniques.

19 Persistent organic pollutants in the Arctic – Leg 1b

ArcticNet Phase 2 – Project titled *Effects of Climate Change on Contaminant Cycling in the Coastal and Marine Ecosystems*. http://www.arcticnet.ulaval.ca/pdf/phase2/stern_contaminants.pdf.

Project leader: Liisa Jantunen¹ (Liisa.Jantunen@ec.gc.ca)

Cruise participants Leg 1b: Fiona Wong^{1,2} and Anya Gawor^{1,2} ¹ Environment Canada, Centre for Atmospheric Research Experiments, 6248 8th Line, Egbert, ON, LOL 1NO, Canada. ² University of Toronto, Department of Chemistry, Toronto, ON, M5S 3H6, Canada.

19.1 Introduction

The main objective of this study is to examine the spatial distribution and air-water gas exchange of persistent organic pollutants in the Arctic. Pollutants of interest include: legacy and currently used (CUPs) pesticides, brominated and organophosphate flame retardants, and perfluorinated compounds (PFCs, both ionic and neutral). This is an extension to previous sampling campaigns in ArcticNet 2007 and the Circumpolar Flaw Lead (CFL) study in 2008 which covers the Labrador Sea, Hudson Bay and Beaufort Sea area.

19.2 Methodology

19.2.1 Air sampling

Two types of air samplers (PUF and PUF/XAD/PUF) were deployed at the bow of the ship. Each sampler was attached to a suction pump at a flow rate of about 300 L/min for approximately 24 hours. 18 samples in total (9 for the PUF and 9 for the PUF/XAD/PUF) were collected throughout the course of 10 days on the ship. 6 blanks (3 for the PUF and 2 for the PUF/XAD) were also collected. Right after the samplers were taken down from the deck, they were placed in a -20°C freezer.

Figure 19.1. Air sampler for organic pollutants located at the bow of the Amundsen.

19.2.2 Water sampling

High volume surface seawater samples (200 L, n = 3) were collected using the seawater pipe tap that was located in Lab 610. The seawater ran through a GFF filter followed by an XAD column at a flow rate of 100 ml/min. Sample collection dates were 02 to 04 August, 04 to 06 August, and 07 to 09 August.

Figure 19.2. Left: Deployment of the high volume pump for large volume surface sampling and Right: filtration setup for high and medium volume samples.

Medium volume surface seawater samplers (60 L, n = 3) were collected from Stations 301, 305 and 312 using a submersible pump over the starboard side at the front deck. Similar to the high volume water samples, these samples were filtered and passed through the XAD column.

Prior to running the high and medium seawater samples through an XAD column, the XAD was spiked with labeled compounds to monitor chemical recoveries.

Low volume seawater samples (1 L, n = 24) were collected in polypropylene bottles throughout Leg 1b. Two sets of 5 bottles each were collected using the Rosette at Stations 301 and 305 at varying depths (bottom, surface and 3 intervals). The other 14 samples were collected daily from the seawater line tap located in Lab 610. Within those 14 samples, there were 3 duplicate sets. After the water was collected, the samples were spiked with a standard. The low volume seawater samples are going to be used for analysis of perfluorinated compounds.

All water samples were stored in the 4°C room.

19.3 Preliminary Results:

The air and water samples that were collected throughout Leg 1b will be taken to the laboratory in Toronto to be extracted and analyzed using the gas chromatography-mass spectrometry (GC-MS) and liquid chromatography (LC)-MS/MS. Currently, there are no preliminary results to be shown.

20 Seabed mapping – Legs 1a, 1b, 2a, 2b, 3a, 3b and 3c

ArcticNet Phase 2 – Project titled The Canadian Arctic Seabed: Navigation and Resource Mapping. <u>http://www.arcticnet.ulaval.ca/pdf/phase2/hugues_clarke_seabed_mapping.pdf</u>.

Project leader: John Hughes Clarke¹ (<u>ihc@omg.unb.ca</u>) and BP (Legs 2a, 2b and 3a)

Cruise participants Leg 1a: James Muggah¹, Hedham Elhegazy¹ and Steve Brucker¹ **Cruise participants Leg 1b**: James Muggah¹ and Hedham Elhegazy¹ **Cruise participants Leg 2a**: Ian Church¹ and Doug Cartwright¹ **Cruise participants Leg 2b**: Ian Church¹, Doug Cartwright¹, Sven Commandeur¹ and Jose Luis Sanchez de Lamadrid Jaques¹ **Cruise participants Legs 3a, 3b & 3c**: Pim Kuus¹ and Travis Hamilton¹ ¹ University of New Brunswick, Ocean Mapping Group, Department of Geodesy and Geomatics Engineering, P.O. Box 4400, Fredericton, NB, E3B 5A3, Canada.

20.1 Introduction

The Ocean Mapping Group (OMG) was on board the *Amundsen* to perform seabed mapping as part of its role in the ArcticNet program. The primary purpose of the mapping was to collect as much bathymetry and sub-bottom information as possible while transiting between science stations.

Aside from rare inclement weather and sea-ice, bathymetry and sub-bottom data were successfully collected during the entire expedition.

During Leg 1, a secondary objective was to test the equipment mounted on the *Amundsen*'s barge. The barge allowed for quick transits to opportunistic survey sites for either reconnaissance surveys or shoal investigations.

During Leg 2a, the water-column imaging capabilities of the EM302 multibeam were used to provide positions of seabed mooring installations. The barge and its seabed mapping equipment was not used during Leg 2a.

During Leg 2b, multibeam and sub-bottom data was collected each night after piston coring operations or during the day on an opportunistic basis and was performed in two stages. The first stage was collection of sub-bottom data over 32 priority sub-bottom lines. The second stage was the collection of multibeam data over the BP exploration block. The block was divided into six areas of ascending priority and data was collected systematically in each area. The water-column imaging capabilities of the EM302 multibeam were also used during Leg 2b to provide positions of seabed mooring installations and images of various instances of venting gas. The *Amundsen's* barge was used on two occasions during Leg 2b.

During Leg 3a, multibeam and sub-bottom data was collected during three dedicated survey periods totalling approximately 37 hours and during transits between science stations. The

dedicated mapping allowed for expansion of the multibeam coverage within the BP Pokak lease block, in particular priority zone 2 was completed, and an area near the NE corner of the block was filled in. The water-column imaging capabilities of the EM302 multibeam were also used during the Leg to provide positions of seabed mooring installations. The barge, which is also fitted with seabed mapping equipment, was not used during Leg 3a.

During Leg 3b, multibeam and sub-bottom data were collected with the CCGS *Amundsen* during transits between science stations, opportunistically near stations, and at one dedicated 12-hour survey in Barrow Strait. The water-column imaging capabilities of the EM302 multibeam were also used during the leg to provide positions of seabed mooring installations. The barge was not used during Leg 3b.

During Leg 3c, multibeam and sub-bottom data were collected with the *CCGS Amundsen* during transits between science stations, and opportunistically near stations. In addition, multibeam data were collected with the barge at various locations in each of the four visited fiords. The planned 24-hour survey on the Labrador shelf (both option north and south) was cancelled due to weather.

20.1.1 Seabed mapping in the Labrador Fiords (Leg 3c)

Knowledge of seafloor coastal habitats is relatively limited for the Arctic, and very little information has been gathered on Labrador fiord marine ecosystems. This project seeks to better understand the nature and distribution of benthic habitats within northern Labrador fiords. Benthic habitat mapping is an accurate and efficient way to gather baseline information about substrate type and associated biota. It is essential for development and implementation of resource management practices and conservation. This mapping study could be used to:

- Identify sensitive habitats as well as those important to fisheries.
- Monitor habitats which may be susceptible to the impacts of climate change.
- Provide background information for the creation of policies regulating the harvesting of marine resources.

Multibeam seabed mapping in each fiord is in the process of being completed. The multibeam bathymetry and backscatter information, in combination with seabed sampling (using long-liner vessels and the CCGS *Amundsen*), will be used to generate first-order substrate and habitat maps.

20.2 Methodology

20.2.1 Equipment

CCGS Amundsen

- Kongsberg EM302 30 kHz multibeam echosounder
- Knudsen K320R 3.5 kHz sub-bottom profiler
- Applanix POS/MV 320 motion and orientation sensor
- C&C Technologies CNAV GPS
- AML Smart Probe surface sound speed probe
- Honeywell Precision Barometer

<u>Barge</u>

- Pole mounted to port side of barge
- Kongsberg EM3002 300 kHz multibeam echosounder
- Coda Octopus F185+ Motion Sensor
- C & C Technologies CNAV 2050 GPS System
- Applied Microsystems Ltd. Micro SVP&T Sensor
- Honda Generator
- Water tight box with server rack mounted inside, containing multibeam transceiver, CNav receiver/logger, and UPS power supply.

20.2.2 Onboard logging and processing procedures

CCGS Amundsen

Multibeam and sub-bottom profiler collection began immediately after leaving Quebec City, both systems were logged continuously except during stationary science sampling operations. Occasional bottom mistracking occurred in areas with sea ice and high sea states.

The EM302 30 kHz multibeam data (bathymetry and water column) was logged in the Kongsberg raw format (.all & .wcd) and converted to the OMG format after line completion (new survey lines were automatically generated every hour). The soundings were cleaned and inspected, using the OMG swathed toolkit, in near real-time with two members maintaining a 24-hour watch throughout most of the cruise. After the barge set-up was completed on Leg 1a, the three members switched to 8 hour watches. The soundings were reduced to mean sea level (MSL) using the Arctic-8 WebTidal model.

A secondary navigation source was fed into the EM302 Transceiver from the CNav on JD198 (previously only POS-MV). This allowed for easy switching of navigation source if one navigation system had problems.

All sub-bottom profiling was performed using the Knudsen 320R 3.5 kHz system. The K320R was logged in the Knudsen raw format (.keb and .sgy) and converted to the OMG format after line completion (new survey lines were generated every hour or so. Heave was fed into the Knudsen transceiver on JD198 from the POS-MV.

In addition, the following data was logged at all times:

- CNAV GPS
 - o pseudo-ranges
 - NMEA
- POS/MV delayed heave and full POSPac format files
- Air pressure for correction of inverse barometer effect

Sound speed profiles were collected at each station using the Rosette's CTD. Raw cnv files were converted to OMG format, at which time the profiles were visually inspected for spurious data points. The CTD casts were input directly into the EM302 SIS logging software. Post-processing of the multibeam soundings with respect to sound speed profiles will be done upon return to UNB.

Everyday images, in strip map format (two sun-illuminations for bathymetry, a backscatter image, a sub-bottom image, and the navigation track) were created. These images will be posted online (<u>www.omg.unb.ca</u>) after the completion of all legs. The historical bathymetry from all transits, overlaid on the navigation system was also updated regularly to expand coverage.

<u>Barge</u>

Figure 20.1. The Amundsen's barge used to conduct seabed mapping and sub-bottom surveys.

The barge setup had the server rack placed inside the cabin, directly behind the coxswain. The laptops used to log the multibeam and motion data were located inside the cabin on the port side, where the coxswain had a view of the screen showing the real time survey coverage. The pole was mounted on the port side of the barge with the multibeam transducer on the end and directly above it was the surface sound speed probe. The positioning and motion antennas were located on the top of the mast and the motion sensor (F180) was secured to the floor under the coxswain seat. The generator used to power all the equipment was located on the aft deck, tied to the outside of the cabin. The laptops, spare tools, and generator were all stored inside the *Amundsen* upon completion of a survey. The required time to prepare the barge for a survey was around 5 minutes.

Figure 20.2. Barge setup to conduct multibeam mapping surveys: EM302 operator station (upper left), Positioning and motion antennas (upper right), Pole mount with multibeam and surface sound speed probe (bottom left) and Server rack (bottom right).

The pole mounted multibeam was run at a maximum survey speed of 7 knots (usually around 1600 rpm). In areas with strong currents, such as in the Lac Guillaume Delisle (Leg 1a) the barge surveyed with the current, then the pole was lifted out of the water and the barge shot back upstream to run another survey line downstream. The speed of the vessel directly impacted the quality of the survey. At speeds greater than 7 knots, the surface sound speed probe would not get accurate readings because of the amount of air bubbles directly behind the pole. The sea state also had a large impact on the quality of the survey. With even small waves, bubbles created from the bow plowing through the water would go under the multibeam transducer, masking the signal. The solution to this was a slower survey speed, however a more permanent solution would be to increase the length of the pole, or permanently mount the multibeam on the hull of the barge.

The multibeam (bathymetry and water column), CNav and F180 data was logged and then post processed back on the Amundsen. Surveying on the barge and on the *Amundsen* at the same time requires a minimum of three personnel on board. There was only one occasion, in Dexterity fjord during Leg 1a, where two personnel were on board, stretching out the watch hours.

The accuracy of the barge surveys could be improved with a hand lowered CTD done before and after the survey. These sound speed measurements would then be used to post process the multibeam data. For the multibeam calibration a Rosette was done immediately before deployment, the cnv file was converted and loaded directly into the multibeam logging program.

20.2.3 Detailed equipment and procedures

Kongsberg EM302 30 kHz multibeam echosounder

A 1° x 2° Kongsberg EM302, flush-mounted to the hull was used for multibeam mapping operations with a swath up to +/-60°. The normal EM302 swath of +/-70° is not available on the CCGS *Amundsen* due to the presence of titanium polymer ice-reinforcing windows. The receiver array is mounted on the port side tilted up 6° from horizontal to accommodate the non-flat hull form. This results in a slight curl (within specification but notable) to the outer edge of the swath on the starboard side. The system utilizes multiple sectors to achieve two full swaths in a single ping cycle. The pair of swaths are steered forward and back respectively to achieve an even along-track density. The sonar operated in 3 modes in the depth ranges seen in the area:

<u>Shallow Mode</u> - 4 sectors per swath, 2ms CW pulses (750Hz bandwidth), 26.5 to 33.6 kHz <u>Medium Mode</u> - 4 sectors per swath, 3ms CW pulses (500Kz bandwidth), 26.5 to 31.3 kHz <u>Deep Mode</u> - 8 sectors per swath, 7ms CW for centre 4 sectors, 25-40ms FM pulse for outer 4 sectors (all 200 Hz bandwidth), 26.5 to 32.5 kHz Shallow was used by default in less than 200 m. Deep mode was used by default for depths greater than 600 m.

Sea state issues: As noted previously, the flush mounted arrays, unlike gondola mounted systems, are very prone to bubble wash down. Under conditions of less than 15 knots of wind, the system is unaffected and mapping at the full vessel speed of 13.5 knot (or even 16 knots) is viable. Above 20 knots of wind, bubble wash down events are noted, that first corrupt the backscatter imagery, and then start to cause the system to intermittently lose track of the bottom. The exact onset of this is azimuth dependent. Above 25 knots of wind, the bottom tracking becomes notably poorer. Above 30 knots of wind, the EM302 data is unacceptable for surveying even at a slower speed. At this time, the K320R sub-bottom profiler is however, still functional.

Soft sediment issues: A notable bottom tracking bias was intermittently seen throughout the mission. This primarily involved tracking too deep close to nadir. This occurred throughout the mission, particularly in the low impedance (soft) sediment encountered on most of the Beaufort slope. The magnitude of the artifact corresponds to a 0.1 to 0.25% of depth trough (well within IHO Special Order +/-0.75%).

Sound speed reduction: The MVP-300 was used for all sound speed measurements. The MVP was deployed on all of the sub-bottom priority lines to provide an even coverage of sound speed information throughout the survey area. Routine post-cruise reprocessing for ArcticNet will involve applying all of the MVP sound speed data to the multibeam soundings. For real time data collection, a single sound speed cast that well represented the survey area was used.

During all operations the surface sound speed probe was functional and clearly indicated the rapidly changing near surface sound speeds. The inshore areas were generally faster (warmer) with a pronounced gradient in the vicinity of the shelf edge. Analysis of the deeper CTD profiles indicates that the majority of the variability is confined to the near surface ~ 50m layer. Below that depth the sound speed structure was remarkably stable so that for the deeper depths surveyed, the impact was minimal.

Tidal reduction: The Arctic-8 WebTidal model was used for all tidal reductions. Tides in this part of the Beaufort Sea are generally less than +/-50cm so have little impact on the accuracy. C-Nav RTG ellipsoid height solutions were collected at all times. When corrected to the geoid they indicate a faint tidal signature but the noise is at a similar level. Post-cruise reprocessing of the raw GPS observables (logged at all times) through PPP may be done.

Bathymetric data processing: All EM302 data was processed immediately after acquisition using the OMG swathed toolkit. The raw.all data were converted to the OMG "merged" format and the POS RP navigation solution was merged for each shot. Bathymetric data cleaning in line mode was performed (pre-defluffed and median filtered before interactive editing) and a daily grid updated. Gridding of overlapping swaths was weighted based on

beam # decaying to the outermost beams. For the purposes of grid interpolation, the beam footprint was calculated based on a nominal projected 1° beam at that depth and incidence angle.

In the creation of the final shipboard grid, regional survey lines (057.4° and 237.4° azimuth) were combined with transits and priority sub-bottom lines. Gale force winds resulted in only one survey line that required resurveying due to noise.

The grid at 10m resolution shows some sounding noise. It should be kept in mind however, that the typical ribbing seen in the data is at the \pm -0.2% of depth range (well within the \pm -0.75% for IHO Special Order surveys). The decision was taken to grid at this finer resolution (2% of Z at 500m) as, in the lower sea state periods, there is clearly resolvable morphology.

POS/MV

Vessel orientation, heave and inertially-smoothed differential GPS was provided by the POS/MV system. The system receives RTCM differential corrections from the C-Nav receiver. Throughout the entire cruise there was only one noted POS glitch:

• Lost DGPS on one line (CA solution still within 2m RMS anyway)

Delayed ("True") Heave was logged for the entire operation.

POS MV Outage (Leg 3b): On 16 October at 05:00 local time while on the science station transect in north Baffin Bay, the POS/MV stopped outputting heading and position. Debugging took the next full two days. On 18 October around 18:00 local time, a new firmware update received from the manufacturer' support brought the system back running. As there was significant mapping coverage in between science stations from previous visits, there was limited loss of mapping data.

Moving Vessel Profiler (underway sound speed profiling)

The *CCGS Amundsen* is equipped with a Moving Vessel Profiler (MVP) 300 allowing for underway sampling of the water column. Through its ability to continuously cast and retrieve a probe while the vessel is in transit, it is possible to perform a dense sampling regime in a very time efficient method. The MVP is equipped with a sound velocity probe, CTD, flurometer, dissolved oxygen sensor, and a transmissometer.

During Leg 2b, MVP data was collected during all of the priority 1 and 2 sub-bottom data lines at a speed of 8 knots. This provided sound speed data covering the entire Pokak block over a week long period, as shown in Figure 20.3.

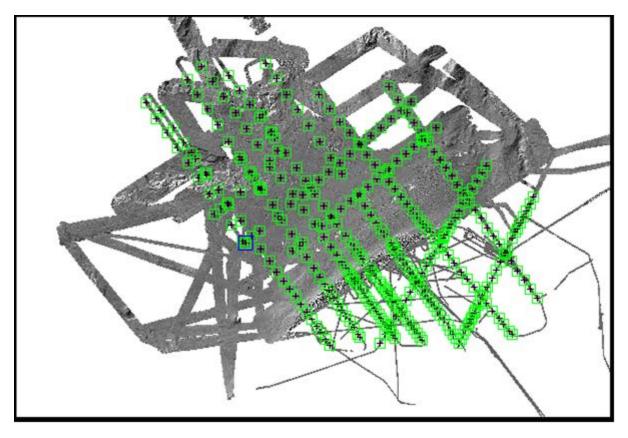


Figure 20.3. MVP cast distribution used in sound speed profile in the BP Pokak block during Leg 2b.

There were no major problems with the MVP and data was successfully collected over the entire area. A de-icing system was installed this year on the MVP to eliminate ice buildup on the sheave. This system worked very well and ice buildup was never a problem. A detailed explanation of the MVP operations can be found in the *CTD Rosette Sampling* section of this report.

At the end of the cruise, a check line was run with the MVP along one of the priority 1 subbottom lines. This line provided a method to estimate the change in salinity and temperature over the duration of the survey.

Knudsen K320R 3.5 kHz sub-bottom profiler

All sub-bottom profiling was performed using a Knudsen 320R 3.5 kHz system. The Knudsen system utilizes a 16 element (4x4 Massa TR-1072A) array shooting through the hull (1/2 inch steel). A max ping period of 0.5 seconds was set, although with the 12ms chirp pulse used, the duty cycle limited the system to 1 Hz pinging. The K320R was synchronized to the EM302 (master). The system utilizes a 2-7 kHz bandwidth.

Heave correction: Heave was provided from the POS as a custom lever armed solution from the IMU at the 3.5 kHz location (~ 30m forward and 16m down from the RP).

Draft correction: 6.7m was used for all post processing

Sound velocity correction: In real time, the default Arctic shelf value of 1465m/s was used for depth estimation. This is an underestimation of the harmonic sound speed for the deeper water (1480ms++). The original two-way travel time can be recovered from the data knowing the input sound speed.

Bottom tracking and range phasing: The K320R does its own bottom tracking. This was used in real time for adjusting the phasing of the logger (the 200m window). The biggest concern is that the system does not phase up or down until ³/₄ of the available viewed range is water column; designed as such for simple echo sounding. As a result, when going downhill, there may be as little as 50m of sub-bottom record preserved just before phasing. Manual override of the phasing was implemented whenever the operator noticed the issue.

Additionally, in post processing the bottom track is used for masking the water column in the creation of fence diagrams. In all but very soft sediments the tracking was at the sediment surface.

Positioning: Positioning for the K320R originated from the CNav GPS.

Transceiver clock: The K320R clock is fixed only to the PC time. To compensate for this, a GPS based time server was set up to synchronize the PC time to GPS time. This could facilitate merging other navigation solutions if desired.

<u>Barge</u>

EM3002: A Kongsberg EM3002 300 kHz multibeam echo sounder was installed on the barge using an aluminum pole. The pole was mounted to the port side of the barge just ahead of the cabin doors. The pole is traditionally installed on the Ocean Mapping Group research launch, the Heron, but is designed to be portable and a universal fit to almost any vessel. There were no major problems with the multibeam installation on the barge. Even in large swells, the multibeam tracked the bottom with few noise artifacts.

All electronics, including the multibeam transceiver, were installed in a waterproof and shock mounted case which fit well behind the captain's seat. Due to the cable routing, the cover of the case could not be closed, therefore it was not waterproof. In the future it would be desirable to install through case fitting for all the cabling to enable the cover to be closed to protect the electronics from spray. Multibeam data was collected using a Dell Precision M6500 laptop.

Coda Octopus F185+ Motion Sensor: The motion sensor was rigidly installed beneath the captain's chair in the barge on the starboard side. The mount worked well and no movement of the IMU was noted. The antennae for the F185 were installed on an aluminum bar above the radar on the roof of the barge. This installation could be improved in the future, as the rotation of the bar occurred if the bolt at the attachment point became loose.

Additionally, the roof of the barge, where the antennae mast is installed, is very flexible and the mast likely flexes relative to the rest of the vessel.

C&C Technologies CNav 2050 GPS: A CNav GPS receiver was used to provide RTCM corrections to the F185 motion sensor and as an alternative positioning source to the multibeam system. Raw pseudo range observations were recorded from the CNav system. These can be used to post process the data using Precise Point Positioning (PPP).

AML Micro SVP&T Sensor: Surface sound speed measurements were sent to the multibeam system to facilitate beam steering and improve sounding accuracy. The sound speed sensor was mounted to the base of the aluminum pole, just above the multibeam, using a custom mount. The sensor worked well during multibeam surveys.

20.2.4 Surveys

Leg 1a - ArcticNet - 01 July to 02 August 2010 - Hudson Bay

Leg 1b – ArcticNet – 02 August to 12 August 2010 – Baffin Island and Canadian Arctic Archipelago

During transit between stations, coverage from previous transits was loaded into Aldebaran. This allowed the helmsman to steer coverage and build upon the previously collected data.

Several surveys (one planned, several opportunistic) were accomplished at the following locations during Leg 1:

- Mansel Island, Entrance to Hudson Bay
- Lac Guillaume Delisle, Hudson Bay
- Inukjuak, Hudson Bay
- Kuujjuarapik, Hudson Bay
- Circular Moraine Features in Central Hudson Bay (60.19797, -85.01363)
- Nelson River, Hudson Bay (3 lines during MVP transect)
- Iqaluit
- South of Devon Island, Lancaster Sound

Data quality was very good in most cases as long as the maximum swath width was set to 65 degrees to port and 60 degrees to starboard. This is due to the physical installation of the multibeam transducer (as mentioned in previous cruise reports). Survey line running was mostly performed with Aldebaran and occasionally with SIS.

The barge was launched for mapping on five different occasions during leg 1ab. The first was on 12 July 2010 (all dates according to UTC time) at Lac Guillaume Delisle where the channel was mapped. The second was on 14 July where the barge covered the inshore area of the Kuujjarapik survey, close to the mouth of the Great Whale River. The third deployment was on 26 July near the mouth of the Nelson River to do a patch test for

multibeam calibration. The fourth deployment was on 02 August for the Iqaluit shoal investigation. The last deployment was on 05 August in Dexterity fjord to investigate a narrow channel with an older sounding of 30 metres on the chart.

Leg 2a – ArcticNet/BP – 12 August to 26 August 2010 – Beaufort Sea

During transit between stations, coverage from previous transits was loaded into the navigation software, Aldebaran. This allowed the helmsman to steer coverage and build upon the previously collected data.

Two Surveys were accomplished at Station BP10-005. The preliminary survey of the features at BP10-005 provided an overview of the seabed morphology around the station. The following surveys provided tight lined sub-bottom data to describe the sub-seabed geology. The sub-bottom survey followed the suggested lines from BP over the station.

At most of the mooring stations, the EM302 was used to locate and position the buoys on the moorings. This was performed at Stations J-09, I-09, G-09 and H-09.

Leg 2b - ArcticNet/BP - 26 August to 23 September 2010 - Beaufort Sea

The main aim of the mapping program in Leg 2b was to cover core regions within BP's exploration license areas (EL449, EL451 and EL453). The complementary regional mapping program of ArcticNet – Geological Survey of Canada was the secondary objective (which benefitted strongly from the BP block coverage).

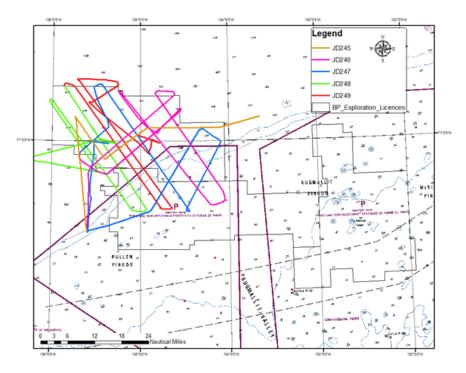


Figure 20.4. *Amundsen* navigation track during the dedicated seabed mapping surveys conducted in the BP Pokak block in the Beaufort Sea during Leg 2b (JD 245 to 249).

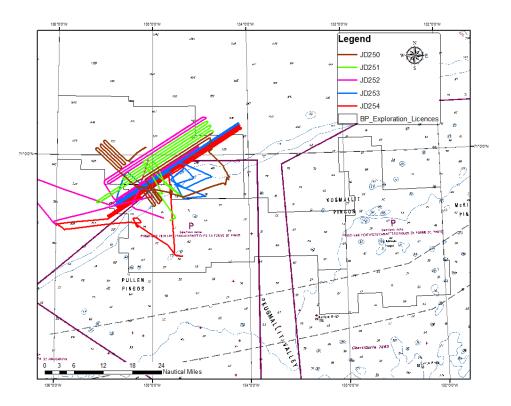


Figure 20.5. *Amundsen* navigation track during the dedicated seabed mapping surveys conducted in the BP Pokak block in the Beaufort Sea during Leg 2b (JD 250 to 254).

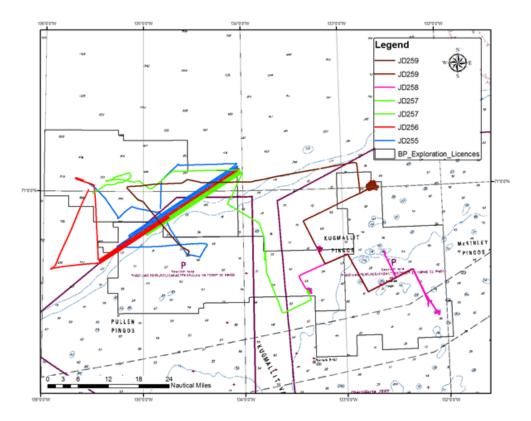


Figure 20.6. *Amundsen* navigation track during the dedicated seabed mapping surveys conducted in the BP Pokak block in the Beaufort Sea during Leg 2b (JD 255 to 259).

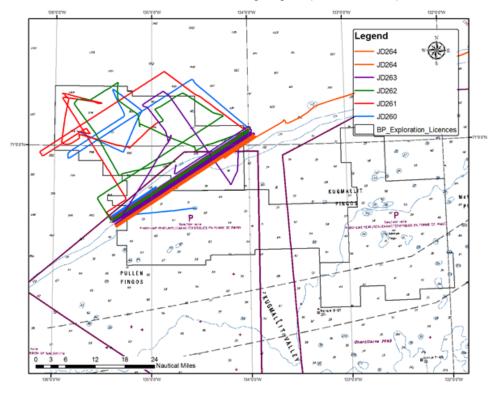


Figure 20.7. *Amundsen* navigation track during the dedicated seabed mapping surveys conducted in the BP Pokak block in the Beaufort Sea during Leg 2b (JD 260 to 264).

Leg 3a - ArcticNet/BP - 23 September to 07 October 2010 - Beaufort Sea

In addition to building coverage in the Beaufort Sea, the main aim of the mapping program during Leg 3a was to expand coverage within the BP Pokak lease block. During dedicated survey time, priority zone 2 was completed, and an area near the NE corner of the Pokak block was filled in. The ship's track within the Pokak block (Figure 20.20, and a maps showing coverage in the Pokak block before and after Leg 3a Figure 20.21 and 24.21). Following the deployment of all moorings, the EM302 water column data was used to mark the location of the moorings, which provides a verification of the position recorded from triangulation.

Leg 3b – ArcticNet – 07 October to 22 October 2010 – Canadian Arctic Archipelago and Baffin Bay

During Leg 3b, while transiting, mapping was done continuously and when possible expanding existing coverage from previous years. The officers and bridge crew were particularly co-operative with adjusting the ship's course in order to extend the multibeam coverage. Additional mapping is listed below:

- Six hours of mapping at Station 405. Survey lines were run south of existing coverage. (Figure 10)
- Two hours of mapping were available to run two lines at Scott Inlet.
- While waiting for daylight to sail through the narrows towards Iqaluit, eight hours of mapping was done in the Frobisher Bay. Lines were run along existing coverage in the bay.
- A dedicated 12-hour survey was done in Barrow Strait. Because of ice cover around the survey site, priority areas 1 and 2 (respectively, north and west), and the area east of the survey site were not completed. Lines were run south of existing coverage in between ice covered areas. (Figure 11)

Leg 3c – ArcticNet – 22 October to 31 October 2010 – Northern Labrador fjords

During Leg 3c, while transiting, mapping was done continuously and when possible expanding existing coverage from previous years. The Commanding Officer and bridge crew were particularly cooperative to adjust the ship's course in order to extend the multibeam coverage.

Seabed mapping in support of benthic habitat classification and mapping in Nunatsiavut fiords was undertaken with the support of the hull-mounted multibeam (EM302) aboard the CCGS *Amundsen* and the pole-mounted EM3002 attached to the barge (Figure 20.8) from the *Amundsen*.

Figure 20.8. Deploying the barge for seabed mapping in Okak Bay, Nunatsiavut.

Specific targets were identified in each fiord for this mapping contingency. The barge was used for seabed mapping in each fiord simultaneously with *Amundsen* activities during daylight hours and weather permitting. The barge operation required 3 ship's crew, a multibeam operator and a scientist. The speed of the barge permitted mapping activities to be carried out up to 20 nm away from the *Amundsen*. Initial mapping priorities were identified as follows:

- Nachvak Fiord Tinutyarvik Cove (nearest to 600; Figure 20.9)
- Saglek Fiord Nachvak Brook cove (near 613)
- Okak Bay (1) Okak Island cove (south of 632); (2) Siugak Bay and Cod Fish Cove (between 632 and 633); (3) head of bay (near 630)
- Anaktalak Bay (1) southeast corner of inner bay (due east of 624); (2) northwest corner of inner bay, along southern shore of Akuliakatak Peninsula.

Figure 20.9. View of the modern delta at the mouth of Nachvak Brook. Flat terraces on either side of the river represent the ancient delta surface when sea level was higher at the end of the last glaciation, roughly 8000 years ago.

Figure 20.10 illustrates the acquisition of multibeam sonar data on the barge. The color image (top right) displays the real-time, coarse resolution bathymetry of the seabed beneath the barge as it navigates along lines parallel to the shoreline. The water depth grades from shallow (red/orange) to deep (blue) and indicates the presence of a large delta-top channel that extends from the river mouth to the delta edge. The greyscale image (top left) shows backscatter intensity, which can be interpreted roughly to represent variations in sediment texture on the seafloor. On this image the backscatter displays a slightly different sediment type on the floor of the delta-top channel recorded in the bathymetry.

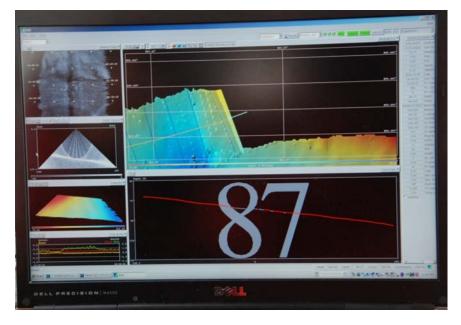


Figure 20.10. Acquisition of multibeam sonar data (bathymetry and backscatter) over Nachvak Brook delta, Saglek Fiord, using the EM3002 pole-mounted on the barge.

An early arrival at the Nachvak fiord yielded two and a half hours of mapping to expand coverage at the outer sill of the fiord.

The planned surveys on the Labrador shelf for both the northern and southern options were cancelled due to weather. The northern survey site was cancelled due to strong winds forecasted in the survey area. On transit towards the southern survey site weather predictions appeared favorable for surveying but the weather deteriorated as we progressed towards the survey site. Winds had increased up to 23 kts and the swell was between 2 and 3 metres. Despite adjusting the heading in the direction of the swell and decreasing survey speed (to 8 kts), the multibeam could not track bottom. The survey was cancelled before starting the first line.

Table 20.1. Locations of completed seabed mapping targets in each of the Nunatsiavut fiords during Leg 3c.

Fiord	Amundsen	Barge	Date
Nachvak	Outer sill	Tinutyarvik Cove	Oct 24
Saglek	East of Rose Island	Nachvak Brook delta, Torr Bay	Oct 25
Okak		Okak Island cove	Oct 26
Anaktalak		Inner basin	Oct 27

Barge: The barge was used for mapping at all four fiords during Leg 3c:

- Nachvak; Tinutyarvik Cove, full day (~8 hours)
- Saglek; Nachvak Brook delta, Torr Bay, full day
- Okak; Okak Island Cove, full day
- Anaktalak; Inner basin, ~6 hours

MVP transects: In each of the four fiords during Leg 3c a MVP transect was performed. The surveys were done at a vessel speed of 8-9 knots. The MVP was operated in auto-deploy mode which allowed for continuous profiling throughout the length of each fiord. The system was calibrated so that the probe remained at 10m below the water surface while in its retrieved position and it stopped 20m above the seabed (depths measured with the EK60 echosounder). As a result of these settings, profiles could only be measured in water depths greater than 30m.

In each fiord there were various seabed features which presented a danger to the probe. These areas were identified in advance using previous multibeam coverage and sampling was paused until the feature was cleared.

On one cast in the Saglek fiord after ~1.5 hours of flawless operation in auto-deploy mode, the MVP controller software failed to automatically engage the break, this was noticed by the operator who manually engaged the break stopping the probe shortly before it hit the seabed. Consequently, it is recommended that there is a person who continually monitors the MVP controller. To ensure that this is possible it is also recommended that there be two people who are capable of operating the MVP in the CTD shack during operations in case one person needs to leave briefly.

20.3 Preliminary results

20.3.1 Leg 1a – ArcticNet – 01 July to 02 August 2010 – Hudson Bay Leg 1b – ArcticNet – 02 August to 12 August 2010 – Baffin Island and Canadian Arctic Archipelago

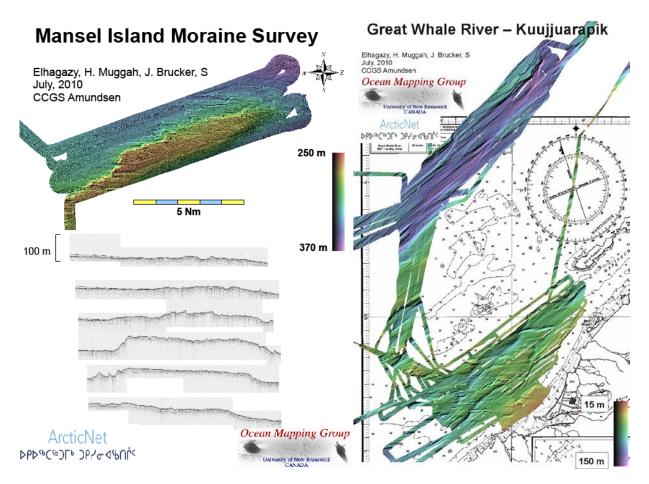


Figure 20.11. (left) Bathymetry of Mansel Island moraine features surveyed at the entrance to Hudson Bay during Leg 1a, (right) bathymetry collected during a survey near Kuujjuarapik in Hudson Bay during Leg 1a.

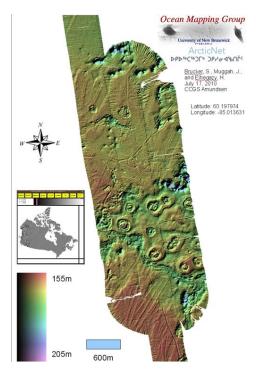


Figure 20.12. Bathymetry of circular moraine features surveyed in Central Hudson Bay (60.19797, - 85.01363) during Leg 1a.

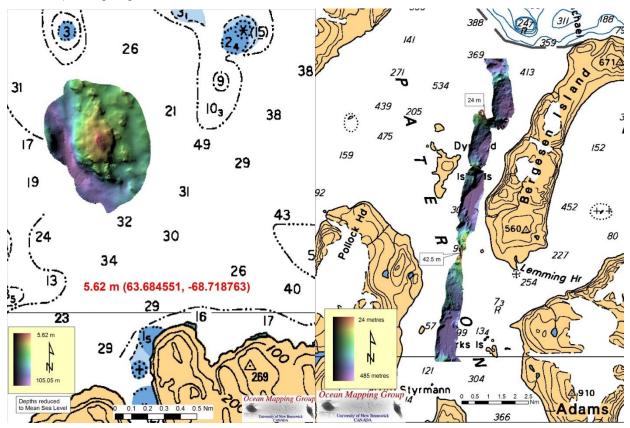
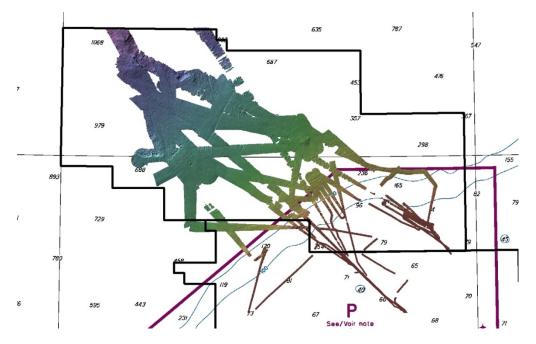



Figure 20.13. Bathymetry collected (left) during a survey near Iqaluit during Leg 1a, (right) near Bergesen Island on the coast of northern Baffin Island during Leg 1a.

20.3.2 Leg 2a – ArcticNet/BP – 12 August to 26 August 2010 – Beaufort Sea

Figure 20.14. Leg 2a multibeam data coverage in the BP lease block in the Beaufort Sea during Leg 2a.

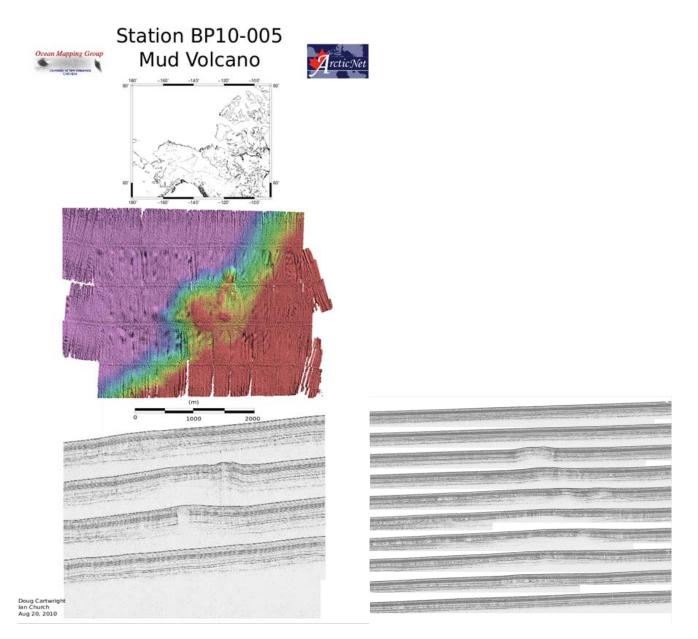


Figure 20.15. Bathymetry and sub-bottom profile of the mud volcano at Station BP10-005 in the BP lease area during Leg 2a.

Mooring J Station J-09

Location: 70.89765 -134.26090

WC Mrap (Sbit)		erColumn Analysis Toolk		- C X
-128.000000	128.00	1.000000 WC Compression	200.00	
0034_20200817_014450 Ping Johan Sype 302 Th. Four Reduction 0 Rr. Gain Reduction 0 Tr. Fuir Length 1059 Rose Bac 1228 0 db Attem Coeff. 0 0 db/km Attem Coeff. 0 0 db/km Range to Normal Incidence	7 2305		Trenset & Sector Clarast. # 23 10 2 25 10 2 200 1 22 10 2 200 1 22 0 2 20 1 22 0 2 20 1 22 0 2 20 2 25 10 2 20 2 20	ristics: DM Steer Delay(m2) S10 4.06 7.3 S10 2.39 -0.0 S10 -0.64 2.6 S10 -2.63 10.9 First Swath
50			Top E	Buoy
and the state of the second				
2. VINC 150127	Wate	rColumn Analysis Toolk	- 0.0000000	_ C X
-128.000000	128.01	1.000000	100.00	
-10	A CONTRACTOR OF			
			a All-All-All-All-All-All-All-All-All-All	林平城市 能出
AND ADDRESS OF A DESCRIPTION OF A DESCRI				
Series and a		and stated in the second state		
		Top Buoy		
		Top Buoy		
		Top Buoy		
-9 -0 -0		Top Buoy		
		Top Buoy		
		Top Buoy		
		Top Buoy		-
		Top Buoy		

Figure 20.16. Multibeam water column data showing Mooring J at Station J-09 in the BP lease area during Leg 2a.

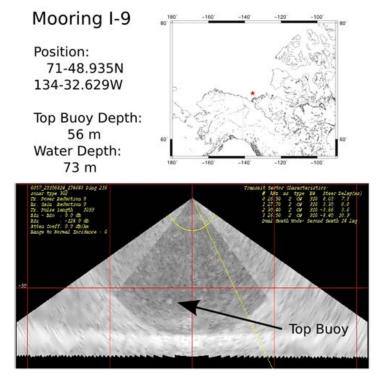


Figure 20.17. Multibeam water column data showing Mooring I-9 in the BP lease area during Leg 2a.

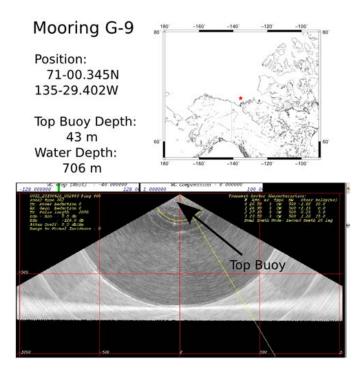


Figure 20.18. Multibeam water column data showing Mooring G-9 in the BP lease area during Leg 2a.

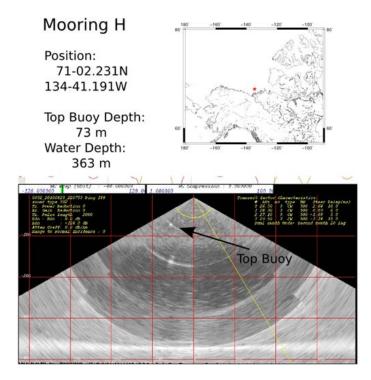
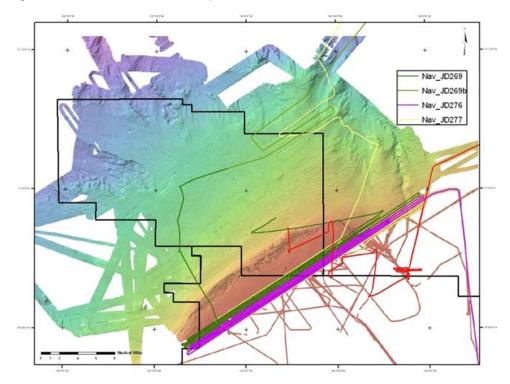



Figure 20.19. Multibeam water column data showing Mooring H in the BP lease area during Leg 2a.

20.3.3 Leg 3a – ArcticNet/BP – 23 September to 07 October 2010 – Beaufort Sea

Figure 20.20. Amundsen ship track and survey lines conducted in the BP Pokak lease block in the Beaufort Sea during Leg 3a.

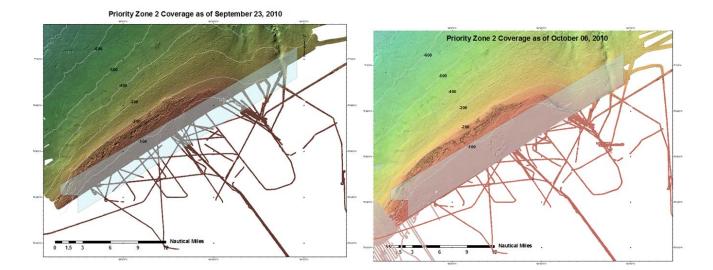


Figure 20.21. Bathymetry maps of the Priority Zone 2 Coverage within the BP lease area in the Beaufort Sea as of 23 September (left) and 06 October (right) conducted during Leg 3a.

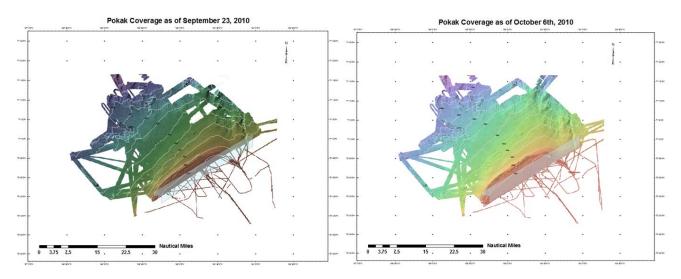


Figure 20.22. Bathymetry maps of the Pokak Coverage in the BP lease area in the Beaufort Sea as of 23 September (left) and 06 October (right) conducted during Leg 3a.

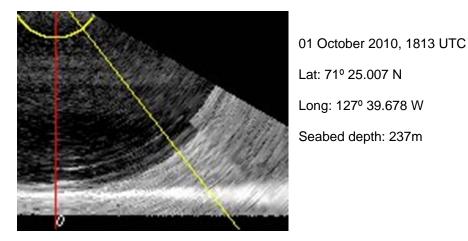
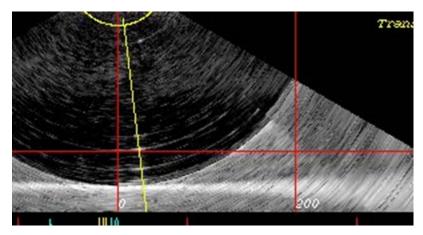
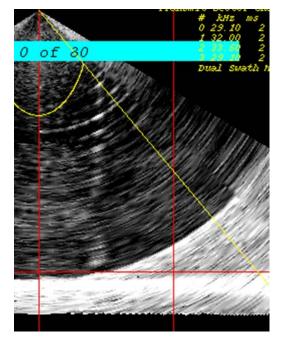




Figure 20.23. Multibeam water column data showing Mooring CA 16 MMP-0 in the BP lease area during Leg 3a.

01 October 2010, 1813 UTC Lat: 71º 25.007 N Long: 127º 39.678 W Seabed depth: 237m

Figure 20.24. Multibeam water column data showing Mooring CA05-MMP-10 in the BP lease area during Leg 3a.

06 October 2010, 2140 UTC Lat: 71º 19.056 N Long: 127º 35.662 W Seabed depth: 205m

Figure 20.25. Multibeam water column data showing Mooring CA05-10 in the BP lease area during Leg 3a.

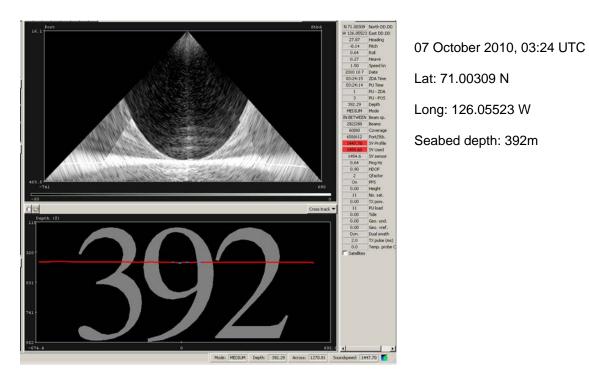


Figure 20.26. Multibeam water column data showing Mooring CA08-10 in the BP lease area during Leg 3a.

20.3.4 Leg 3b – ArcticNet – 07 October to 22 October 2010 – Canadian Arctic Archipelago and Baffin Bay

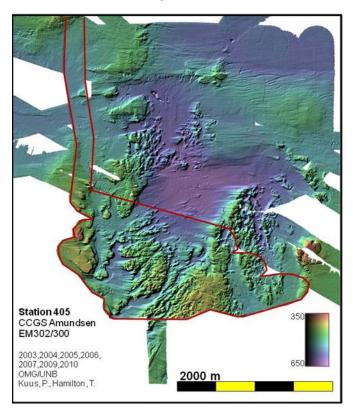


Figure 20.27. Seabed mapping at Station 405 during Leg 3b. Red region outlines coverage completed in 2010.

Figure 20.28. Seabed mapping conducted in Barrow Strait during Leg 3b.

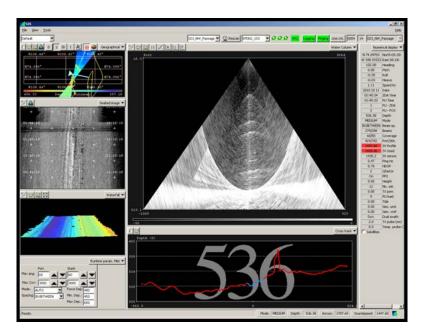
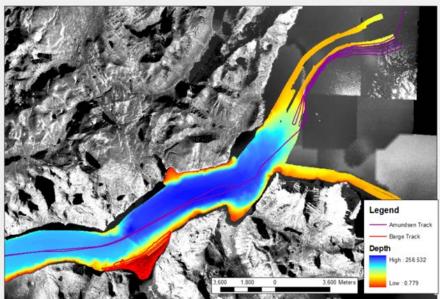



Figure 20.29. Multibeam water column data showing the mooring at Station 308: 74.09703 N 108.41523 W Water depth = 536 m

20.3.5 Leg 3c – ArcticNet – 22 October to 31 October 2010 – Northern Labrador fjords

Nachvak Fiord Multibeam Collection

Figure 20.30. Seabed mapping coverage acquired during Leg 3c in Nachvak Fiord. The red and purple lines represent barge and CCGS *Amundsen* vessel navigation in surveyed areas, respectively.

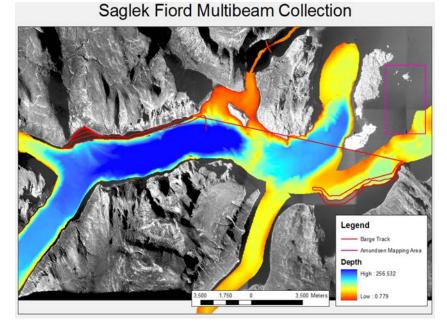


Figure 20.31. Seabed mapping coverage acquired during Leg 3c in Saglek Fiord. The red and purple lines represent barge and *Amundsen* vessel navigation in surveyed areas, respectively.

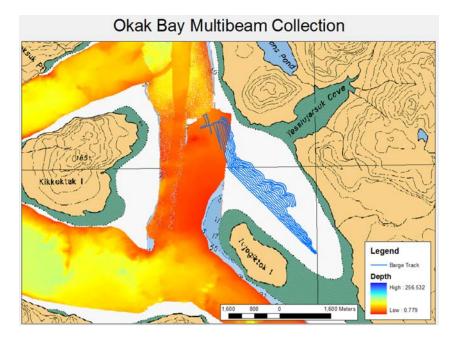


Figure 20.32. Seabed mapping coverage acquired during Leg 3c in Okak Bay. The blue lines represent barge vessel navigation in surveyed areas.

Figure 20.33. Seabed mapping coverage acquired during Leg 3c in Anaktalak Bay. The red lines represent barge vessel navigation in surveyed areas.

20.4 Comments and recommendations

The EM302 had a few problems during Leg 1. When passing through the wash of a ship, or wash from the *Amundsen*'s propellers passed under the multibeam transducer, the EM302 would lose bottom tracking. The SIS program would show the navigation as being correct but the system was not pinging. After unravelling a file, it was determined that the navigation telegrams were fine, but the bathy telegrams were empty. The solution to this problem at first was a hard reboot of the EM302 transceiver and after it was determined that setting tighter range gates or forcing the depth worked to get back the bottom detection. This problem is currently being addressed by Kongsberg.

The EM302 had no problems during Leg 2a. The system performed as normal and was not powered down for any reason. The problems encountered on Leg 1 were not observed on Leg 2a.

21 Remotely Operated Vehicle (ROV) operations – Leg 2b

Project leaders: Steve Blasco¹ (Steve.Blasco@NRCan-RNCan.gc.ca) and BP (Leg 2b)

Cruise participant Leg 2b: lan Murdock²

 ¹ Geological Survey of Canada (GSC-Atlantic), Bedford Institute of Oceanography, 1 Challenger Dr., Box 1006, Dartmouth, NS, B2Y 4A2, Canada.
 ² ROPOS Canadian Scientific Submersible Facility (CSSF), 110-9865 West Saanich Rd, North Saanich, BC, V8L 5Y8, Canada.

21.1 Introduction

The CGSS *Amundsen* is equipped with an inspection class Super Mohawk remotelyoperated vehicle (ROV) that has undergone some recent modifications and improvements. ROV dive targets during Leg 2b were an expulsion feature (or mud volcano) and an area of observed venting gas. Sampling with the ROV was planned for the expulsion feature and venting site to determine the composition of venting gases. The sampling involved video surveying and SIP sampling as well as push core sampling at the gas-venting site.

21.2 Methodology

21.2.1 ROV preparation

An extensive amount of time was dedicated to preparation of the ROV for diving, including the installation of new LED lights and a new Bowtech Surveyor colour camera. The surveyor camera required a machined adapter for the bulkhead to fit safely on the pan and allow for tilting. The flexible drive train on the TMS was also repaired and the console remote primary board was replaced. Other minor issues were dealt with during the first week as well.

21.2.2 Navigation

Navigation during this leg was contracted out through BP who installed a Sonardyne Ranger USBL system rented from Ashtead Technology. This is a familiar system and operated reasonably well in the conditions encountered. There was an issue with the wheelhouse's computer not displaying the correct Workboat navigation data. This is believed to have been caused by an inexperienced end-user making accidental changes to offset parameters. The Sonardyne and Workboat systems worked well together without any observed incongruities.

21.2.3 Science equipment

The ROV was equipped with the following instruments for the dive:

- Two Five-Function Manipulators
- Two acrylic cores tubes, Two stainless steel core tubes
- Two pair of SIP samplers
- Tool basket (milk crates)
- Lifting bridle (on TMS)
- Manipulator Knife

21.2.4 Dive operations

One dive was accomplished this trip with limited success. Extensive operations with the ROV were severely curtailed due to the search and rescue operations. The one dive that was carried out was time-limited. A preliminary test dive was conducted prior, and involved a 1m deep dip into the moonpool without the TMS. A second dive was planned and organized for the morning of the 20 September but weather conditions prevented it.

Deployment and recovery of the ROV system is done in a systematic way in a very small space. The *Amundsen*'s crew and science technicians demonstrated excellent coordinated efforts which greatly facilitated the ROV operations, especially considering the very low frequency of use of the ROV. Because of the length of time between deployments (up to one year or more), a period of familiarization with the equipment and operation processes before each dive is required.

Ship positioning was difficult during the dive and, as with the deployment and recovery, more regular use of the ROV system would greatly improve operations and performance. The future involvement of the dynamic positioning system (DP) would greatly improve the ship handling and the safety and ease of ROV operations.

Further training of ROV operators and technicians is still required to operate the ROV in a secure and efficient manner. It is very difficult to gain useful and detailed knowledge with the limited number of dives the CCGS *Amundsen* ROV does in a year. Other training aids, such as a simulator or offshore experience with a different ROV, would help the development of skills and expertise for the personnel involved. To this end, it is recommended that the ROV be used more regularly.

Limited science work was attempted during this dive. The priority was to observe and collect samples of any observed venting gas. As no actual venting was noted, no samples could be collected. The SIP samplers, placed in a tool basket for transport to and from the bottom, were ready to use. Push cores (small tubes for taking sediment samples) were housed in the tool basket with the SIPs. Two acrylic and two stainless steel push cores were fabricated before the first dive. This was the first attempt to take cores with the *Amundsen*'s

ROV. Without finding any venting or material of interest to sample, only one core was taken during the dive, however this core was lost during recovery.

Dive	Location	Position	Duration	Depth	Task
27	BP10-PC43	N 70 47.5487	5:30	55m	Visual survey of pockmarks, push
	Beaufort Sea	W 134 33.1916			core, search for gas venting

Table 21.1. Summary of ROV dive #27.

ROV Dive 27 scientific log

Site: BP10_PC43 Mud Volcano CCGS *Amundsen* 2010 Leg 2b BP – ArcticNet Collaboration 16-17 September 2010 UTC

Chief Pilot: I. Murdock Co-pilots: L. Michaud, P. Massot Observers: J. Dingler, G. De Pascale, K. Blasco, M. Lowings

Notes: PC43 is a PLF site, where gas venting was observed from this year's multibeam water column data. Times recorded in the dive log are in UTC.

- 23:45 (17:45 local), ROV cage in moonpool P. Massot piloting
- 23:50 Cage suspended at 20m
- 00:02 Cage suspended at 30m, no communication between vessel and ROV no position
- 00:09 ROV leaves cage at 30m, still no position
- 00:12 ROV on bottom at 58m, still no position Brittle stars
- 00:20 Communication working, now have position ROV sitting on bottom Mud-clay, easily suspended in water column
- 00:28 Milk crate with sample tools placed on bottom at 55m and released Start transiting
- 00:30 Heading towards intersection of north-south and east-west transect lines Small depression in bottom Brittle stars, mud at 56m
- 00:31 Lots of brittle stars 56m Corals? On bottom Stirring up bottom sediments, poor visibility
- 00:34 Waiting for particulate matter in water to dissipate
- 00:36 Heading down-slope Fluorescent, translucent pelagic organism
- 00:37 Large crater (vent?) with low-rise berm surrounding at 49m Brittle stars around vent on seabed and on top of berm No venting fluid visible
- 00:42 Looking into crater

Star inside crater, with some other material? Living?

- 00:44 Tracking another void area on radar possibly another crater
- 00:45 Small ridges on bottom

Crab

- 00:46 Large mud ridges at 47m Seabed sloping to left
- 00:48 At 46m, seabed sloping downwards
- 00:49Pile of blocky, clay-like material on-bottom at 47m
 - Looks like something dropped from above? No box cores taken at this site previously.
- 00:54 Sitting on bottom at clay pile site
- 00:56 Transiting
- 00:57 Switch pilots: L. Michaud piloting
- 00:58 Steep slope off to left Basket star
- 00:59 Sloped, ridges on bottom
- 01:01 Lumpy, mottled bottom Basket stars
- 01:04 On eastern transect line Start moving northwards and back west to survey lines intersection point
- 01:05 Blocky pile of sediment
- 01:07 Depression in seabed
- 01:10 Looking into crater worm?
- 01:12 Transiting, more ridges
- 01:13 Moving along large slope
- 01:14 Having difficulty maintaining position of ship and ROV
- 01:18 Bringing up cage by 10m moving into shallower water, at 40m
- 01:19 Sloped bottom, ridges Basket star
- 01:23 At 46m, working back west to transect line intersection, waiting for ship to move west Sitting on bottom, being dragged by ship
- 01:30 Ship positioning Bottom stirred up, no visibility
- 01:39 Transiting west towards milk crate
- 01:41 Lumps on bottom
- 01:43 Crater at 55m Small holes surrounding crater Brittle stars sitting on edger of crater, something inside?
- 01:59 Basket star
- 02:02 Crossing over ROV track in bottom
- 02:03 Large starfish
- 02:04 Lots of basket stars
- 02:07 Large ridge
 - Back at sample crate turned on side, covered in mud
- 02:20 At 43m, having difficulty maintaining position of ship and ROV, poor visibility, were not able to pick up crate
- 02:45 Having difficulty maintaining position of ship and ROV
- 02:47 At cage waiting for ship to reposition
- 02:54 Back on seabed, waiting for ship to reposition further west I. Murdoch piloting
- 03:03 Ship has repositioned above survey site, ROV moving back towards sample crate Lots of suspended particulate matter in water

- 03:06 Back at sample crate
- 03:07 Pick up sample crate, transiting back to first crater site
- 03:21 Pascal piloting At a crater
- 03:23 Place crate on bottom at 48m Looking for original crater
- 03:37 Back at sample crate
- 03:40 Poor visibility, water filled with suspended bottom sediments
- 03:46 Cannot find crater Will take push core at current location, flat seabed
- 03:52 Poor visibility, at 49m
- 04:08 Taking push core
- 04:11 Retrieving push core
- 04:20 Placing push core in crate Rope caught in thruster Cut rope
- 04:25 Ian takes over piloting from Pascal for ROV retrieval Lost crate in low visibility, searching
- 04:47 Found sample crate
- 04:57 Crate picked up, transiting to cage
- 05:05 ROV in cage.

Notes: No active seabed venting or bacterial mats were noted during this dive.

21.3 System performance and recommendations

Several problems were noted with the ROV system during the leg. The single most difficult problem was the intermittent loss of telemetry (communications, sonar, and colour camera video) at depth. This problem did not present itself at the surface and no definite source of the problem was found. This has been a recurring issue with the CCGS *Amundsen* ROV system and only occurs while the system is in the water. Trouble shooting this problem would require allocated time trying to reproduce the failure while the ROV is diving.

The new LED lights were repositioned since the last dive, to the location where the sonar head and beacon normally reside. The new LED lights are considerably brighter than the incandescent light that they replaced, so locating them as far away as possible from the cameras is a high priority. This in turn meant moving the sonar and navigation beacon to the front center of the foam pack. It may be possible to set up one of the remaining hydraulic cylinders to move the lights up and away from the frame of the vehicle, however, this was not done because piloting with the lights exposed in this manner requires absolute control over the tether and ROV positioning.

Increasing the height of the cage and adding a tool skid to the bottom of the ROV would be a significant improvement to the system. An increase in cage height would mean modifying

the existing lifting equipment. The current sheave that holds the umbilical (the armoured cable that suspends the TMS) would have to be changed. There is enough room to raise the TMS at least 15 inches. The work would require welding to the structural beam in the moonpool room. It might also mean changing the existing gantry winch and small 120VAC winch. Adding a tool skid to the vehicle would allow for collection of samples, carrying of a payload (it currently cannot), and would improve the video quality, all of which would impact the usefulness and productivity of the ROV.

The sonar is an important tool for the ROV and when functioning properly, allows underwater objects to be detected at great distances. Performance of the sonar on the *Amundsen*'s ROV is relatively poor, for unknown reasons. It is suggested that the unit be sent to the manufacturer for evaluation.

The vehicle currently has a very large fibre optic gyro (FOG). In the last year, manufacturers have committed to providing accurate heading near the north pole with newer, smaller FOG models. Replacing the current FOG with a newer model would free up some desperately needed space on the vehicle.

Scaling lasers, which can be used to measure the size of objects within the video frame, would be an inexpensive and useful addition to the ROV especially in terms of using the video for quantitative scientific analysis purposes.

The new Bowtech Surveyor colour camera has been an excellent addition to the vehicle. Working in remote regions greatly extends the time it would take to have a camera replaced or repaired, therefore it would be beneficial to have a spare camera onboard as well as a more conventional video recording system. A DVD recorder combined with a pal converter would also provide a more reliable and accessible medium for video recording, with relatively little expense.

A final long term consideration for the addition of high bandwidth devices such as an HD camera or multibeam sonar would be addition of another fibre optic pathway. There are currently only two fibre optic pathways through the surface winch which are both used by the telemetry system.

22 Seabed geological mapping and geotechnical sampling – Legs 2b, 3a and 3b

ArcticNet Phase 2 – Project titled *The Canadian Arctic Seabed: Navigation and Resource Mapping*. <u>http://www.arcticnet.ulaval.ca/pdf/phase2/hugues_clarke_seabed_mapping.pdf</u>.

Project leaders: Steve Blasco¹ (<u>Steve.Blasco@NRCan-RNCan.gc.ca</u>) and BP (Legs 2b and 3a)

Cruise participants Leg 2b: Steve Blasco¹, Kevin MacKillop¹, Kate Jarrett¹, Greg Middleton¹, Robbie Bennett¹, Justin Buis¹, Carrie Breton¹ and Katie Blasco¹ in collaboration with the Ocean Mapping Group (UNB)²

Cruise participants Legs 3a & 3b: Eric Patton¹

¹ Geological Survey of Canada (GSC-Atlantic), Bedford Institute of Oceanography, 1 Challenger Drive, Box 1006, Dartmouth, NS, B2Y 4A2, Canada.

² University of New Brunswick, Ocean Mapping Group, Department of Geodesy and Geomatics Engineering, P.O. Box 4400, Fredericton, NB, E3B 5A3, Canada.

22.1 Introduction

Recent hydrocarbon exploration activity has shifted from the inner shelf to outer shelf/upper slope region of the Beaufort Sea. In this region, very little data exists concerning the type and distribution of seabed geohazards which may have an impact on exploration drilling operations.

During Leg 2b, in collaboration with BP and the University of New Brunswick, the Geological Survey of Canada (Atlantic) conducted a data acquisition program aboard the CCGS *Amundsen* to investigate the extent and dynamics of seabed geohazards. Knowledge gained will feed National Energy Board regulatory processes, industry engineering design scenarios and environmental impact assessment processes.

During Leg 3a/3b, in collaboration with BP and the University of New Brunswick, the GSCA conducted a data acquisition program to 1) map the types and distribution of seabed geohazards which may affect oil exploration drilling operations in the Beaufort Sea; and 2) on an opportunistic basis, map in greater detail the geological features of interest noted on previous cruises, during the transit through the Northwest Passage.

22.2 Methodology – Study areas and equipment

The study area during Leg 2b was located on the outer shelf/upper slope region of the Beaufort Sea (Figure 22.1).

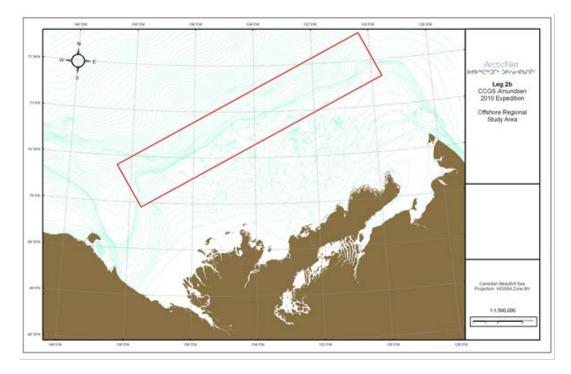


Figure 22.1. Beaufort Shelf Outer Shelf/Upper Slope Regional Study Area where geotechnical sampling was conducted during Leg 2b.

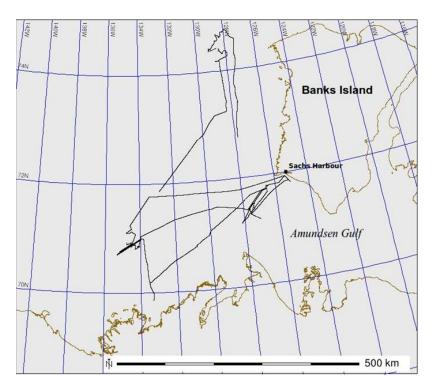


Figure 22.2. CCGS Amundsen ship track lines surveyed during Leg 3a, 23 September to 07 October.

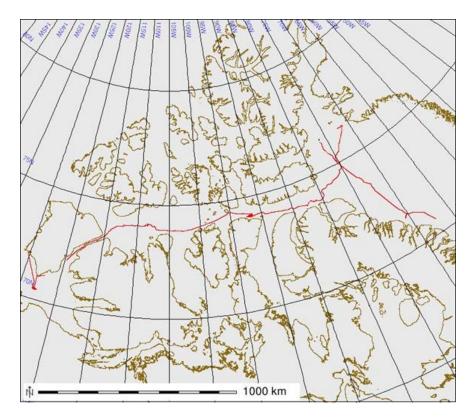


Figure 22.3. CCGS Amundsen ship track lines surveyed during Leg 3b, 07 October to 19 October.

22.2.1 Mapping

Specifications and operating parameters for the *Amundsen*'s repertoire of seabed mapping equipment listed below can be found in Section 20.

- Kongsberg EM302 1° x 2° 30 kHz multibeam echosounder flush-mounted behind ice windows
- Knudsen K320R sub-bottom profiler, 16 element hull-mounted 3.5 kHz (12 ms chirp, 2-7 kHz)
- Applanix POS/MV 320 motion and orientation sensor
- C&C Technologies CNAV GPS
- AML Smart Probe surface sound speed probe
- Honeywell Precision Barometer
- Moving Vessel Profiler: MVP 300 under-way profiler
- CTD operated by INRS (Institut national de la recherche scientifique) salinity and temperature measurements were used by the mapping team to calculate water velocities

22.2.2 Piston coring

The piston corer used on board the *Amundsen* was constructed based on blueprints of the Atlantic Geoscience Centre (AGC) Long Coring Facility (LCF) supplied by the GSCA. The LCF system typically obtains a core sample with an ID of 99.2mm. The 10 ft (305cm) long barrels have an OD of 12.71 cm, wall thickness of 0.95325cm and ID of 10.8035cm. The core head is 1.5m long, 0.6m in diameter and weighs 1800lbs. A 2200lb backup core head was available, but not utilized. The core head is connected to the barrel string using a "half" coupling. The length of the first barrel was 304cm and the second and third barrels were 305cm long. A maximum of 3 barrels can comprise the barrel string on the *Amundsen* due to the deck layout, and are attached to each other with external couplings. Each coupling has 16 holes drilled and tapped for ³/₄" set screws which mate to the grooves on the core barrels.

Core liner, manufactured to meet GSCA specifications, is made of cellulose acetate butyrate (CAB) plastic and contains the recovered sediment. The liner has an I.D. of 9.923cm and an O.D. of 10.523cm. The liner is inserted inside the core barrels and each length is held together with clear tape.

A split piston with one O-ring and a variable orifice size is used to prevent the corer from plugging and results in greater sediment penetration and reduced sample distortion. The split piston is pinned to an Electroline eye socket termination assembly fitting on the end of the 3/4 "cable that is inserted through the core head. A core cutter (I.D. 10.008cm) houses the core catcher and serves as a replaceable nose cone for the corer. The 10-degree taper on the outside guides the cutter into the sediment. The inside bore channels the recovered sediment into the liner where it is retained during recovery. The cutter is fit over the end of the last core barrel and secured with 8 set screws.

The Trigger Weight Core (TWC) has a dual function. It acts as a trip weight and is used in conjunction with the trip arm to set the piston corer up for a predetermined free fall before sediment penetration. The corer and cable is shackled to the end of the trip arm. In addition, the TWC acts as a gravity core which supplements the data obtained from the piston corer by collecting an undisturbed surface sample. The TWC consists of one barrel, coupling, nose cone, catcher, liner, one-way valve and weight stand. Additional lead weights (donut shaped) may be added around the weight stand. The overall weight of the pilot corer can vary but it is approximately 300 to 400 lbs (140 to 180 kg). The *Amundsen* TWC barrel was 213cm long and weighed 250lbs.

22.2.3 Box coring

The Box core used was a GSCA system based on a Benthos Box corer design. The total weight of the system is 1500lbs.The box corer consists of a 50cm x 50cm x 60cm box and

provides an undisturbed sample of the seafloor. The box corer was deployed and retrieved using the 500 horsepower Hawboldt winch and the large block on the A- frame.

22.2.4 Sub-Atlantic Super Mohawk ROV

The Sub-Atlantic Super Mohawk is an electrically powered remotely operated vehicle (ROV) with accompanying TMS (Tether management system) owned and operated by Université Laval with support from the Canadian Scientific Submersible Facility (CSSF). Specifications are as follows (after Sub-Atlantic, 2009 and CSSF pers. comm.):

- Depth rating of 2000msw
- Propulsion 6 off CTE-02 440 VAC Thrusters
- Forward thrust 117 kgf
- Lateral thrust 88 kgf
- Vertical thrust 78 kgf
- Tritech Sonar
- Bowtech Colour Zoom Camera
- Tritech Low light Mono Camera
- 2 x 5 Function Hydrolek Manipulators
- Lighting: 2 x 150 Watt LEDs and 1 x 250 Watt Incandescent
- OceanTools MiniFOG Gyrocompass

Further information on ROV Operations can be found at p.240, Remotely Operated Vehicle (ROV) operations – Leg 2b.

22.2.5 Facilities

The following areas of the vessel were used by the Seabed Mapping group during Leg 2b of the 2010 expedition:

- Foredeck coring container used for coring equipment and tool storage, core preparation
- Foredeck A-frame and crane for piston and box core deployment
- Geotechnical:
 - Chemistry aft laboratory (Level 500) 2 rooms
 - Sealing station cutting down cores and waxing
 - Torvane measurements and constant volume sampling
- Aft refrigerated core storage container near helideck
- 1/2 of acquisition room (202) for UNB/GSC use
 - UNB: several laptop and desktop computers plus acquisition hardware
 GSC: two laptop computers
- HP Designjet T1100 Plotter located in acquisition room
- Storage space for empty core liners

22.3 Methodology – Procedures

22.3.1 Positioning

Multibeam and sub-bottom positioning was done by UNB (see 20).

Positioning for piston core, trigger core, boxcore, and ROV was achieved using a RangerPro USBL system correlated with Fugro's Starfix GPS navigation package (see Fugro cruise report for further details). A USBL calibration beacon was deployed before the start of the coring and ROV work to calibrate the position of the on-ship USBL transducer. The transducer was lowered to a fixed position prior to each core and ROV dive from the acoustic well on the 600 level (Figure 22.4). The calibration beacon deployment location was at: 71°04'23.58265" N, 135°43'09.37982" W (NAD83), at a water depth of 876m.

Figure 22.4. USBL transducer deployed in the acoustic well.

22.3.2 Seabed mapping

Leg 2a - ArcticNet/BP - 12 August to 26 August 2010 - Beaufort Sea

Collection and processing of the multibeam and sub-bottom data was carried out by the UNB team working 12 hour shifts in acquisition room 202. UNB made available to the GSC daily geotifs of the multibeam mapping to date, as run line navigation files, raw sub-bottom seg-y files, and pdf images of both multibeam and sub-bottom lines along requested regional areas of interest.

Water column imagery was collected for all transects, however, was only processed by UNB when there was a specific request, for example to locate seabed gas seepages. Onboard preliminary regional analysis of bottom features using ArcMap and GSCA Segy-Jp2 (B. Courtney) in-house seismic viewing software was carried out by C. Breton, S. Blasco and K. Blasco.

Leg 3a - ArcticNet/BP - 23 September to 07 October 2010 - Beaufort Sea

Leg 3b – ArcticNet – 07 October to 22 October 2010 – Canadian Arctic Archipelago and Baffin Bay

The multibeam echosounder and Knudsen 3.5kHz sub-bottom data collection was performed by UNB (see report in Section 20). Collection and processing of the multibeam and sub-bottom data was carried out by the UNB team working 12 hour shifts in acquisition room 202. On a daily basis, UNB made available to the GSC the run line navigation files in ESRI Shapefile format, raw 3.5kHz sub-bottom SEG-Y files, processed and cleaned multibeam bathymetry data in the UNB Ocean Mapping Group's .merged format, water column imagery, as well as the multibeam bathymetry raw data.

The processed and cleaned .merged files were imported into MB-System 5.1.3, an opensource, free, swath sonar bathymetry processing suite, and ESRI Arc grids were generated for each day's coverage. These grids were then imported into GRASS GIS 6.5 for inspection, visualization, and survey planning. The multibeam bathymetry grids were colored according to depth using a rainbow color table, and artificially sun-illuminated at 10x to enhance the visibility of seabed topography.

Water column imagery was collected in all areas that multibeam bathymetry was obtained, however, was only processed by UNB when there was a specific request. Onboard preliminary regional analysis of sea bottom features was carried out using ArcMap 9.3, GRASS GIS 6.5, and GSCA Segy-Jp2 (by B. Courtney), an in-house seismic viewing software.

22.3.3 Piston coring (Leg 2b)

The GSC team was responsible for the set-up, collection and processing of the piston, trigger, box and push cores during Leg 2b (Figure 22.5).

Figure 22.5. Piston coring operations (Photo: C. Breton)

The configuration of the *Amundsen*'s foredeck only allowed for the deployment of the piston corer rigged with three barrels. Each core barrel was supported by a set of hydraulic jacks during assembly and disassembly of the coring system between the A-frame and the port side crane. Once rigged, the corer was raised and rotated, using the port side crane, and lain across the vessel with the base of the corer hanging over the side under the A-frame. A 5/8" cable was attached to the piston core wire and the TWC trip arm was attached to the core head.

The USBL beacon was attached to the 5/8" winch cable above the core head. The crane was used to lift the core to hang vertically below the A-frame. The crane cable was then detached from the core head. The TWC was raised using the capstan on the 500 horsepower Hawboldt winch and the small block on the A-frame. It was then lowered over the side and attached to the trip arm. The coring system was then lowered using the Hawboldt winch and the large block on the A-frame. The reverse procedure was used for retrieval of the TWC and Piston core.

On board processing and subsampling - Piston and TWC cores

All GSCA piston and TWC cores were processed according to standard GSCA core procedures (refer to GSC Open File #1044). All cores were identified alphabetically by section at the time of dismantling individual core barrels from the bottom to the top, commencing with the bottom-most core barrel and proceeding to the uppermost barrel containing sediment. Each 305cm length of liner was extruded from the barrel and cut in half on the foredeck, using a GSCA pipe cutter. The sediment in the liner was cut using a wire saw and the section ends were carefully capped to minimise disturbance to the sediment surface. The top end cap was labelled with the section label and top. The base of the core is designated with the letter A and the top of the base section is designated as B. The base section is AB. All sections were carried to the aft Chemistry Lab and stored horizontally on the bench. Each core, starting with the base section AB, was processed using the following procedure. The core liner was labelled with an up arrow, cruise number, station number, section label and the top and base of the section were labelled with the appropriate letter. End caps were removed if the sediment was not too fluid, and the section length was recorded.

Undrained shear strength measurements and constant volume samples were taken at the top and base of each section where possible. Inert packing was placed in the voids created by the constant volume sampling, and the ends of each core section were re-capped, taped and waxed. The sealed core sections were stored upright in the refrigerated reefer container and maintained at 4°C. All core cutters and catchers were measured, labelled, placed in split liners, waxed and stored upright in buckets in the refrigerated container. All extruded core sections due to sediment expansion or core processing methods were likewise labeled and stored. All samples and subsamples were catalogued and their location information within the container was recorded in an excel spreadsheet.

Station location information, core section lengths, extruded pieces and cutter/catcher lengths, sediment description and core performance information were documented on deck sheets on the foredeck during coring operations. This data was later input into the ED AT SEA laptop. The ED AT SEA data was verified and backed up prior to upload into the GSC ORACLE Expedition Database (ED).

Physical properties measurements

Undrained torvane shear strength measurements and constant volume samples were taken at the ends of each section of the piston core if the condition of the sediment allowed. The constant volume sampler was inserted into the end of the section, the undrained shear strength measurement was taken and then the constant volume sampler was removed.

The undrained shear strength was measured using a hand-held Hoskin Scientific Torvane. The dial on the Torvane was zeroed, the fins on the vane were completely inserted into the sediment. The dial was rotated at a constant rate until the sediment failed (Figure 22.6 left). The Torvane dial reading ranges from 0 to 1 and reports values in kg-force/cm² units (1 kg/cm² = 98.07 kPa). The Torvane has three adapter vanes as described below:

Figure 22.6. Left: Taking a Torvane measurement on one of the cores. Right: Inserting a constant volume sampler. (Photos: K. Jarrett)

Constant volume samples for bulk density and water content determinations were taken by inserting stainless steel samplers of a known volume. Prior to insertion, the sampler was lightly sprayed with Pam cooking oil and gently wiped with a small Kimwipe tissue. The bevelled edge of the sampler was placed on the flat sediment surface and carefully inserted into the sediment at a constant rate using two flat headed spatulas (Figure 22.6 right). The sampler is inserted at a constant rate to minimize compression of the sediment within the sampler. The sampler was then carefully removed and the sediment was trimmed using a wire saw and extruded into a pre-weighed 1 oz screw-top glass bottle. The bottle cap was then labelled and sealed using electrical tape to prevent the lid from loosening. The samples will be weighed, dried at 105°C for 24 hours and re-weighed to determine bulk density, dry density and water content according to ASTM Test Method D 2216-90 (revision of 2216-63, 2216-80) Standard method for laboratory determination of water (moisture) content of soil and rock. All relevant information for the Torvane measurements and constant volume samples was recorded on data sheets and input into excel spreadsheets and were incorporated into the GSCA physical property database.

22.3.4 Box coring (Leg 2b)

The box corer was deployed and retrieved using 500 horsepower Hawboldt winch through the A-frame (Figure 22.7). Upon retrieval, the box core frame was removed and water was drained from the top of the box. The box was transferred to the starboard side using a trolley. Photographs were taken of the sediment surface, field vane measurements of shear strength were made at 10cm intervals and a surface sample of approximately 100cc was taken for micropaleontology. The T-bar frame was attached to the box and the two T-bar tests for the measurement of tip resistance and sleeve friction were made. Upon completion of the T-bar test the box was transferred to portside where a 50cm length of CAB plastic core liner (push core) was slowly inserted using a vacuum backpressure technique to prevent sample compression. The push cores were taken back to the aft Chemistry Lab and stored vertically. All GSCA push cores were processed according to standard GSC Atlantic core procedures (see above).

Figure 22.7. Box core deployment and sub-sampling (Photos: C. Breton and J.Buis).

A total of 49 piston cores (including 4 gravity cores) and 22 box cores were collected by the GSC in collaboration with Fugro for BP. All of the GSC cores will be split, processed (following standard procedures) and curated at the GSCA core repository located at the Bedford Institute of Oceanography, Dartmouth, Nova Scotia.

GSC Station #	BP Station #	Long (WGS84)	Lat (WGS84)	Water Depth (m) (from multibeam)
2010804 0001	BP10-PC12	-135.5627147	70.79298844	419.85
2010804 0002	BP10-PC39	-135.5269059	70.99139817	676.48
2010804 0003	BP10-PC34	-135.3705599	70.98606934	633.64
2010804 0004	BP10-PC06	-135.4536459	71.00590843	682.59
2010804 0005	BP10_BX14	-135.2531465	70.99032606	595.77
2010804 0006	BP10-PC22	-135.5801145	71.14494908	953.77
2010804 0007	BP10-PC29	-134.8846344	70.95127102	326.86
2010804 0008	BP10-PC31	-134.8045376	71.02757260	432.63
2010804 0009	BP10-PC40	-134.7583369	70.99099284	347.89
2010804 0010	BP10_BX12	-135.0341533	71.02141373	554.04
2010804 0011	BP10-PC32	-134.3779523	71.01566181	338.04
2010804 0012	BP10-PC14	-134.2057024	70.92305328	101.13
2010804 0013	BP10-PC28	-134.2453143	70.89795506	83
2010804 0014	GSC10_BX01	-134.6841664	70.85579650	80.22
2010804 0015	BP10_BX06	-134.8933962	70.86600955	112.71
2010804 0016	BP10_BX07	-134.8194436	70.77644577	73.25
2010804 0017	BP10_BX08	-135.1785511	70.81565675	160.3
2010804 0018	BP10-PC26	-134.9946183	70.85939990	104.83
2010804 0019	GSC10_PC01	-134.6850551	70.85550886	80.22
2010804 0020	BP10-PC09	-134.4407224	70.85936547	78.41
2010804 0021	BP10-PC08	-134.7767415	70.89965217	141.45
2010804 0022	BP10-PC30	-134.5524565	70.92208138	94.09
2010804 0023	BP10-PC41	-134.6735224	70.95592836	239.18
2010804 0024	GSC10_PC06	-134.8080860	70.91468747	182.39
2010804 0025	GSC10_BX06	-134.8080220	70.91470713	182.83
2010804 0026	BP10_BX09	-134.3787852	70.92556788	110.73
2010804 0027	BP10_BX13	-134.7173777	70.97422779	286.38
2010804 0028	BP10-PC18	-135.1813675	70.76953092	77.12
2010804 0029	BP10-PC44	-134.6969160	70.65591206	58.2
2010804 0030	GSC10_BX05	-134.8376495	70.92868678	254.79
2010804 0031	BP10_BX16	-134.8239756	71.03254555	454.78
2010804 0032	BP10_BX15	-134.6367544	71.08467603	462.12
2010804 0033	BP10-PC42	-134.3599326	70.82552706	70.14
2010804 0034	BP10-PC27	-134.4286994	70.78297881	68.25
2010804 0035	BP10-PC43	-134.5532180	70.79247883	61.37
2010804 0036	GSC10_PC05	-134.8377028	70.92857825	254.62
2010804 0037	BP10-PC36	-135.1188736	70.95007970	470.78
2010804 0038	BP10-PC37	-135.1655174	70.93722071	488.9
2010804 0039	BP10-PC01	-135.2578348	70.91094039	484.73
2010804 0040	BP10_BX01	-135.5504732	71.02626556	774.12
2010804 0041	BP10_BX02	-135.5853720	71.02983944	834.18
2010804 0042	BP10-PC23	-135.5676420	71.01001340	765.79
2010804 0043	BP10-PC21	-135.5478484	71.00054269	705.61
2010804 0044	GSC10_BX04	-135.1243262	71.06354167	630.39
2010804 0045	BP10_BX10	-135.2889076	71.04284678	675.34
2010804 0046	BP10-PC25	-134.1371980	70.96531219	194.38
2010804 0047	BP10-PC10	-133.7869897	70.78748534	76.04
2010804 0048	BP10-PC13	-133.3536892	70.67101790	52.2
2010804 0049	BP10-PC16	-132.6428604	70.67942437	24.3
2010804 0050	BP10-PC17	-132.5926613	70.78422761	34.8
2010804 0051	BP10-PC07	-132.0910308	70.58528838	43.2

Table 22.1. Piston and Box Core locations (coordinates converted from as-taken NAD83) for geotechnical sampling conducted during Leg 2b.

GSC Station #	BP Station #	Long (WGS84)	Lat (WGS84)	Water Depth (m) (from multibeam)
2010804 0052	BP10-PC11	-133.2272123	70.80672774	27.2
2010804 0053	BP10-PC15	-132.6894217	71.01678608	67.4
2010804 0054	BP10-PC33	-135.1678798	71.01471317	604.28
2010804 0055	GSC10_BX02	-135.3970907	71.19014840	994.38
2010804 0056	GSC10_PC02	-135.3970801	71.19005542	993.9
2010804 0057	BP10-PC02	-135.0988763	71.11673154	684.66
2010804 0058	BP10-PC35	-135.2842185	70.98183857	601.75
2010804 0059	BP10-PC38	-135.7722023	71.04869771	984.23
2010804 0060	BP10_BX03	-135.6330151	71.03937220	882.61
2010804 0061	BP10_BX04	-135.6706464	71.05677878	852.01
2010804 0062	BP10-PC24	-135.5125477	71.14143319	908.72
2010804 0063	BP10-PC19	-135.8980464	71.17299723	1069.85
2010804 0064	BP10-PC20	-135.9174000	71.00685300	911.28
2010804 0065	BP10_BX05	-135.7495750	71.03895056	926.74
2010804 0066	BP10_PC45	-135.2286747	70.99140316	599.3
2010804 0067	BP10_BX11	-134.9240354	71.08254115	557.73
2010804 0068	BP10_PC46	-134.5512616	70.98783244	256.47
2010804 0069	GSC10_PC04	-135.1238733	71.06372028	630.81
2010804 0070	GSC10_PC03	-135.3537808	71.17000021	879.42
2010804 0071	GSC10_BX03	-135.3537340	71.16991243	879.38

22.3.5 ROV deployment (Leg 2b)

ROV deployment, navigation, and piloting was conducted by I. Murdock (CSSF), L. Michaud and P. Massot (U. Laval technicians) and the ship's crew. The ROV was deployed on the 600 level of the *Amundsen* from the moon pool (Figure 22.8) and operations and navigation were carried out in the adjacent ROV control room (678, Figure 22.9) with communication to the bridge and top level acquisition and mapping teams as needed.

Figure 22.8. The ROV SuperMohawk next to the moonpool where it is deployed (Photo: C. Breton).

The ROV was equipped with a forward-facing sonar, two manipulator arms, two frontmounted cameras – one black and white, and one colour. Only one of the camera feeds could be recorded at any given time. The ROV dive was viewed real-time and documented by the GSC for use as multibeam calibration on seabed features, sediment identification, and future benthic habitat analysis by partners at NRCan, and Museum of Nature. A copy of the dive was stored on external hard drive.

Figure 22.9. The ROV control room (Photo: C. Breton).

One dive was conducted on the Beaufort Shelf on top of a PLF (fluid expulsion feature) during Leg 2b in collaboration with BP. The video footage will be used by the GSC to evaluate sea-bottom geology, calibrate multibeam backscatter data, and evaluate benthic communities.

Detailed dive log from launch to recovery and further details on ROV Dive Operations can be found in Section 21. Water depths ranged from 50m to 60m during the dive. There was a high level of organic particulate matter in the water column, making visibility difficult. Bottom sediments were very fine, easily disturbed muds. Seafloor life consisted of brittle stars, starfish, basket stars, crabs and some corals. No evidence of bacterial mats was immediately visible. Several craters were seen on the bottom, some with distinct berms. No venting gas was noted.

22.4 Preliminary results

22.4.1 Leg 2b - ArcticNet/BP - 26 August to 23 September 2010 - Beaufort Sea

Total approximate line kilometers of seabed multibeam and sub-bottom data collected by UNB for Leg 2b (up to 21 September) were 8946.396km.

The majority of the data was collected along the Beaufort Shelf – Beaufort Slope transition region between WGS84 70° 39' N and 71° 17' N and 136° 26' W and 132° 34' W in collaboration with BP's mapping group. Opportunistic regional lines were also collected through Amundsen Gulf.

Maximum penetration for the sub-bottom profiler was up to 100m in soft sediments. Data collection speed varied between 7 knots and 14 knots, depending on the mapping region and survey resolution requirements for the sub-bottom and multibeam.

Regional Geology

Beyond the 400m contour the surface sediment appears to be largely undisturbed, except for a slump feature located to the northeast of the survey area. Figure 22.10 shows a northwesterly trending survey line transecting the Beaufort Shelf to Slope transition with GSC piston and box core locations marked along the line.

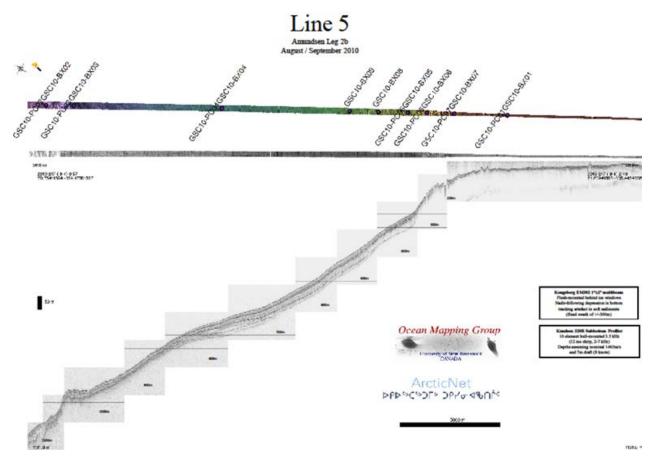


Figure 22.10. Raw 3.5kHz sub-bottom record showing GSC core locations for Leg 2b in the BP lease block.

Ice scours

Several ice scours, determined to be relict events, are visible in water depths greater than 60 metres (Figure 22.11 and Figure 22.12). Scouring processes appear to be constrained to water depths shoaler than 400 metres.

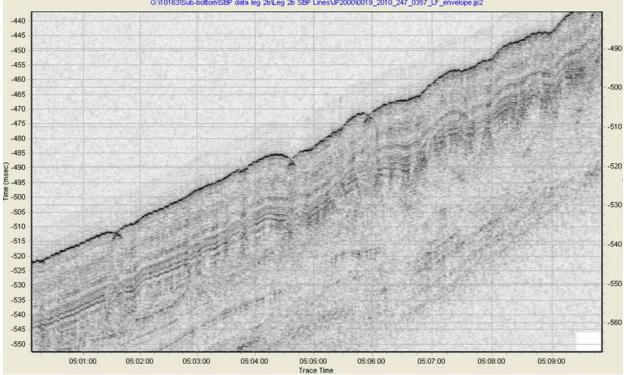



Figure 22.11. An example of a well-defined deep water relict ice scour observed in 300-350m of water in the BP lease block in the Beaufort Sea during Leg 2b.

G:\10163\Sub-bottom\SBP data leg 2b\Leg 2b SBP Lines\JP2000\0019_2010_247_0357_LF_envelope.jp2

Figure 22.12. Raw 3.5 kHz sub-bottom transect showing a relict ice scour in 300m-350m water depth in the BP lease block in the Beaufort Sea during Leg 2b.

All of the observed ice scours have the same general orientation of southwest-northeast, parallel to the shelf break. The scour orientation appears to be defined by the Beaufort Gyre and not by prevailing winds as is the case for scouring processes on the Beaufort Shelf.

The ice scours observed are quite well defined with visible berms. A lower sedimentation rate past the shelf break results in very little sediment infill, therefore the relict scours are still visible and well-defined. There are some possible ice scours cutting through the ridging and sediment at the shelf break.

Pingo-like features

Approximately 65 plus Pingo-like features (PLFs) were mapped along the shelf break in water depths less than 200 metres (Figure 22.13). These conical seabed mounds may be related to fluid migration through the sediment. The PLFs mapped during Leg 2b have an average diameter of 100 metres, with the largest reaching diameters of 250m to 320m.

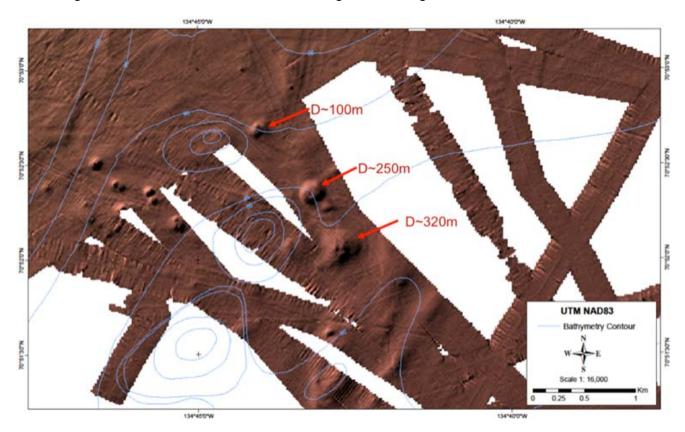
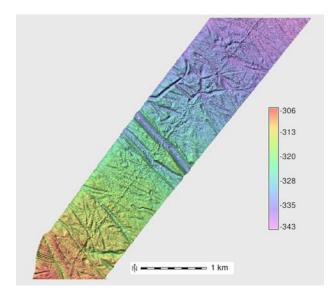
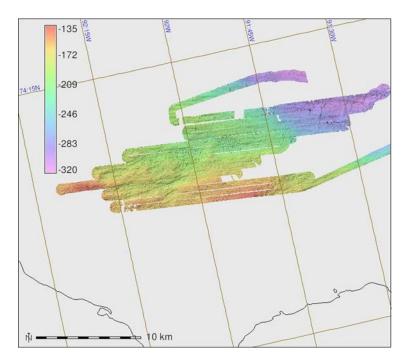


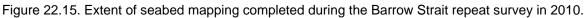
Figure 22.13. Pingo-like features recorded on the Beaufort Shelf during Leg 2b.

22.4.2 Leg 3a – ArcticNet/BP – 23 September to 07 October 2010 – Beaufort Sea
 Leg 3b – ArcticNet – 07 October to 22 October 2010 – Canadian Arctic Archipelago and Baffin Bay

Beaufort Sea

The Beaufort Sea Shelf southwest of Sachs Harbour is extensively ice-scoured in depths shallower than 380m, with nearly 100% of the seafloor incised by overlapping scours. Scours measure anywhere from a few meters to, in some extreme cases, 9m in depth, and are typically oriented west-northwest to east-southeast. Deeper than 380m, ice scours taper off, revealing smooth, undisturbed seabed. The ice scours observed are quite well defined with visible berms. Additionally, dozens of new Pingo-Like Features (PLFs) were observed on the Beaufort Shelf, in water depths of 85-100m.


Figure 22.14. Example of heavy ice scouring in the Beaufort Sea.

Northwest Passage

Much of the Northwest Passage was clogged with new ice, multi-year ice, and ice slush causing heavy interference with the multibeam echosounder; consequently, much of the Northwest Passage data is of poor quality.

The GSC-A had been allotted 6 hours to conduct seabed mapping in the Barrow Strait area during the 2010 survey. Gas vents or pockmarks were discovered in Barrow Strait by multibeam echosounder during the 2005 and 2008 surveys. However, a bonus 6 hours of mapping time was made available for this repeat survey in Barrow Strait, totaling 12 hours. The position of the ice field around the ship during this time indicated that the two priority areas identified before the survey would not be accessible. The *Amundsen* instead surveyed an area to the immediate south of Priority Area 2 in Barrow Strait.

22.5 Comments and recommendations

22.5.1 Leg 2b – ArcticNet/BP – 26 August to 23 September 2010 – Beaufort Sea

Bottom Mapping

Interpretation and analysis of the water column data collected during this leg and for all of the 2009 data to look for indications of seafloor seepages is recommended.

A detailed morphological analysis, including measurement of parameters such as height and width of the observed PLFs using the 3.5 kHz sub-bottom and multibeam data is recommended.

Mapping and morphological analysis of relict ice scours observed including measurement of parameters such as scour depth, width, length, and orientation, is recommended to develop an understanding of scour processes on a regional scale.

Piston Core

The set-up and maneuvering required for the piston coring operations was quite complex due to the limited foredeck space. A monorail system, along the port side of the vessel, would allow for the rigging of a longer barrel string and facilitate less complex handling procedures. Other suggested modifications to the coring system include:

- One 41 foot cable was damaged during coring operations and it is recommended that a new 41 foot cable be made.
- The piston cables supplied consisted of two 41 foot and two 37 foot cables. The 41 foot cables can be used with a three barrel and 38 foot trip wire configuration. The 37 foot cables can be used with a two barrel and 28 foot trip wire configuration but requires the use of a wire clamp on the piston cable. It is recommended that two 31 foot piston cables be made to replace the existing 37 foot cables to allow for a two barrel configuration without the use of a wire clamp.
- Core barrels should be greased or rust checked and stored in another location to prevent the rusting of the barrel ends. If rusting occurs the barrels have to be sand blasted to allow the couplings to fit over them. During and after coring operations the barrels should be greased regularly.
- Currently there are two different size barrels on board. The original 10 foot (305cm) long barrels and the slightly shorter 302cm long barrels. During the cruise a 302cm barrel was used as the top barrel and 305cm long barrels were used for the lower barrels. The majority of the CAB liner sections had to be cut to fit the barrel. It is recommended that the specifications of the liner length be modified to better fit the barrels on board.
- Provide dedicated container space for all coring supplies.

Box Core

Positioning accuracy of the box core on the seafloor during Leg 2b was completed by a dedicated navigation team using a USBL positioning system. This process is recommended for all Box Coring operations on board the *Amundsen*.

ROV and camera systems

The newly installed Bowtech colour camera and LED lighting system provided a vast improvement in imagery. With the current recording system, the resolution of the imagery cannot be fully recorded. After discussions with the CSSF technician, it is recommended that a DVD recording system be put in place. The addition of lasers as a means of measuring features on-screen would facilitate analysis of the video footage for both geologic and benthic purposes.

Subsea positioning

Two crucial elements that should be part of all seabed sampling and ROV operations are a high-accuracy USBL subsea positioning system and a dedicated navigation team. The job of navigator cannot be a multitask position, and must have a sole individual or individuals assigned to it.

Ship positioning

A working dynamic positioning system (DP) would assist with piston coring, box coring and ROV transect operations. The DP would allow for automatic positioning of the ship according to the ROV submersible position, allowing for longer and more accurate bottom transects to be run. Positioning problems during ROV operations arose in 2009 and again in 2010.

Facilities

The geotechnical team operated out of the aft geochemical laboratory during Leg 2b, as the Geo-Paleo laboratory was allotted to BP representatives. This space was adequate for processing and sealing the cores.

The installation of a man-door in the aft refrigerated core storage container would facilitate and provide safer access to the structure. Currently, the only access is through the two large container doors at front. Additionally, the installation of permanent core storage racks and shelves in the container would provide for economization of container space and improved storage capabilities, as well as eliminate the repeated need for on board construction of storage racks each year.

22.5.2 Leg 3a – ArcticNet/BP – 23 September to 07 October 2010 – Beaufort Sea Leg 3b – ArcticNet – 07 October to 22 October 2010 – Canadian Arctic Archipelago and Baffin Bay

Interpretation and analysis of the water column data collected during Leg3a/3b and for all of the 2010 data to look for indications of seafloor seepages is recommended.

A detailed morphological analysis, including measurement of parameters such as height and width of the observed PLFs using the 3.5 kHz sub-bottom and multibeam data is recommended.

Mapping and morphological analysis of relict ice scours observed including measurement of parameters such as scour depth, width, length, and orientation, is recommended to further develop an understanding of scour processes on a regional scale.

The Geological Survey of Canada (Atlantic) would like to thank the Commanding Officer and crew of the NGCC *Amundsen* for their efforts at maximizing the amount of multibeam coverage obtained during the cruise in challenging ice and weather conditions.

References

Sub-Atlantic. 2009. Super Mohawk: Serial No. 005 TMS: 1273-MAS Serial No. 006 Operation and Maintenance Manual. Supplied to Laval University.

23 BP geotechnical and geophysical program – Leg 2b

Project leaders: BP and ArcticNet

Cruise participants Leg 2b: ArcticNet – Geoteck Inc.¹, Katie Blasco², Kevin McKillop², Robbie Bennett², Greg Middleton², Kate Jarrett², Justin Buis², Ian Church³, Doug Cartwright³, Sven Commandeur³, Jose Sanchez³, Fugro Jacques Geosurveys Inc.⁴ and IMG-Golder Corporation⁵

¹ ArcticNet – Geotek Inc., 3 Faraday Close, Daventry, Northants, NN11 8RD, United Kingdom. ² Geological Survey of Canada (GSC-Atlantic), Bedford Institute of Oceanography, 1 Challenger Dr., Box 1006, Dartmouth, NS, B2Y 4A2, Canada.

³ University of New Brunswick, Ocean Mapping Group, Department of Geodesy and Geomatics Engineering, P.O. Box 4400, Fredericton, NB, E3B 5A3, Canada.

⁴ Fugro Jacques Geosurveys Inc., 131 Ilsley Avenue, Dartmouth, NS, B3B 1T1, Canada.
 ⁵ IMG-Golder Corporation (Golder Associates Ltd), suite 102, 2535 – 3 Avenue S.E., Calgary, AB, T2A 7W5, Canada.

23.1 Introduction

This report documents the activities and information obtained as part of the geophysical and geotechnical programs conducted as part of a collaboration between ArcticNet and BP Exploration Operating Company Limited (BP), onboard the Canadian Coast Guard Ship (CCGS) *Amundsen.* Field work was conducted by ArcticNet, IMG-Golder (IMG), Fugro Jacques GeoSurveys Inc. (Fugro), the Geological Survey of Canada (GSC) and the University of New Brunswick (UNB). The field program was conducted as Leg 2b of ArcticNet's 2010 *Amundsen* Expedition between 26 August and 22 September 2010 in BP's Exploration Licences (ELs) 449, EL451, and EL453 and in Imperial Oil Resources Ventures Limited (IORVL) EL446. The blocks straddle the continental shelf and slope of the Canadian Beaufort Sea in water depths between 40 m and 1 350 m.

The investigation was carried out to assess near-surface soil strengths and compositions (geotechnical), collect detailed multibeam bathymetry (MBES) and high-resolution seismic sub-bottom profiler data (SBP), and collect samples for geochemical analysis within the BP and IORVL lease blocks. Co-located piston cores and box cores were collected by the Geological Survey of Canada in support of their regional investigations of the Beaufort Sea. Piston, gravity, and box corers were utilized to collect the geotechnical samples.

23.2 Methodology

The geotechnical data was collected by taking core samples and testing them for their soil properties and/or preparing them for onshore geochemical testing. Three methods were used for soil sampling: box coring, gravity coring and piston coring. In total, 16 box cores, 4 gravity cores and 39 piston cores were recovered over the BP and IORVL leases during

Leg 2b. An additional 6 box cores and 6 piston cores were recovered by the GSC in support of their regional collection efforts. The core locations and water depths, as collected by the survey and positioning team, are included in the attached tables (Table 23.1for the BP program and Table 23.2 for the GSC collections).

Core name	Core type	Water depth (m)	Northing	Easting	Core name	Core type	Water depth (m)	Northing	Easting
		Piston a	and Gravity C	ores (for Geot	echnical and	Geoche	mical Anal		
BP10-PC06	Piston	682.59	7878117.24	483522.59	BP10-PC18	Piston	77.12	7851702.71	493334.29
BP10-PC07	Gravity	43.2	7833728.56	607884.53	BP10-PC26	Piston	104.83	7861715.62	500198.36
BP10-PC10	Piston	76.04	7854140.47	544549.48	BP10-PC29	Piston	326.86	7871965.87	504203.74
BP10-PC11	Gravity	27.2	7856791.55	565040.39	BP10-PC30	Piston	94.09	7868766.64	516327.61
BP10-PC12	Piston	419.85	7854404.71	479340.34	BP10-PC31	Piston	432.63	7880483.2	507093.9
BP10-PC14	Piston	101.13	7869004.58	528975.13	BP10-PC32	Piston	338.04	7879259.28	522586.16
BP10-PC15	Piston	67.4	7880868.13	583870.39	BP10-PC34	Piston	633.64	7875884.28	486525.73
BP10-PC16	Gravity	24.3	7843332.97	587021.8	BP10-PC43	Piston	61.37	7854312.46	516406.31
BP10-PC17	Gravity	34.8	7855085.96	588410.65	BP10-PC45	Piston	599.3	7876453.47	491688.58
			Piston (Cores (for Geo	echnical Ana	lysis or	nly)		
BP10-PC01	Piston	484.73	7867483.85	490590.38	BP10-PC28	Piston	83	7866187.14	527565.11
BP10-PC02	Piston	684.66	7890418.63	496429.85	BP10-PC33	Piston	604.28	7879045.99	493905.81
BP10-PC08	Piston	141.45	7866219.89	508155.05	BP10-PC35	Piston	601.75	7875395.29	489664.45
BP10-PC09	Piston	78.41	7861806.14	520468.04	BP10-PC36	Piston	470.78	7871833.25	495671.05
BP10-PC13	Piston	52.2	7841530.42	560811.85	BP10-PC37	Piston	488.9	7870403.09	493967.98
BP10-PC19	Piston	1069.85	7896931.04	467656.71	BP10-PC38	Piston	984.23	7883006.24	472012.19
BP10-PC20	Piston	911.28	7878413.16	466679.01	BP10-PC39	Piston	676.48	7876520.5	480847.38
BP10-PC21	Piston	705.61	7877547.1	480095.32	BP10-PC40	Piston	347.89	7876409.54	508786.59
BP10-PC22	Piston	953.77	7893663.1	479077.21	BP10-PC41	Piston	239.18	7872513.32	511890.89
BP10-PC23	Piston	765.79	7878610.3	479383.2	BP10-PC42	Piston	70.14	7858061.63	523464.26
BP10-PC24	Piston	908.72	7893248.99	481510.91	BP10-PC44	Piston	58.2	7839049.22	511206.12
BP10-PC25	Piston	194.38	7873751.41	531406.75	BP10-PC46	Piston	256.47	7876099.95	516316.91
BP10-PC27	Piston	68.25	7853291.35	520988.24					
			Box C	ores (for Geote	chnical Anal	ysis onl	y)		
BP10_BX01	Box	774.12	7880416.73	480026.01	BP10_BX09	Box	110.73	7869211.31	522658.91
BP10_BX02	Box	834.18	7880827.18	478763.5	BP10_BX10	Box	675.34	7882200.27	489526.35
BP10_BX03	Box	882.61	7881907.7	477046.12	BP10_BX11	Box	557.73	7886604.15	502750.16
BP10_BX04	Box	852.01	7883863.64	475703.02	BP10_BX12	Box	554.04	7879785.21	498761.75
BP10_BX05	Box	926.74	7881908.91	472818.85	BP10_BX13	Box	286.38	7874546.2	510284.29
BP10_BX06	Box	112.71	7862456.2	503901.3	BP10_BX14	Box	595.77	7876336.88	490798.48
BP10_BX07	Box	73.25	7852473.81	506636.43	BP10_BX15	Box	462.12	7886879.94	513143.79
BP10_BX08	Box	160.3	7856846.67	493452.96	BP10_BX16	Box	454.78	7881035.67	506386.97

Table 23.1. Cores samples collected for Pokak 2010 Geotechnical Data Collection Program in the Beaufort Sea during Leg 2b (WGS84, UTM zone 8N).

Table 23.2. Core location number, core type, water depth and location for the 2010 GSC Regional Data Collection in the Beaufort Sea during Leg 2b (WGS84, UTM 8N).

Core name	Core type	Water depth (m)	Northing	Easting	Core name	Core type	Water depth (m)	Northing	Easting
GSC10_PC01	Piston	80.22	7861311.58	511529.08	GSC10_BX01	Box	80.22	7861343.83	511561.44
GSC10_PC02	Piston	993.90	7898640.87	485709.16	GSC10_BX02	Box	994.38	7898650.89	485711.68
GSC10_PC03	Piston	879.42	7896394.09	487257.08	GSC10_BX03	Box	879.38	7896384.29	487258.71

Core name	Core type	Water depth (m)	Northing	Easting	Core name	Core type	Water depth (m)	Northing	Easting
GSC10_PC04	Piston	630.81	7884507.91	495514.83	GSC10_BX04	Box	120.29	7884485.24	495498.38
GSC10_PC05	Piston	254.62	7869438.89	505920.05	GSC10_BX05	Box	254.79	7869451.00	505921.96
GSC10_PC06	Piston	182.39	7867892.83	507005.01	GSC10_BX06	Box	182.38	7867895.03	507007.34

23.2.1 Sampling and testing

Box corer

The ~0.5 m³ box cores were utilized primarily for the observation of the surficial layer of seafloor sediment that often is not easily recovered by the piston or gravity corer due to the extremely soft consistency and thinness (approximately 4 cm) of the surficial soils. Individual push cores were collected from the larger box core samples and used for subsequent analysis and archiving. Onboard lab testing consisted of sediment strength testing (t-bar tests, torvanes, lab vane and penetrometer), and soil classification (moisture content and carbonate content). An initial description of the cores based on visual inspection of the surface of the core and exposed end sections was recorded in the lab along with test values.

The coordinates of the box core samples were determined using a USBL beacon attached first to the cable above the box core and subsequently to a bracket built onto the box core frame.

Piston corer

The ~ 0.5 tonne, 8.5 m barrel piston corer with 2 m trigger weight gravity corer was utilized to sample the soils at depth for geotechnical testing or to collect samples for geochemical analysis onshore. Onboard testing included shear strength testing using torvanes, handheld penetrometers, undrained triaxial tests and lab vanes, as well as determination of unit weights and moisture contents. An initial description of the cores based on visual inspection of the exterior of the cores and exposed end sections was recorded along with test values.

The piston corer had been modified for the 2010 field program with the application of a Teflon epoxy coating on the exterior to increase penetration and reduce pull-out resistance. The coordinates of the piston corer samples were determined using a USBL beacon attached to the cable above the piston corer head.

Gravity corer

At locations with water depths less than ~60 m the piston corer was converted to a gravity corer in order to reduce shock-loading on the winch system during core collection. The piston corer was reconfigured into a gravity corer by shortening the barrel 3 m (removing one of the barrel sections) and deploying it without the trigger weight corer. The samples were processed and tested using the same equipment as for the piston corer samples. The USBL beacon was attached to the cable above the corer head in the same position as on the piston corer except where water depths were too shallow to allow for the tracking of the USBL beacon. In the shallow water depths, the A-frame position was used as the core location.

MSCL (Multi-sensor core logger)

A majority of the piston and gravity cores obtained during Leg 2b were logged by ArcticNet using the Université Laval's GEOTEK Multi-Sensor Core Logger (MSCL). Gamma density, P-wave (ultrasonic) velocity, electrical resistivity and magnetic susceptibility were measured at 2 cm sampling intervals on each of the core sections recovered. The data set provides a record that enables quantitative assessments to be made about core quality, which in turn will help to interpret the geotechnical properties of the site.

Soil sample storage

All core samples were stored in a refrigerated shipping container at +5°C until they could be taken off the ship at the end of the 2010 program in Quebec City. Additional testing and analysis will be performed on the cores onshore under the guidance of BP and Fugro or GSC (core dependent). Geochemical subsamples from 18 designated core locations were stored at -15°C to -20°C until they were taken off the ship at the end of Leg 2b for shipment to the testing laboratory (TDI-Brooks International Inc., College Station, Texas)

ROV Operations

A direct geological seafloor observation was performed by ArcticNet using a Sub-Atlantic "Super Mohawk" ROV, rated for 2,000 m and with two 5-function manipulator arms. Up to four dives were planned, but only one dive was conducted in EL451. Real-time highdefinition video was collected during the entire dive. A ten-minute HD video file of highlights from the drive was produced on the ship. A second planned dive was cancelled due to poor sea state, and the remaining dives were cancelled due to time constraints.

Two pairs of Simple and Inexpensive Point (SIP) gas sample canisters were supplied by ArcticNet and were prepared by IMG and Fugro personnel (according to University of Victoria guidelines). The SIP samplers were carried in the ROV toolbox and would be

deployed with the two ROV manipulator arms in order to capture gas escaping from the seafloor. No gas seeps were encountered during the ROV dive, so the SIP samplers were not deployed. A procedure for the safe transfer of gases from the SIP samplers to sample tins had been developed but was not required due to the absence of a gas collection sample site. Two sets of stainless steel and acrylic sediment sampling (push coring) devices were fabricated on the ship for the ROV dives, but were not used due to time constraints and lack of gas seeps.

23.2.2 Survey and positioning

Two GPS antennas were installed and integrated with a gyrocompass, vertical reference unit and USBL (Ultra-short baseline) beacon to obtain accurate seafloor and water column positioning. The data was processed and displayed using proprietary Fugro software. The ship-board USBL head was mounted on a pole in the vessel's acoustic well during coring and ROV operations, except at locations where the water depth was too shallow for equipment operation.

23.2.3 Bathymetry and sub-bottom profiling

All multibeam echosounder (MBES) and sub-bottom profiling (SBP) data was collected by ArcticNet (University of New Brunswick's (UNB) Ocean Mapping Group personnel) during Leg 2b, and was reviewed and analyzed by Fugro personnel using ArcGIS and SMT Kingdom Suite software. The analyzed data was used to refine and select core sampling locations, and to provide science personnel with high-resolution seafloor and sub-bottom data for geologic interpretation. In addition to the Leg 2b data, the MBES and SBP data collected during Leg 2a were also analyzed and use for core location selection and geologic interpretation. Near real-time bathymetry and sub-bottom mapping was used to select core locations in previously unmapped areas. Water column imaging software written by UNB scientists was used to process the multibeam data to locate and image gas plumes in the water column. The bathymetry measurements were also used to check the USBL depth measurements.

23.3 Comments and recommendations

New this year, a MSCL was installed in the Geo-Paleo Lab where all of the geotechnical testing took place. The MSCL utilized a significant amount of space in the lab and the radioactivity associated with the unit limited the use of the lab by persons other than the core logger. Should a similar program be conducted in the future, and knowing that the Geo-Paleo Lab is the only available space for the MSCL, it is recommended that the geotechnical testing be conducted in two of the aft labs.

24 Benthic habitat mapping and biodiversity – Legs 1a, 1b, 2a, 3b and 3c

ArcticNet Phase 2 – Project titled Impact of Climate Change on Arctic Benthos. <u>http://www.arcticnet.ulaval.ca/pdf/phase2/archambault_arctic_benthos.pdf</u> ArcticNet Phase 2 – Project titled The Canadian Arctic Seabed: Navigation and Resource Mapping. http://www.arcticnet.ulaval.ca/pdf/phase2/hugues_clarke_seabed_mapping.pdf

Project leaders: Philippe Archambault¹ (<u>philippe_archambault@uqar.qc.ca</u>) and BP (Leg 2a)

Cruise participants Legs 1a & 1b: Anne Fontaine¹ and Virginie Roy¹

Cruise participants Leg 2a: Philippe Archambault¹, Mathieu Cusson², Cindy Grant¹ and Mélanie Lévesque¹

Cruise participants Leg 3b: Anne Fontaine¹, Virginie Roy¹ and Frédéric Olivier^{1,3} **Cruise participants Leg 3c**: Anne Fontaine¹ and Virginie Roy¹

¹ Université du Québec à Rimouski (UQAR) / Institut des sciences de la mer de Rimouski (ISMER), 310 allée des Ursulines, Rimouski, QC, G5L 3A1, Canada.

² Université du Québec à Chicoutimi (UQAC), Laboratoire des sciences aquatiques,

Département des sciences fondamentales, 555 boulevard de l'Université, Chicoutimi, QC, G7H 2B1, Canada.

³ Muséum National d'Histoire Naturelle, Département Milieux et Peuplements Aquatiques, Paris, France.

24.1 Introduction

It is widely recognized that large areas of the Arctic are changing from arctic to subarctic conditions. Rapid warming is causing higher water temperatures and reduced ice cover, two factors that will certainly lead to severe ecosystem changes propagating through all trophic levels. Over the past decade, a geographical displacement of marine mammal population distribution has been observed, that coincides with a reduction of benthic prey populations. According to a widely accepted conceptual model, the relative importance of sea-ice, pelagic and benthic biota in the overall carbon and energy flux will shift from a sea-ice algae-benthos to a phytoplankton-zooplankton dominance. In the context of the potential benthic community changes, it is essential to establish benchmarks in biodiversity at key locations in the Canadian Arctic prior to (a) the expected changes in ice cover, ocean chemistry and climate and (b) the future human activities (transport, trawling or dredging, drilling, etc.) that are likely to happen in response to the predicted environmental changes. Unlike Canada's two other oceans, there is an opportunity to document pristine conditions before ocean changes and exploitation occur.

The main objective of this project was to describe and compare benthic biodiversity (using a variety of diversity indices) in different locations of the Canadian Arctic in relation to environmental variables (e.g., substrate type, temperature, salinity, oxygen concentration, primary productivity, current speed, depth, etc.). Secondary objectives were to:

- Develop models of benthic biodiversity and create habitat suitability map in the eastern part of the Canadian Arctic.
- Estimating the strength and form of the relation of biodiversity to habitat diversity at multiple scales in the Canadian Arctic.
- Evaluating leading explanations for the relation (e.g. bottom geomorphology and the above mentioned environmental variables).
- Generate ecosystem scale estimates of biodiversity and function using recent advances in ecological scaling.

24.1.1 The Canadian Healthy Oceans Network (CHONe) (Legs 1, 3b and 3c)

This cruise was also in collaboration between the NSERC Canadian Healthy Oceans Network (CHONe), which is a 5-years strategic partnership between Canadian university researchers, government, and ArcticNet. This network is about aligning Canadian marine science capacities to respond to research challenges and knowledge gaps on biodiversity in frontier oceanic environments, such the Canadian Arctic. CHONe is a new national marine science initiative that is uniting researchers to provide scientific guidelines for policy in conservation and sustainable use of marine biodiversity resources in Canada's three oceans.

The Theme Marine Biodiversity is addressing how patterns of biological biodiversity are related to habitat diversity. Specifically, hypotheses are tested to link functional (ecological) roles of different species, species biodiversity and habitat complexity.

The Theme Ecosystem Function is determining how ecosystem function (processes such as nutrient cycling) and health (whether ecosystems are able to maintain these processes) are linked to biodiversity and natural and anthropogenic disturbances. Specifically, the aim is to understand the role of biodiversity in marine ecosystem services (the "goods" provided to humans by living organisms) by linking biodiversity and ecosystem function measures, and provide predictive models and tools to minimize anthropogenic impacts.

Finally, the outcomes of each of these themes will be synthesized across the Network to identify approaches to bridge science and policy. This collaborative cruise allowed obtaining samples for six different projects inside CHONe in addition to the ArticNet project.

Theme Marine Biodiversity

Diversity in Space: Estimate the strength and form of the relation of biodiversity to habitat diversity at multiple scales; evaluate leading explanations for the relation; generate ecosystem scale estimates of biodiversity and function using recent advances in ecological scaling.

P. Archambault and K. Conlan (Biodiversity in Arctic corridor)

The objective is to evaluate the natural benthic diversity along the Arctic Corridor to search for new species, for curation and to establish benchmarks in specify areas of the Arctic. This project is closely related to the Hebert/Dufresne project.

Diversity in Time: Examine the role of the history of the Arctic in generating biodiversity; uncover cryptic diversity; benchmark current diversity and genetic structure relative to expected reopening of the Arctic during this century.

P. Hébert and F. Dufresne (Divergence rate and Cryptic species)

The Arctic Corridor Biodiversity study undertaken by CHONe researchers includes an aggressive sampling program that will result in the assembly of both planktonic and benthic samples. A fraction of the specimens in each sample will be preserved in 95% ethanol or through freezing to ensure that DNA is in good condition. Because of the limited funding, it will not be possible to barcode all groups of organisms. As a result, efforts will focus on three groups that make particularly important contributions to invertebrate biomass in arctic waters- echinoderms, polychaete worms (Hébert) and amphipod crustaceans (Dufresne). Analytical protocols are already available which allow the recovery of barcode sequences for these groups of organisms. As well, pilot studies at two arctic sites, Churchill and Resolute, have shown that DNA barcode sequences regularly deliver species-level resolution in these groups. Finally, taxonomic experts have indicated their willingness to identify barcoded specimens and two graduate students (one funded by CHONe and one with NSERC support) are ready to commence work.

The objective is to assemble a comprehensive barcode library for life in Canada's arctic marine waters, the following actions will be taken:

- Coordinate sample acquisition with all CHONe projects
- Focus on key taxonomic groups
- Target additional sampling areas or taxonomic groups as resources permit
- Strengthen the network of associated taxonomists
- Ensure curation of barcoded specimens in major Canadian museums

F. Olivier and N. Ameziane (Cryptic species of echinoderms and comparison with Antarctica)

This project is complementary of both P. Archambault/K. Conlan and P. Hebert/F. Dufresne projects but with more emphasis on echinoderms and on the comparison between Arctic and Antarctic regions. The barcoding of all the collected echinoderms will validate the species and determine if cryptic species are present in Arctic Ocean (as in Antarctica). Once done, taxa between Arctic and Antarctica will be compared and the presence of bipolar taxa will be looked at, and if it occurs the systematic level will be determined. Then, crinoids will be analyzed more finely by using other gene sequences than COI to integrate such species in the global Crinoids phylogeny that is being built: actually more than 200

taxa are integrated and thus constitute the most important Crinoids' phylogeny database. If possible, phylobiogeography will be conducted to integrate an ecological component (environmental parameters coupled with video recording) in the future.

I. Bradbury

The objective is to use neutral and non-neutral genetic markers in marine population studies, to track fish movements, allopatric versus sympatric speciation in marine species, simulation modeling, design and function of marine protected areas.

Theme Ecosystem Function

To understand and quantify the role of biodiversity in ecosystem services

P. Archambault and M. Cusson

Compare the ecosystem services (fluxes) by different trophy levels in areas of high and low complexity and to evaluate the influence of the potential changes in species diversity that will happen with any kind of human activities and finally. Finally, describe biodiversity levels and secondary production of macrobenthic communities in areas of enhanced and reduced productivity and diversity ("hotspots" and "coldspots"). Particularly, in Beaufort Sea, if secondary production (individual and community-based) are linked to community structure and composition.

24.1.2 Benthic diversity and abundance of the BP Exploration License area (Leg 2a)

The benthic ecology team was responsible for the benthic sampling of the study area within the BP Pokak lease block for Leg 2a. Two methods were used on board for the sampling of the benthic organisms. A box core was deployed to sample the fauna living in the sediment (infauna) and an Agassiz trawl was used to collect fauna that live on the sediment surface (epifauna).

24.1.3 Astarte spp. as proxies for monitoring climate change in the Canadian Arctic (Leg 3b)

Assessing temporal variability of environmental parameters is crucial in the context of climate change particularly in the Arctic Ocean. In the Canadian Archipelago, scientists monitor since less than one decade fluctuations of water temperature through immerged probes but the acquired data are often local and they rarely allow long-term records. In a

view to reconstruct temperature variations, oxygen isotope compositions in carbonate shells of bivalves will be used as a record or proxy. The oxygen isotopic composition of marine carbonates is controlled by the isotopic composition of the water from which the carbonates precipitated and the temperature/salinity of the ambient water. Because of the accretionary growth of bivalve shells, δ^{18} O profiles taken from along their axis of maximum growth can provide time series of hydrographical variations of the bivalve habitat during its lifetime. Recent data on macrobenthic fauna show that bivalves of the genus *Astarte* cover all the studied area and can be found in abundance.

Within this context, the objectives of this project were to:

- Assess main life traits of *Astarte borealis* (lifetime, growth rates and periods) through geochemical (stables isotopes) and schlerochronological analyses of some shells.
- Assess the paleothermical potential of the shell of *A. borealis* through its δ¹⁸O isotopic composition by comparing shell data to high frequency T/S measurements of probes deployed by ArcticNet (mooring stations).
- Determine if shell concentrations of trace elements (especially the Ba/Ca ratio) may be used as proxies of past and recent variations of the primary production.

24.2 Methodology

24.2.1 Box coring

The box corer (Figure 24.1) was deployed to quantitatively sample diversity and abundance of macroendobenthic fauna and to obtain cores for sediment analyses. The latter were used to determine sediment pigment, organic carbon concentration, organic matter content and sediment grain size.

Figure 24.1. Left: Recovery of the box corer. Right: Recovery of the Agassiz Trawl.

The total surface area of the box core sediment was 0.250 m² varying between 10-15 cm in depth (depending on the depth of the azoic clay layer). From the retrieved box cores, sediments of usually a surface area of 0.125 m² were collected and sieved through a 0.5 mm mesh sieve and preserved in a 4 % formaldehyde solution for further identification in the laboratory. Depth of the sediment collected (approximatively 12 cm in depth) was measured to standardize data for each sampling station.

For sediment pigment, organic carbon concentration, organic matter content and sediment grain size, seafloor sediments were collected from the box cores with a total of three replicate sub-cores (with 60 mL truncated syringes of an area of 5 cm² each) (Figure 24.2). For sediment pigment, organic carbon concentration (OC), organic matter content (OM), the top 1 cm was collected. For sediment grain size, the top 5 cm was collected. Sediment pigment samples were frozen at -80°C, OC and OM samples were frozen at -20°C and sediment grain size samples were refrigerated at 4°C. All samples will be analyzed in the lab at the Université du Québec à Rimouski.

At selected stations during Leg 1, P. Lajeunesse's team (U. Laval) was taking push cores (orange caps) from the upper half of the box core.

Figure 24.2. Box core with lower half for diversity/abundance sieving and upper half for OC/OM cores, pigment concentration cores and particle size grain cores (white syringes).

24.2.2 Agassiz Trawl

The Agassiz trawl (Figure 24.1) was deployed for 3 to 5 minutes on the seabed to survey macroepibenthic diversity and abundance of species. Onboard, species were counted or estimated in abundance and identified to the lowest possible taxonomic level. Some specimens were preserved for further identification in the lab.

Leg 1a - ArcticNet - 01 July to 02 August 2010 - Hudson Bay

Leg 1b – ArcticNet – 02 August to 12 August 2010 – Baffin Island and Canadian Arctic Archipelago

During Leg 1, 16 box cores and 17 Agassiz trawls were carried out (Figure 24.1, Table 24.1). Furthermore, several specimens gained from a trawl sample where preserved in 95% Ethanol for genetic analysis (CHONe program).

Table 24.1. Benthic sampling stations during leg 1a-1b, with numbers of samples or cores collected for ArcticNet (AN) and CHONe projects.

Stn	Date in 2010	Depth (m)	Latitude N	Longitude W	Sampling type	AN	CHONe
-----	--------------------	--------------	---------------	----------------	------------------	----	-------

						Archambault Diversitv	Hebert &	Bradbury	Cusson	Comment
350	09/07	376	64.4322	80.4748	Box corer	1				Empty box; sandy bottom
699	11/07	86	59.9977	78.4243	Box corer	1	1			¹ ⁄ ₄ nautical mile away from the station to find a sediment patch
702	13/07	134	55.4120	77.9310	Box corer	1				· · · ·
		129	55.4153	77.9412	Agassiz trawl Start Agassiz	1				
		119	55.4172	77.9422	trawl Stop	1				
709	15/07	87	54.7156	80.7781	Box corer	1				
		87	54.7200	80.7705	Agassiz trawl Start	1				
		87	54.7206	80.7712	Agassiz trawl Stop	1				
735	16/07	186	56.7942	80.8373	Box corer	1				
		185	56.7967	80.8392	Agassiz trawl Start	1	2+1			
		136	56.8013	80.8483	Agassiz trawl Stop	1				
745	17/07	185	60.5068	85.0177	Box corer	1				Box damaged by cobbles
		184	60.5007	85.0095	Agassiz trawl Start	1				
		184	60.4988	85.0055	Agassiz trawl Stop	1				
765	18/07	104	62.3040	90.6667	No box corer					No deployment; rocky bottom
					No Agassiz trawl					No deployment; rocky bottom
707	19/07	111	59.9682	91.9515	No box corer					No deployment; rocky bottom
					No Agassiz trawl					No deployment; rocky bottom
706 Bis	21/07	120	59.6122	-91.8298	Box corer	1				Station added because no deployment during previous stations. Sediment patch found with 2007 sonar data (Ocean Mapping Group)
		122	59.6153	91.8320	Agassiz trawl Start	1				
		121	59.6130	91.8410	Agassiz trawl Stop	1				
706	21/07	79	58.8057	91.5323	Box corer Agassiz	1				
		77	58.7743	91.5422	trawl Start	1				
		77	58.7743	91.5510	Agassiz trawl Stop	1				
705a	22/07	34	57.4268	91.8923	Box corer Agassiz	1	2		1	
	23/07	37	57.4138	91.8805	trawl Start Agassiz	1				
		37	57.4078	91.8775	trawl Stop	1				
705	24/07	70	57.6589	91.5948	Box corer	1	2+1		1	
		71	57.6582	91.5932	Agassiz trawl Start Agassiz	1				
705-		61	57.6527	91.5987	trawl Stop	1				Core station added during waiting
705a Bis	26/07	18	57.2800	92.1125	Box corer	1				Core station added during waiting time for river work
		19	57.3030	92.0826	Agassiz	1				

						AN	c	юн	Ne		
Stn ID	Date in 2010	Depth (m)	Latitude N	Longitude W	Sampling type	ult					
						Archambault Diversity	Hebert & Dufresne	Bradhurv		Cusson	Comment
		17	57.3058	92.0792	trawl Start Agassiz trawl Stop	1					
790	28/07	39	57.2488	88.8827	Box corer	1	2+1				
		38	57.2493	88.8845	Agassiz trawl Start	1					
		37	57.2492	88.8900	Agassiz trawl Stop	1					
820	29/07	53	55.6960	84.9070	Box corer	1					
		53	55.6953	84.9020	Agassiz trawl Start Agassiz	1					
		53	55.6958	84.8902	trawl Stop	1					
840	30/07	179	58.4195	83.3238	Box corer	1					
		174	58.4225	83.3207	Agassiz trawl Start Agassiz	1					
		176	58.4337	83.3283	trawl Stop	1					
Extra (2)	31/07	317	62.6592	79.4595	Box corer	1					Core station added for Lajeunesse and Archambault teams; box damaged by cobbles
		316	62.6598	79.4625	Agassiz trawl Start	1					Agassiz frame damaged by cobbles
		325	62.6745	79.4633	Agassiz trawl Stop	1					
301	07/08	667	74.1830	83.9492	Box corer	1					Schools on Board (SOB) students helped during sampling and sieving
		671	74.1887	83.9737	Agassiz trawl Start	1					SOB students
		671	74.1940	84.0138	Agassiz trawl Stop	1					First too little a sector time as seed too.
305	08/08	164	74.3233	93.4123	Box corer	1					First try little penetration; second try successful with rocks at the surface; SOB students
		172	74.3088	93.4268	Agassiz trawl Start	1					Trawl full of rocks; SOB students
		172	74.3158	93.4047	Agassiz trawl Stop	1					
310	09/08	141	71.2952	97.6455	No box corer Agassiz trawl Start	1					No deployment; rocky bottom Trawl full of rocks
		152	71.2962	97.6378	Agassiz trawl Stop	1					
312	10/08	58	69.1683	100.6985	Box corer	1					SOB students
		52	69.1672	100.6750	Agassiz trawl Start	1					SOB students
		57	69.1684	100.6817	Agassiz trawl Stop	1					

Leg 2a - ArcticNet/BP - 12 August to 26 August 2010 - Beaufort Sea

The box core was deployed on 25 occasions (i.e. at each station once and twice at station BP10-002, as per industry request) and the Agassiz trawl was deployed at all 18 stations.

Table 24.2. List of stations visited and sampling activities conducted in the BP lease block in the Beaufort Sea during Leg 2a.

		Start co	ordinates	End co	ordinates	,	Ti	me	Dept	h (m)	Syringe	
Station ID	Gear/ mesh	Latitude N	Longitude W	Latitude N	Longitude W	Volume (cm³)	Start	End	Start	End	s (G; ISO; Chl)	Opera tor
BP10-018	Box core/ 500µm	70°46.75	134°23.30			14 X 1250	02:59	03:21	687	683	(1; 1; 1)	All 4
BP10-018		70°46.82	134°23.08	70°46.77	134°23.26		03:28	03:57	688	687		
BP10-014	Box core/ 500µm	70°55.46	134°26.24			12 X 1250	18:12	18:20	96	103	(3; 3; 3)	All 4
BP10-014	Box core/ 500µm	70°55.47	134°25.84			contamina nts	18:34	18:43	98	100		
BP10-014	Agassiz	70°55.76	134°26.10	70°55.91	134°26.32		19:01	19:24	101	112		
BP10-015	Box core/ 500µm	70°59.04	134°23.00			12 X 1250	23:47	23:57	260	260	(1; 1, 3)	ML &
BP10-015	Box core/ 500µm	70°59.10	134°23.09			contamina nts	00:11	00:27	263	263		CG
BP10-015	,	70°59.15	134°23.33	70°58.56	134°28.39		00:39	01:30	263	266		
BP10-010	Box core/ 500µm	71°00.54	134°40.08			12 X 1250	04:58	05:20	334	345	(1; 1, 3)	MC &
BP10-010		71°00.74	134°41.07	71°02.00	134°42.64		05:37	06:47	347	400		PA
BP10-012	Box core/ 500µm	70°53.70	134°15.10			12 X 1250	10:34	10:39	80	79	(1; 1, 3)	ML &
BP10-012	Box core/ 500µm	70°53.67	134°15.32			contamina nts	10:55	11:00	80	79		CG
BP10-012		70°53.70	134°15.44	70°53.75	134°16.85		11:22	11:35	80	81		
BP10-009	Box core/ 500µm	71°09.35	135°39.08			12 X 1250	05:09	06:02	932	950	(1; 1, 3)	MC &
BP10-009	Agassiz	71°09.35	135°33.77	71°08.67	135°44.65		06:24	07:45	945	981		PA
BP10-004	Box core/ 500µm	70°55.10	134°51.59			12 X 1250	02:32	02:40	246	247	(1; 1, 3)	ML &
BP10-004		70°55.03	134°51.67	70°55.05	134°54.80		03:06	03:31	246	357		CG
BP10-007	Box core/ 500µm	71°05.26	135°34.04			14 X 1250	06:13	06:45	846	851	(1; 1, 3)	MC &
BP10-007	•	71°05.12	135°34.95	71°04.17	135°42.88		03:41	05:30	856	886		PA
BP10-005	Box core/ 500µm	71°01.74	134°48.01			12 X 1250		13:49	442	430	(1; 1, 3)	ML &
BP10-005	Box core/ 500µm	71°01.74	134°48.01			contamina nts	14:07	14:25	432	433		CG
BP10-005		71°01.86	134°49.30	71°01.74	134°49.61		14:35	15:15	449	437		
BP10-011	Box core/ 500µm	70°51.88	134°45.94			12 X 1250	00:22	00:33	89	88	(1; 1, 3)	ML &
BP10-011	Agassiz	70°51.76	134°46.05	70°51.17	134°45.84		00:45	01:01	88	89		CG
BP10-001	Box core/ 500µm	70°44.22	135°04.59			12 X 1250	04:25	04:31	74	73	(1; 1, 3)	MC &
BP10-001	Agassiz	70°45.06	135°04.77	70°45.85	135°04.84		04:45	05:05	73	74		PA
BP10-002	Box core/ 500µm	70°51.52	135°00.00			15 X 1250	09:06	09:11	130	127	(1; 1, 3)	ML &
BP10-002	Box core/ 500µm	70°51.44	135°00.38			contamina nts	09:32	09:38	133	134		CG
BP10-002	Box core/ 500µm	70°51.53	135°00.39			12 X 1250	09:56	10:01	131	131		

	_	Start co	ordinates	End co	ordinates		Ti	me	Dept	h (m)	Syringe	
Station ID	Gear/ mesh	Latitude N	Longitude W	Latitude N	Longitude W	Volume (cm³)	Start	End	Start	End	s (G; ISO; Chl)	Opera tor
BP10-002	Agassiz	70°51.36	135°00.80	70°50.74	135°01.56		10:41	11:06	132	128		
BP10-008	Box core/ 500µm	71°08.08	135°30.32			12 X 1250	00:53	01:40	902	895	(1; 1, 3)	MC &
BP10-008	Agassiz	71°08.09	135°30.96	71°06.88	135°29.12		01:46	03:37	907	892		PA
BP10-006	Box core/ 500µm	71°00.00	135°36.85			12 X 1250	20:23	20:58	726	713	(1; 1; 3)	ML &
BP10-006	Agassiz	70°59.93	135°37.17	70°57.70	135°32.91		21:09	22:40	715	660		CG
BP10-016	Box core/ 500µm	70°59.18	135°22.36			12 X 1250	02:52	03:22	633	627	(1; 1; 3)	MC &
BP10-016	Agassiz	70°59.15	135°22.47	70°57.58	135°18.30		03:39	04:45	622	615		PA
BP10-013	Box core/ 500µm	70°49.28	134°34.63			15 X 1250	21:36	21:40	72	72	(1; 1; 3)	ML &
BP10-013	Box core/ 500µm	70°49.27	134°34.64			contamina nts	21:56	22:00	71	71		CG
BP10-013	Agassiz	70°49.20	134°35.38	70°49.22	134°33.83		22:30	22:48	71	71		
BP10-003	Box core/ 500µm	70°57.13	134°57.68			15 X 1250	04:41	05:12	379	380	(1; 1; 3)	ML &
BP10-003	Agassiz	70°57.27	134°57.42	70°57.27	134°57.47		05:36	06:34	383	382		CG
BP10-017	Box core/ 500µm	71°07.17	135°11.72			15 X 1250	01:12	01:48	731	734	(1; 1; 3)	ML & CG
BP10-017	Agassiz	71°07.21	135°11.99	71°05.66	135°05.97		01:57	03:31	732	651		All 4

Leg 3b – ArcticNet – 07 October to 22 October 2010 – Canadian Arctic Archipelago and Baffin Bay

Leg 3c – ArcticNet – 22 October to 31 October 2010 – Northern Labrador fjords

A total of nine and eight box cores were collected on Legs 3b and 3c respectively. During Leg 3b, eight surface samples were collected for A. Rochon (UQAR-ISMER) and nine samples for M. Thaler (C. Lovejoy's team, U. Laval) and will be analysed for dinoflagellates and bacteria, respectively (Table 24.3).

During Leg 3c, four surface sediment samples were collected for A. Rochon (UQAR-ISMER) at Basic stations and will be analyzed for dinoflagellates (Table 24.3). At three Nutrient stations during Leg 3c, surface sediment samples were collected for T. Richerol (R. Pienitz' group, U. Laval & CEN) and will be analyzed for diatoms to date sediments (Table 24.4).

Table 24.3. Benthic sampling stations during Leg 3b, with numbers of samples or cores collected for ArcticNet and CHONe projects.

Stn	Date	Depth	Latitude	Longitude W	Sampling	AN	CHONe
ID	in	(m)	Ν		type	AN	CHONE

	2010					Archambault Diversitv	Hebert & Dufresne	Bradbury	Cusson	Olivier	Comment
405	08/10	609	70°38.25	123°02.22	Box core	1	-	-	-	-	A.Rochon & M.Thaler samples
		617	70°37.81	123°00.24	Agassiz trawl Start	1	2	1	1	1	
		615	70°37.82	122°59.71	Agassiz trawl Stop	-	-	-	-	-	
450	09/10	100	72°03.15	119°46.77	Box core	1	-	-	-	-	A.Rochon & M.Thaler samples
		102	72°02.98	119°46.19	Agassiz trawl Start	1	2	1	1	2	M.Best sample
		101	72°03.00	119°45.79	Agassiz trawl Stop	-	-	-	-	-	
308	10/10	558	74°07.27	108°26.68	Box core	1	-	-	-	-	A.Rochon & M.Thaler samples
		-	-	-	No Agassiz trawl	-	-	-	-	-	Too much ice
304	12/10	309	74°13.08	91°31.14	Box core	1	-	-	-	-	A.Rochon & M.Thaler samples
		305	74°13.30	91°33.30	Agassiz trawl Start	1	1	-	-	2	M.Best sample
		305	74°13.21	91°32.99	Agassiz trawl Stop	-	-	-	-	-	
323	14/10	783	74°12.02	79°45.76	Box core	1	-	-	-	-	A.Rochon & M.Thaler samples
		785	74°12.51	79°44.03	Agassiz trawl Start	1	1	-	1	2	M.Best sample
		780	74°11.82	79°47.60	Agassiz trawl Stop	-	-	-	-	-	
115	15/10	644	76°21.23	71°11.81	Box core	1	-	-	-	-	Little penetration, cobbles;A.Rochon & M.Thaler samples
		655	76°21.60	71°15.60	Agassiz trawl Start	1	-	-	-	1	M.Best sample
		652	76°21.60	71°16.20	Agassiz trawl Stop	-	-	-	-	-	
111	16/10	568	76°17.32	73°15.73	Box core	1	-	-	-	-	A.Rochon & M.Thaler samples
		572	76°17.06	73°17.80	Agassiz trawl Start	1	-	-	1	2	M.Best sample
		568	76°17.02	73°18.25	Agassiz trawl Stop	-	-	-	-	-	
108	16/10	435	76°14.03	74°55.82	Box core	1	-	-	-	-	A.Rochon & M.Thaler samples
		434	76°13.70	74°55.55	Agassiz trawl Start	1	1	-	-	2	
		434	76°13.75	74°55.07	Agassiz trawl Stop	-	-	-	-	-	
105	17/10	338	76°15.13	75°55.88	Box core	1	-	-	-	-	Little penetration, cobbles; M.Thaler sample
		363	76°17.14	75°54.97	Agassiz trawl Start	1	2	-	-	1	T. Brown sample
		363	76°17.16	75°46.64	Agassiz trawl Stop	-	-	-	-	-	

					AN		СНС	DNe			
Stn ID	Date in 2010	Depth (m)	Latitude N	Longitude W	Sampling type	Archambault Diversitv	Hebert & Dufresne	Bradbury	Cusson	Olivier	Comment
600	24/10	203	59°05.33	63°25.73	Box core	1	-	-	-	-	A.Rochon sample
		207	59°09.08	63°26.50	Agassiz trawl Start	1	-	-	-	-	
		210	59°05.12	63°27.59	Agassiz trawl Stop	-	-	-	-	-	
602	24/10	152	59°03.22	63°51.70	Box core	1	-	-	-	-	A.Rochon sample
		160	59°03.55	63°50.63	Agassiz trawl Start	1	-	-	1	-	M.Best sample
		160	59°03.52	63°50.88	Agassiz trawl Stop	-	-	-	-	-	
617	25/10	135	58°30.18	62°40.90	Box core	1	-	-	-	-	A.Rochon sample
		134	58°30.08	62°42.18	Agassiz trawl Start	1	-	-	-	-	M.Best sample
		136	58°30.08	62°41.21	Agassiz trawl Stop	-	-	-	-	-	
613	25/10	255	58°29.02	63°13.17	Box core	1	-	-	-	-	T.Rocherol sample
		255	58°29.04	63°13.80	Agassiz trawl Start	1	-	-	1	-	M.Best sample
		255	58°29.00	63°13.93	Agassiz trawl Stop	-	-	-	-	-	
633	26/10	176	57°36.39	61°53.62	Box core	1	-	-	-	-	A.Rochon sample
		176	57°36.25	61°53.89	Agassiz trawl Start	1	-	-	-	-	
		175	57°36.27	61°53.72	Agassiz trawl Stop	-	-	-	-	-	
632	26/10	83	57°34.11	62°03.14	Box core	1	-	-	-	-	T.Rocherol sample
		86	57°34.27	62°03.17	Agassiz trawl Start	1	-	-	-	-	M.Best sample
		87	57°34.34	62°03.06	Agassiz trawl Stop	-	-	-	-	-	Pooley bottom be poreful:
622	27/10	80	56°25.07	61°44.03	Box core	1	-	-	-	-	Rocky bottom, be careful; T.Rocherol sample
		80	56°25.21	61°44.16	Agassiz trawl Start	1	-	-	-	-	Rocky bottom, be careful
		80	56°25.09	61°43.79	Agassiz trawl Stop	-	-	-	-	-	Little penetrotion condend
620	27/10	87	56°23.86	61°12.94	Box core	1	-	-	-	-	Little penetration, sand and gravel; first try empty
		88	56°23.90	61°12.76	Agassiz trawl Start	1	-	-	-	-	First try empty;T. Brown sample
		86	56°23.85	61°12.99	Agassiz trawl Stop	-	-	-	-	-	

Table 24.4. Benthic sampling stations during Leg 3c, with numbers of samples or cores collected for ArcticNet and CHONe projects.

24.3 Preliminary results

Leg 1a - ArcticNet - 01 July to 02 August 2010 - Hudson Bay

Leg 1b – ArcticNet – 02 August to 12 August 2010 – Baffin Island and Canadian Arctic Archipelago

Composition and abundance of species varied considerably among stations (west, center, and east) in Hudson Bay with the influence of freshwater inputs when sampling sites were located near the mouth of rivers. Great variability in diversity was also observed between the samples collected in Hudson Bay (Leg 1a) and in the Northwest Passage (Leg 1b). Samples need to be analysed for detailed taxonomy in the home lab at UQAR.

Leg 2a – ArcticNet/BP – 12 August to 26 August 2010 – Beaufort Sea

General trend of lower abundance and diversity of benthic organisms was observed at the deepest stations (box core and trawl). The presence of indicator species such as soft corals and sponges was also observed.

At the gas feature station, the expected sulfur odor was not detected. Nevertheless, the presence of bubbles at the water surface for the second box core deployed at station BP10-002 was observed.

Leg 3b – ArcticNet – 07 October to 22 October 2010 – Canadian Arctic Archipelago and Baffin Bay

During Leg 3b, composition and abundance of species varied considerably among stations (Northwest Passage *vs.* Baffin Bay/NOW). At this point, it is not known exactly if this variability was governed by sediment type, food availability or other environmental variables. More detailed analyses, identification of organisms and sediment characterization will be carried out at UQAR.

Leg 3c – ArcticNet – 22 October to 31 October 2010 – Northern Labrador fjords

Composition and abundance of species varied considerably among stations visited during Leg 3c. Station 600 (Nachvak Fiord) was dominated by crustaceans and anemones, although Station 602 at the head of the fiord was dominated by polychaeta and one species of bivalve in particular, *Portlandica arctica*. Station 617 (Saglek fiord) was dominated by brittle stars and different species of bivalves, although the inner Station 613 was composed mostly by one species of bivalve, *Portlandica arctica*, and by *Pectinaria* sp. and *Saduria* sp. Stations 632 and 633 (Okak Bay) were close in distance and similar in species composition with brittle stars and bivalves in preponderance. Stations 620 and 622 (Anaktalak Bay) were also similar in species composition with a dominance of crustaceans (crabs and shrimps) and fishes. More analyses will be conducted at UQAR.

24.4 Comment and recommendations

Leg 1a - ArcticNet - 01 July to 02 August 2010 - Hudson Bay

Leg 1b – ArcticNet – 02 August to 12 August 2010 – Baffin Island and Canadian Arctic Archipelago

Problems were encountered on the northeast and northwest parts of Hudson Bay. Sonar profiles showed hard bottoms and it was decided to not deploy the box corer and the Agassiz trawl (with P. Lajeunesse's team – U Laval). Expeditions in Hudson Bay in 2005 and 2007 encountered the same kind of problems. In the future, station locations should be determined based on the feasibility to optimise each anticipated operation and not only the operations done in the water column.

The Agassiz trawl seemed a more appropriate tool to quantify and qualify the benthic diversity than the box corer. The box corer was a more useful to conduct sediment sampling and benthic incubations. Also, both box corer and Agassiz trawl should be done systematically at each Basic station and not only the box corer. During Leg 1, the Agassiz trawl operation was added at each Basic station.

Agassiz trawl frame should be strengthened, maybe with stainless steel rods. In its present configuration, the rods are empty and this makes the frame susceptible to damage on rocky bottom.

ROV surveys would have been useful during Leg 1 when the seafloor was too rocky to deploy the box corer and the Agassiz trawl, especially since high benthic diversity is expected on this type of bottom.

A scientist should be in charge of following the box coring deployment with the EK60 at stations deeper than 500 meters. This is to ensure a better estimation of the box core depth and to avoid entanglement of the cable when the box core reaches the sea floor.

The establishment of a protocol for a situation in which the cable is entangled around the head of the boxcore is strongly recommended for safety reasons. Furthermore, the purchase of a 'crazy hook' strong enough to attach to the boxcore if this situation occurs is also recommended.

Leg 3b – ArcticNet – 07 October to 22 October 2010 – Canadian Arctic Archipelago and Baffin Bay

Leg 3c – ArcticNet – 22 October to 31 October 2010 – Northern Labrador fjords

On Leg 3b, problems were encountered with the box core at Stations 115 and 105 in Baffin Bay/NOW due to the presence of a hard bottom (cobbles). For the Agassiz trawl, only one station was missed (Station 308) due to thick ice cover. No deployments were done at Station 101 in Baffin Bay/NOW due to thick ice cover in this area.

On Leg 3c, problems were encountered with the box core and Agassiz trawl at Station 620 (mouth of Anaktalak fiord). The hard and sandy substrate might be the cause of the unsuccessful box core. In the case of the Agassiz trawl, the chain was not on the right side of the seafloor to scrape adequately the sediments; the second try was successful though. A warning should be given also for Station 622 where cobbles were retrieved from the box core when sieving the sediments; the box was not damaged but future box coring at this station should be considered tricky. It would be useful to have a Van Veen grab sampler onboard the ship.

To allow a good assessment of local heterogeneity, box core replicates (at least two) should be planned for in future cruises.

In parallel to box coring, dredging (Rallier du Batty) could be done to increase harvest of infauna (bivalves and rare species).

ROV surveys should be done to characterize benthic habitats on rocky bottom where the box core and the Agassiz trawl cannot be deployed.

25 Modern sedimentation and paleo-river discharge – Leg 1a

ArcticNet Phase 2 – Project titled *Freshwater-Marine Coupling in the Hudson Bay IRIS* <u>http://www.arcticnet.ulaval.ca/pdf/phase2/barber_freshwater-marine_coupling.pdf</u> ArcticNet Phase 2 – Project titled *The Canadian Arctic Seabed: Navigation and Resource Mapping* <u>http://www.arcticnet.ulaval.ca/pdf/phase2/hugues_clarke_seabed_mapping.pdf</u>

Project leaders: Sam Bentley¹ (<u>sbentley@mun.ca</u>) and Patrick Lajeunesse² (<u>Patrick.Lajeunesse@ggr.ulaval.ca</u>)

Cruise participants Leg 1a: Kathryn Denommee¹, Jonathan Roger² and Claudia Rousseau²

Cruise participants Leg 1b: Jonathan Roger² and Claudia Rousseau²

¹ Memorial University of Newfoundland and Labrador, Department of Earth Sciences, St. John's, NL, A1B 3X5, Canada.

² Centre d'études nordiques (CEN) & Université Laval, Département de géographie, Pavillon Abitibi-Price, 2405 rue de la Terrasse, local 3155, Québec, QC, G1V 0A6, Canada.

25.1 Introduction

25.1.1 Paleo-river discharge in Hudson Bay (Leg 1a)

This project focuses on river water and sediment discharge due to climatic variations. The objective during this cruise was to collect long cores in the Great Whale River and in the Nelson River estuaries to determine long-term and recent fluctuations in river discharge into Hudson Bay. The aim was to place recent variations in river discharge in a larger climatic context by studying paleo-sediment and water discharge and its relation to past climatic events such as the Little Ice Age and the Medieval Warm Period and further back.

25.1.2 Hudson Bay sedimentation rates (Leg 1a)

The goal during Leg 1a was to collect sediment from a series of box-cores taken around Hudson Bay. The sediments collected will provide information about modern sedimentation rates and other environmental parameters.

25.1.3 Holocene dedimentation in Lancaster Sound (Leg 1b)

The objective for Leg 1b was to collect sediments from box cores and a gravity core taken in Lancaster Sound. The sediments collected will provide information about modern sedimentation rates and other environmental parameters.

25.2 Methodology

25.2.1 Leg 1a - ArcticNet - 01 July to 02 August 2010 - Hudson Bay

Long cores were collected from the Great Whale and Nelson Estuaries using a combination of gravity and piston corers. Recovered sediment cores were cut into 1-m sections and stored at 4°C for subsequent transport.

Additionally, a box-core was deployed at several sites around Hudson Bay. Samples were collected from the box-core using a push core inserted into the recovered sediment. These samples were also stored at 4°C for subsequent transport.

Figure 25.1. Left: Crew of CCGS Amundsen deploying a box-core. Right: Deployment of the gravity core.

Table 25.1. Summary of long cores taken in the Great Whake and Nelson River systems in Hudson Bay during Leg 1a.

Station	Locality	Collection date	Latitude N	Longitude W	Water depth (m)	Notes
AMD10 702	Great Whale 1	07/14/10	55° 20.85	77° 45.69	95	Gravity Core
AMD10 702	Great Whale 1	07/14/10	55° 20.85	77° 45.78	98	Large Gravity Core
AMD10 702	Great Whale 2	07/14/10	55° 19.78	77° 48.78	80	Large Gravity Core
AMD10 702	Great Whale 3	07/14/10	55° 17.16	77° 49.85	69	Large Gravity Core
AMD10 705a	Nelson 1	07/22/10	57° 25.61	91° 53.52	18	Large Gravity Core
AMD10 705a	Nelson 1	07/22/10	57° 25.61	91° 53.52	18	Piston & Gravity Core
AMD10 705	Nelson 2	07/24/10	57° 39.55	91° 35.63	35	Piston & Gravity Core

Station	Locality	Collectio n date	Latitude N	Longitude W	Water depth (m)	Notes
AMD10 350		07/09/10	64º 25.93	80º 28.49	376	No Recovery
AMD10 699		07/11/09	59º 59.86	78º 25.46	86	2 push cores recovered
AMD10 702	Great Whale 1	07/13/10	55º 24.72	77º 55.86	134	2 push cores recovered
AMD10 709		07/15/10	56º 47.65	80º 50.24	184	2 push cores recovered
AMD10 735		07/15/10	54 º42.94	80º 46.69	87	2 push cores recovered
AMD10 706		07/21/09	58º 46.34	91º 31.94	79	1 push core recovered
AMD10 705a	Nelson Estuary	07/22/10	57º 25.61	91º 53.54	35	2 Push cores recovered
AMD10 705	Nelson Estuary	07/24/10	57º 16.80	92º 06.75	18	3 push cores recovered

Table 25.2. Summary of box cores taken in in Hudson Bay during Leg 1a.

25.2.2 Leg 1b – ArcticNet – 02 August to 12 August 2010 – Baffin Island and Canadian Arctic Archipelago

A gravity core was collected from Station 301 in Lancaster Sound. Recovered materials were cut into sections and stored at 4°C for subsequent transport. Additionally, a box-core was deployed at the two stations in Lancaster Sound. Samples were collected from the box-core using a push core inserted into the recovered sediment. These samples were also stored at 4°C for subsequent transport. Rocks recovered by the box-cores were also collected to analyze their origins and the way they have been transported and deposited.

Station ID	Sampling type	Date in 2010	Latitude N	Longitude W	Water depth (m)	Notes
AMD10 301	Gravity core	08/07	74° 11.03	83° 56.63	668	Gravity Core
AMD10 301	Box core	08/07	74º 10.98	83º 56.95	667	Two push cores recovered
AMD10 305	Box core	08/08	74º 19.40	93º 24.74	166	Few rocks were recovered
AMD10 305	Box core	08/08	55º 24.72	77º 55.86	166	Two push cores recovered

25.3 Preliminary Results

There are no preliminary results yet.

1a 1a	Labrador Sea 356 354 352 362 360 350 350 370 350 710 N/A N/A 698 699 701b N/A N/A N/A N/A N/A N/A	CTD Nutrient Nutrient Nutrient Nutrient Water sampling Nutrient Basic Nutrient Mapping (Start) Mapping (End) Nutrient Basic Nutrient	05/Jul/2010 07/Jul/2010 07/Jul/2010 07/Jul/2010 08/Jul/2010 08/Jul/2010 09/Jul/2010 09/Jul/2010 10/Jul/2010 10/Jul/2010	18h24 04h40 06h50 09h30 03h35 07h00 02h57 04h05 07h25 23h29 03h00 08h25	UTC-4 UTC-4 UTC-4 UTC-4 UTC-4 UTC-4 UTC-4 UTC-4 UTC-4 UTC-4	54°58.320 60°48.400 60°58.361 61°09.088 62°05.058 62°25.483 64°35.100 64°35.528 64°26.555 62°57.820	056°39.850 064°43.834 064°46.295 064°48.392 071°42.720 071°04.749 079°06.400 079°06.343 080°27.405 080°13.000	180 351 570 442 287 338 204 178 381
1a	356 354 352 362 360 350 370 350 710 N/A N/A 698 699 701b N/A N/A N/A	Nutrient Nutrient Nutrient Nutrient Water sampling Nutrient Basic Nutrient Mapping (Start) Mapping (End) Nutrient Basic Nutrient	07/Jul/2010 07/Jul/2010 08/Jul/2010 08/Jul/2010 09/Jul/2010 09/Jul/2010 09/Jul/2010 10/Jul/2010 10/Jul/2010 10/Jul/2010	04h40 06h50 09h30 03h35 07h00 02h57 04h05 07h25 23h29 03h00	UTC-4 UTC-4 UTC-4 UTC-4 UTC-4 UTC-4 UTC-4 UTC-4	60°48.400 60°58.361 61°09.088 62°05.058 62°25.483 64°35.100 64°35.528 64°26.555	064°43.834 064°46.295 064°48.392 071°42.720 071°04.749 079°06.400 079°06.343 080°27.405	351 570 442 287 338 204 178
1a	354 352 362 360 350 370 350 710 N/A N/A 698 699 701b N/A N/A	Nutrient Nutrient Nutrient Water sampling Nutrient Basic Nutrient Mapping (Start) Mapping (End) Nutrient Basic Nutrient	07/Jul/2010 07/Jul/2010 08/Jul/2010 09/Jul/2010 09/Jul/2010 09/Jul/2010 09/Jul/2010 10/Jul/2010 10/Jul/2010	06h50 09h30 03h35 07h00 02h57 04h05 07h25 23h29 03h00	UTC-4 UTC-4 UTC-4 UTC-4 UTC-4 UTC-4 UTC-4	60°58.361 61°09.088 62°05.058 62°25.483 64°35.100 64°35.528 64°26.555	064°46.295 064°48.392 071°42.720 071°04.749 079°06.400 079°06.343 080°27.405	570 442 287 338 204 178
1a	352 362 360 350 370 350 710 N/A N/A 698 699 701b N/A N/A N/A	Nutrient Nutrient Nutrient Water sampling Nutrient Basic Nutrient Mapping (Start) Mapping (End) Nutrient Basic Nutrient	07/Jul/2010 08/Jul/2010 09/Jul/2010 09/Jul/2010 09/Jul/2010 09/Jul/2010 10/Jul/2010 10/Jul/2010	09h30 03h35 07h00 02h57 04h05 07h25 23h29 03h00	UTC-4 UTC-4 UTC-4 UTC-4 UTC-4 UTC-4	61°09.088 62°05.058 62°25.483 64°35.100 64°35.528 64°26.555	064°48.392 071°42.720 071°04.749 079°06.400 079°06.343 080°27.405	442 287 338 204 178
1a	362 360 350 370 350 710 N/A 698 699 701b N/A N/A	Nutrient Nutrient Water sampling Nutrient Basic Nutrient Mapping (Start) Mapping (End) Nutrient Basic Nutrient	08/Jul/2010 08/Jul/2010 09/Jul/2010 09/Jul/2010 09/Jul/2010 10/Jul/2010 10/Jul/2010 10/Jul/2010	03h35 07h00 02h57 04h05 07h25 23h29 03h00	UTC-4 UTC-4 UTC-4 UTC-4 UTC-4	62°05.058 62°25.483 64°35.100 64°35.528 64°26.555	071°42.720 071°04.749 079°06.400 079°06.343 080°27.405	287 338 204 178
1a	360 350 370 350 710 N/A N/A 698 699 701b N/A N/A	Nutrient Water sampling Nutrient Basic Nutrient Mapping (Start) Mapping (End) Nutrient Basic Nutrient	08/Jul/2010 09/Jul/2010 09/Jul/2010 09/Jul/2010 09/Jul/2010 10/Jul/2010 10/Jul/2010	07h00 02h57 04h05 07h25 23h29 03h00	UTC-4 UTC-4 UTC-4 UTC-4	62°25.483 64°35.100 64°35.528 64°26.555	071°04.749 079°06.400 079°06.343 080°27.405	338 204 178
1a	350 370 350 710 N/A N/A 698 699 701b N/A N/A	Water sampling Nutrient Basic Nutrient Mapping (Start) Mapping (End) Nutrient Basic Nutrient	09/Jul/2010 09/Jul/2010 09/Jul/2010 09/Jul/2010 10/Jul/2010 10/Jul/2010	02h57 04h05 07h25 23h29 03h00	UTC-4 UTC-4 UTC-4	64°35.100 64°35.528 64°26.555	079°06.400 079°06.343 080°27.405	204 178
1a	370 350 710 N/A N/A 698 699 701b N/A N/A	Nutrient Basic Nutrient Mapping (Start) Mapping (End) Nutrient Basic Nutrient	09/Jul/2010 09/Jul/2010 09/Jul/2010 10/Jul/2010 10/Jul/2010 10/Jul/2010	04h05 07h25 23h29 03h00	UTC-4 UTC-4	64°35.528 64°26.555	079°06.343 080°27.405	178
1a	350 710 N/A N/A 698 699 701b N/A N/A	Basic Nutrient Mapping (Start) Mapping (End) Nutrient Basic Nutrient	09/Jul/2010 09/Jul/2010 10/Jul/2010 10/Jul/2010 10/Jul/2010	07h25 23h29 03h00	UTC-4	64°26.555	080°27.405	
1a	710 N/A N/A 698 699 701b N/A N/A	Nutrient Mapping (Start) Mapping (End) Nutrient Basic Nutrient	09/Jul/2010 10/Jul/2010 10/Jul/2010 10/Jul/2010	23h29 03h00				201
1a	N/A N/A 698 699 701b N/A N/A	Mapping (Start) Mapping (End) Nutrient Basic Nutrient	10/Jul/2010 10/Jul/2010 10/Jul/2010	03h00	010-4		11211*121101	276
1a	N/A 698 699 701b N/A N/A	Mapping (End) Nutrient Basic Nutrient	10/Jul/2010 10/Jul/2010		UTC-4	62°40.420	079°29.540	327
1a	698 699 701b N/A N/A	Nutrient Basic Nutrient	10/Jul/2010		UTC-4	62°38.020	079°28.670	274
1a	699 701b N/A N/A	Basic Nutrient		11h13	UTC-4	62°07.230	078°42.150	153
1a	701b N/A N/A	Nutrient	10/Jul/2010	23h48	UTC-4	59°59.940	078°26.110	84
1a 1a 1a 1a 1a	N/A		11/Jul/2010	12h15	UTC-4	58°24.950	079°22.200	124
1a 1a 1a 1a	N/A	Mapping (Start)	11/Jul/2010	16h20	UTC-4	58°25.440	078°18.550	89
1a 1a 1a	720	Mapping (End)	11/Jul/2010	18h30	UTC-4	58°22.270	078°16.230	90
1a 1a		Nutrient	12/Jul/2010	04h50	UTC-4	57°00.140	076°53.390	88
1a	Lovejoy	N/A	12/Jul/2010	09h35	UTC-4	56°32.250	076°46.100	113
	Lovejoy	N/A	12/Jul/2010	14h30	UTC-4	56°09.180	076°41.000	105
1a	702	Full	13/Jul/2010	05h27	UTC-4	55°24.520	077°56.170	134
	AN03-10	Mooring	13/Jul/2010	18h23	UTC-4	55°24.860	077°55.180	138
1a	GW-1	Piston Core	14/Jul/2010	08h56	UTC-4	55°20.850	077°45.690	95
1a	GW-2	Piston Core	14/Jul/2010	11h19	UTC-4	55°19.780	077°48.780	80
1a	GW-3	Piston Core	14/Jul/2010	12h28	UTC-4	55°17.160	077°49.850	69
1a	N/A	Weather Balloon	14/Jul/2010	15h50	UTC-4	55°14.600	078°08.530	109
1a	703	Nutrient	14/Jul/2010	21h28	UTC-4	54°40.740	079°57.460	45
1a	709	Basic	15/Jul/2010	00h50	UTC-4	54°42.690	080°46.760	88
1a	704	Nutrient	15/Jul/2010	08h30	UTC-4	54°45.490	081°42.310	27
1a 1a	730	Nutrient	15/Jul/2010	13h12	UTC-4	55°26.720	080°33.100	96 177
1a 1a	735 745	Basic	15/Jul/2010 16/Jul/2010	20h47 23h20	UTC-4 UTC-4	56°47.760 60°30.320	080°49.880 085°00.850	177
	745	Basic Nutrient	17/Jul/2010	11h02	UTC-4 UTC-4	60°40.790	085 00.850 087°28.200	182
1a 1a	760	Nutrient	17/Jul/2010	23h09	UTC-4	63°03.810	087 28.200 088°24.130	196
1a 1a	765	Basic	17/Jul/2010 18/Jul/2010	06h24	UTC-4	62°18.240	090°40.000	104
1a	N/A	Mapping (Start)	18/Jul/2010	15h45	UTC-4	61°30.450	092°05.050	104
1a 1a	N/A	Mapping (Start)	18/Jul/2010	16h40	UTC-4	61°29.680	092°02.520	119
1a	770	Nutrient	18/Jul/2010	19h25	UTC-4	60°56.181	091°47.758	109
1a	707	Full	19/Jul/2010	01h07	UTC-4	59°58.090	091°57.090	111
1a	AN01-09	Mooring	19/Jul/2010	06h42	UTC-4	59°58.225	091°57.012	105
1a	AN01-10	Mooring	19/Jul/2010	11h05	UTC-4	59°58.280	091°56.940	102
1a	VIP	VIP	20/Jul/2010	05h58	UTC-4	58°54.714	093°57.290	32
1a	N/A	Box Core	21/Jul/2010	03h57	UTC-4	59°36.733	091°49.794	120
1a	706	Full	21/Jul/2010	08h23	UTC-4	58°47.070	091°31.650	76
1a	AN02-09	Mooring	21/Jul/2010	13h22	UTC-4	58°47.140	091°32.040	75
1a	A11	River (Hayes-Nelson)	21/Jul/2010	21h45	UTC-4	57°44.190	091°43.830	39
1a	A12	River (Hayes-Nelson)	21/Jul/2010	22h16	UTC-4	57°44.970	091°36.610	51
1a	A13	River (Hayes-Nelson)	21/Jul/2010	22h58	UTC-4	57°46.000	091°27.890	53
1a	A14	River (Hayes-Nelson)	21/Jul/2010	23h50	UTC-4	57°46.950	091°19.950	63
1a	A15	River (Hayes-Nelson)	22/Jul/2010	00h34	UTC-4	57°42.780	091°20.120	45
1a	A16	River (Hayes-Nelson)	22/Jul/2010	01h15	UTC-4	57°38°740	091°20.310	46
1a	A17	River (Hayes-Nelson)	22/Jul/2010	01h55	UTC-4	57°34.640	091°20.440	37
1a	A7	River (Hayes-Nelson)	22/Jul/2010	04h10	UTC-4	57°26.094	091°34.557	28
1a	A6	River (Hayes-Nelson)	22/Jul/2010	05h10	UTC-4	57°24.670	091°42.230	49
1a 1a	A5	River (Hayes-Nelson)	22/Jul/2010	05h55	UTC-4	57°23.450	091°49.240	43

Leg	Station ID	Station Type	Local Date	Local Time	UTC to local	Latitude (N)	Longitude (W)	Depth (m)
1a	A8	River (Hayes-Nelson)	22/Jul/2010	06h56	UTC-4	57°22.050	091°56.950	34
1a	NR-B12	River (Hayes-Nelson)	22/Jul/2010	07h20	UTC-4	57°19.314	092°06.894	23
1a	NR-B10	River (Hayes-Nelson)	22/Jul/2010	08h45	UTC-4	57°14.820	092°13.194	11
1a	705B	Nutrient	22/Jul/2010	09h09	UTC-4	57°25.530	091°53.470	36
1a	NR-B9	River (Hayes-Nelson)	22/Jul/2010	09h20	UTC-4	57°12.645	092°15.738	9
1a	NR-B8	River (Hayes-Nelson)	22/Jul/2010	09h35	UTC-4	57°10.746	092°19.872	10
1a	NR-B7	River (Hayes-Nelson)	22/Jul/2010	10h15	UTC-4	57°08.784	092°23.166	19
1a	NR-B6	River (Hayes-Nelson)	22/Jul/2010	11h40	UTC-4	57°06.684	092°26.496	9
1a	HR-D7	River (Hayes-Nelson)	22/Jul/2010	13h45	UTC-4	57°12.870	091°54.923	14
1a	HR-D8	River (Hayes-Nelson)	22/Jul/2010	14h30	UTC-4	57°14.442	091°52.150	16
1a	NR-BD20	River (Hayes-Nelson)	22/Jul/2010	15h10	UTC-4	57°14.470	091°52.194	28
1a	705A	Full	22/Jul/2010	19h22	UTC-4	57°25.520	091°53.510	36
1a	705A	Nutrient	23/Jul/2010	04h22	UTC-4	57°42.262	091°55.510 090°45.636	37
1a	Intermediate A8-	River (Hayes-Nelson)	23/Jul/2010	09h15	UTC-4	57°26.590	090 45.030 091°44.520	41
	705A							
1a	A8	River (Hayes-Nelson)	23/Jul/2010	09h59	UTC-4	57°29.670	091°35.330	37
1a	Intermediate A8- 705B	River (Hayes-Nelson)	23/Jul/2010	10h43	UTC-4	57°32.160	091°28.370	34
1a	705B	Nutrient	23/Jul/2010	11h24	UTC-4	57°34.670	091°20.750	40
1a	Intermediate 705B-C	River (Hayes-Nelson)	23/Jul/2010	14h12	UTC-4	57°37.020	091°11.650	44
1a	Intermediate 705B-C	River (Hayes-Nelson)	23/Jul/2010	14h54	UTC-4	57°38.740	091°02.810	38
1a	Intermediate 705B-C	River (Hayes-Nelson)	23/Jul/2010	15h34	UTC-4	57°40.300	090°54.810	35
1a	A25	River (Hayes-Nelson)	23/Jul/2010	18h05	UTC-4	57°47.180	090°49.920	40
1a	A24	River (Hayes-Nelson)	23/Jul/2010	18h41	UTC-4	57°45.553	090°56.907	47
1a	A24	River (Hayes-Nelson)	23/Jul/2010	19h21	UTC-4	57°41.321	090°57.477	39
1a	705M	Full	24/Jul/2010	05h55	UTC-4	57°40.517	090°37.477 091°34.801	52
1a 1a	AN04-09	Mooring	24/Jul/2010 24/Jul/2010	03h55	UTC-4	57°40.150	091 34.801 091°36.240	52
1a 1a	AN04-09	Mooring	24/Jul/2010 24/Jul/2010	14h31	UTC-4	57°40.130	091 30.240 091°36.179	60
1a	Nelson River mouth	River (Hayes-Nelson)	26/Jul/2010	141151 11h47	UTC-4	57°16.800	091 30.179 092°06.780	20
1a	A8	N/A	27/Jul/2010	08h42	UTC-4	57°30.420	091°37.700	67
1a	N/A	MVP (Start)	27/Jul/2010	10h57	UTC-4	57°36.360	091°13.270	38
1a	N/A	MVP (End)	27/Jul/2010	12h50	UTC-4	57°37.640	091°07.950	35
1a	800	Nutrient	27/Jul/2010	20h47	UTC-4	58°10.160	088°14.300	119
1a	795	Nutrient	28/Jul/2010	00h18	UTC-4	57°39.530	088°33.230	72
1a	790	Basic	28/Jul/2010	03h37	UTC-4	57°14.740	088°52.630	40
1a	810	Nutrient	28/Jul/2010	13h28	UTC-4	50°50.560	087°16.040	60
1a	820	Basic	28/Jul/2010	22h34	UTC-4	55°41.630	084°53.340	53
1a	825	Nutrient	29/Jul/2010	04h48	UTC-4	56°10.699	084°36.979	121
1a	830	Water Sampling	29/Jul/2010	08h22	UTC-4	56°46.600	084°16.700	162
1a	830	Nutrient	29/Jul/2010	09h04	UTC-4	56°47.230	084°15.600	163
1a	835	Nutrient	29/Jul/2010	13h55	UTC-4	57°30.280	083°51.980	169
1a 1a	840	Basic	29/Jul/2010	19h01	UTC-4	58°24.669	083°18.918	175
1a	740	Nutrient	30/Jul/2010	09h54	UTC-4	60°22.130	083°59.160	149
1a	Ex1	N/A	30/Jul/2010	20h09	UTC-4	62°07.970	081°23.960	207
1a 1a	Ex1 Ex2	N/A N/A	30/Jul/2010 31/Jul/2010	01h43	UTC-4	62°39.740	079°27.710	320
1a 1a	N/A	MVP (Start)	31/Jul/2010 31/Jul/2010	17h38	UTC-4 UTC-4	62°39.740 62°38.440	079 27.710 073°22.280	223
1a	N/A	MVP (End)	31/Jul/2010	22h12	UTC-4	62°29.800	071°32.490	327
Leg 1b				401.07		70070	000000 ====	
1b	Cap Haye	MVP (Start)	06/Aug/2010	12h05	UTC-4	73°50.650	080°02.700	843
1b	Cap Haye	MVP (End)	06/Aug/2010	16h47	UTC-4	74°32.140	080°34.490	553
1b	301	Basic	06/Aug/2010	23h44	UTC-4	74°10.980	083°56.410	669
1b	302	Nutrient	07/Aug/2010	12h51	UTC-4	74°09.730	086°10.280	522
1b	303	Nutrient	07/Aug/2010	19h59	UTC-4	74°13.340	089°37.140	236
1b	LS01-10	Mooring	07/Aug/2010	22h51	UTC-4	74°28.180	090°23.280	269

Leg	Station ID	Station Type	Local Date	Local Time	UTC to local	Latitude (N)	Longitude (W)	Depth (m)
1b	BIO	CTD	07/Aug/2010	23h40	UTC-4	74°27.690	090°22.450	282
1b	304	Nutrient	08/Aug/2010	00h42	UTC-5	74°18.420	091°20.480	328
1b	305	Basic	08/Aug/2010	04h05	UTC-5	74°19.686	093°24.527	340
1b	310	Basic	09/Aug/2010	03h15	UTC-5	71°17.440	097°41.980	124
1b	312	Nutrient	10/Aug/2010	01h45	UTC-6	69°09.460	100°42.060	49
1b	314	Nutrient	10/Aug/2010	18h30	UTC-6	69°00.133	106°36.343	115
Leg 2a								•
2a	BP10-018	Biophysical	15/Aug/2010	00h00	UTC-6	70°46.530	134°23.120	68
2a	LF-1	Hydrophone	15/Aug/2010	05h20	UTC-6	70°48.294	134°19.749	70
2a	LF-2	Hydrophone	15/Aug/2010	05h55	UTC-6	70°50.800	134°32.890	78
2a	HF-2	Hydrophone	15/Aug/2010	06h17	UTC-6	70°52.240	134°28.400	80
2a	LF-3	Hydrophone	15/Aug/2010	06h55	UTC-6	70°53.310	134°46.060	107
2a	HF-5	Hydrophone	15/Aug/2010	08h07	UTC-6	70°53.393	135°22.440	525
2a	HF-4	Hydrophone	15/Aug/2010	08h51	UTC-6	71°00.311	135°22.549	640
2a	LF-4	Hydrophone	15/Aug/2010	09h57	UTC-6	70°55.932	134°58.478	345
2a	HF-3	Hydrophone	15/Aug/2010	10h24	UTC-6	70°55.855	134°46.458	228
2a	LF-7	Hydrophone	15/Aug/2010	10h48	UTC-6	70°58.338	134°45.986	304
2a	LF-6	Hydrophone	15/Aug/2010	11h19	UTC-6	70°55.845	134°32.933	101
2a	LF-5	Hydrophone	15/Aug/2010	11h51	UTC-6	70°53.271	134°17.950	79
2a	J-09	Mooring	15/Aug/2010	13h00	UTC-6	70°54.030	134°16.550	89
2a	LF-8	Hydrophone	15/Aug/2010	14h50	UTC-6	70°50.720	134°06.990	82
2a	BP10-04	Biophysical	15/Aug/2010	16h14	UTC-6	70°55.380	134°26.620	96
2a	BP10-015	Biophysical	15/Aug/2010	21h15	UTC-6	70°58.924	134°22.750	259
2a	BP10-010	Biophysical	16/Aug/2010	02h15	UTC-6	71°00.580	134°39.820	333
2a	BP10-012	Biophysical	16/Aug/2010	08h57	UTC-6	70°53.740	134°14.900	80
2a	J-10	Mooring	16/Aug/2010	14h34	UTC-6	70°53.850	134°15.650	82
2a	BP10-09	Biophysical	16/Aug/2010	23h09	UTC-6	71°09.143	135°38.359	962
2a	BP10-04	Biophysical	17/Aug/2010	10h19	UTC-6	70°55.178	134°51.188	248
2a	G-09	Mooring	18/Aug/2010	17h28	UTC-6	71°00.160	135°31.740	734
2a	BP10-07	Biophysical	18/Aug/2010	21h19	UTC-6	71°04.900	135°33.650	843
2a	BP10-05	Biophysical	19/Aug/2010	08h31	UTC-6	71°01.789	134°48.485	442
2a	BP10-011	Biophysical	20/Aug/2010	20h58	UTC-6	70°51.830	134°45.864	90
2a	BP10-01	Biophysical	21/Aug/2010	02h26	UTC-6	70°45.390	135°03.740	75
2a	BP10-02	Biophysical	21/Aug/2010	06h10	UTC-6	70°51.100	135°00.200	127
2a	G-10	Mooring	21/Aug/2010	16h10	UTC-6	71°00.230	135°28.460	693
2a	BP10-08	Biophysical	21/Aug/2010	20h22	UTC-6	71°08.003	135°29.581	897
2a	H-09	Mooring	22/Aug/2010	07h11	UTC-6	71°01.380	134°43.720	393
2a	BP10-06	Biophysical	22/Aug/2010	12h48	UTC-6	70°59.880	135°36.630	709
2a	BP10-16	Biophysical	22/Aug/2010	23h28	UTC-6	70°59.261	135°22.525	629
2a	H-10	Mooring	23/Aug/2010	16h06	UTC-6	71°01.260	134°41.230	366
2a	1-09	Mooring	23/Aug/2010	18h10	UTC-6	70°48.740	134°31.700	72
2a	BP10-13	Biophysical	23/Aug/2010	19h27	UTC-6	70°49.560	134°34.410	72
2a	BP10-03	Biophysical	24/Aug/2010	00h15	UTC-6	70°57.090	134°57.720	379
2a	I-10	Mooring	24/Aug/2010	11h43	UTC-6	70°48.949	134°32.604	72
2a	N/A	MOB buoy	24/Aug/2010	17h10	UTC-6	70°56.900	134°44.880	250
2a	BP10-16	Biophysical	24/Aug/2010	19h25	UTC-6	70°59.230	135°22.290	630
2a	BP10-17	Biophysical	24/Aug/2010	23h07	UTC-6	71°07.072	135°11.577	722
2a	H-10	CTD	25/Aug/2010	04h27	UTC-6	71°00.930	134°40.690	351
2a	CA04-08	Mooring	25/Aug/2010	08h45	UTC-6	71°04.862	133°38.594	294
2a	N/A	MVP (Start)	25/Aug/2010	14h35	UTC-6	71°20.840	131°03.600	219
2a	N/A	MVP (End)	25/Aug/2010	17h47	UTC-6	71°25.940	130°10.810	72

Leg	Station ID	Station Type	Local Date	Local Time	UTC to local	Latitude (N)	Longitude (W)	Depth (m)
Leg 2b								
2b	N/A	MVP (Start)	27/Aug/2010	07h29	UTC-6	71°24.960	129°55.400	90
2b	N/A	MVP (End)	27/Aug/2010	08h42	UTC-6	71°25.130	130°21.040	89
2b	N/A	MVP (Start)	27/Aug/2010	18h18	UTC-6	70°52.230	133°53.830	79
2b	N/A	MVP (End)	27/Aug/2010	19h44	UTC-6	70°53.160	134°13.300	73
2b	N/A	USBL Beacon	02/Sep/2010	06h09	UTC-6	71°04.440	135°42.810	886
2b	B-09	Mooring	02/Sep/2010	17h26	UTC-6	70°39.960	135°35.980	153
2b	N/A	MVP (Start)	02/Sep/2010	20h55	UTC-6	70°54.580	135°32.450	606
2b	N/A	MVP (End)	03/Sep/2010	09h27	UTC-6	71°10.886	135°13.962	660
2b	N/A	MVP (Start)	03/Sep/2010	13h50	UTC-6	71°06.530	134°32.960	469
2b	N/A	MVP (Start)	03/Sep/2010	20h48	UTC-6	71°11.883	135°24.863	1013
2b	N/A	MVP (End)	04/Sep/2010	01h00	UTC-6	70°45.000	134°27.900	N/A
2b	N/A	MVP (Start)	04/Sep/2010	01h20	UTC-6	70°45.000	134°28.600	N/A
2b	N/A	MVP (End)	04/Sep/2010	03h25	UTC-6	70°56.800	134°10.100	N/A
2b	N/A	MVP (Start)	04/Sep/2010	04h15	UTC-6	71°02.300	134°20.000	N/A
2b	N/A	MVP (End)	04/Sep/2010	06h48	UTC-6	70°44.900	134°52.200	N/A
2b	B-10	Mooring	04/Sep/2010	09h25	UTC-6	70°40.121	135°35.201	150
2b	BP10-PC12	Piston Core	04/Sep/2010	12h04	UTC-6	70°47.590	135°33.740	425
2b	BP10-PC39	Piston Core	04/Sep/2010	15h15	UTC-6	70°59.480	135°31.550	677
2b	BP10-PC34	Piston Core	04/Sep/2010	18h15	UTC-6	70°59.170	135°22.210	630
2b	N/A	MVP (Start)	04/Sep/2010	20h45	UTC-6	71°02.688	135°32.053	778
2b	N/A	MVP (End)	04/Sep/2010	23h32	UTC-6	70°45.160	134°56.187	66
2b	N/A	MVP (Start)	05/Sep/2010	00h05	UTC-6	70°45.180	135°06.600	431
2b	N/A	MVP (End)	05/Sep/2010	03h44	UTC-6	71°08.940	136°01.910	1051
2b	N/A	MVP (Start)	05/Sep/2010	04h45	UTC-6	71°03.540	135°50.690	1013
2b	N/A	MVP (End)	05/Sep/2010	06h15	UTC-6	70°54.410	135°30.820	597
2b	F-09	Mooring	05/Sep/2010	08h10	UTC-6	70°55.720	136°23.696	999
2b	BP10-PC06	Piston Core	05/Sep/2010	13h57	UTC-6	71°00.370	135°27.250	683
2b	BP10-BX14	Box Core	05/Sep/2010	16h13	UTC-6	70°59.450	135°15.240	595
2b	N/A	Mapping (Start)	05/Sep/2010	17h48	UTC-6	71°00.370	135°27.370	641
2b	N/A	Mapping (End)	05/Sep/2010	19h30	UTC-6	71°11.500	135°50.800	1127
2b	N/A	Mapping (Start)	05/Sep/2010	20h00	UTC-6	71°11.741	135°44.370	N/A
2b	N/A	Mapping (End)	06/Sep/2010	00h10	UTC-6	70°45.180	134°46.080	436
2b	N/A	Mapping (Start)	06/Sep/2010	00h25	UTC-6	70°45.240	134°38.820	840
2b	N/A	Mapping (End)	06/Sep/2010	04h35	UTC-6	71°12.130	135°39.200	1090
2b	N/A	Mapping (Start)	06/Sep/2010	05h55	UTC-6	71°12.010	135°16.160	N/A
2b	N/A	Mapping (End)	06/Sep/2010	06h25	UTC-6	71°08.500	135°32.900	N/A
2b	BP10-PC22	Piston Core	06/Sep/2010	07h08	UTC-6	71°08.709	135°34.807	952
2b	BP10-PC29	Piston Core	06/Sep/2010	10h51	UTC-6	70°57.083	134°53.056	330
2b	BP10-PC31	Piston Core	06/Sep/2010	13h09	UTC-6	71°01.640	134°48.320	433
2b	BP10-PC40	Piston Core	06/Sep/2010	15h09	UTC-6	70°59.480	134°45.490	349
2b	BP10-BX12	Box Core	06/Sep/2010	18h42	UTC-6	71°01.280	135°01.990	557
2b	N/A	Mapping (Start)	06/Sep/2010	19h40	UTC-6	70°58.980	135°16.560	618
2b	N/A	Mapping (End)	06/Sep/2010	20h24	UTC-6	71°02.708	135°28.882	765
2b	N/A	Mapping (Start)	06/Sep/2010	20h34	UTC-6	71°02.305	135°29.907	747
2b	N/A	Mapping (End)	06/Sep/2010	21h20	UTC-6	70°58.551	135°17.600	591
2b	N/A	Mapping (Start)	06/Sep/2010	21h29	UTC-6	70°58.276	135°19.157	593
2b	N/A	Mapping (End)	06/Sep/2010	22h11	UTC-6	71°01.908	135°31.097	752
2b	N/A	Mapping (Start)	06/Sep/2010	21h21	UTC-6	71°01.537	135°32.190	758
2b	N/A	Mapping (End)	06/Sep/2010	23h04	UTC-6	70°57.804	135°19.960	595
2b	N/A	Mapping (Start)	06/Sep/2010	23h12	UTC-6	70°57.412	135°21.094	597
2b	N/A	Mapping (End)	06/Sep/2010	23h52	UTC-6	71°01.139	135°33.451	781
2b	N/A	Mapping (Start)	07/Sep/2010	00h01	UTC-6	71°00.780	135°34.620	706
2b	N/A	Mapping (End)	07/Sep/2010	00h49	UTC-6	70°56.780	135°21.360	597
2b	N/A	Mapping (Start)	07/Sep/2010	01h25	UTC-6	70°51.960	135°04.680	269
2b	N/A	Mapping (End)	07/Sep/2010	01h50	UTC-6	70°49.800	134°59.880	90
2b 2b	N/A	Mapping (Start)	07/Sep/2010	02h00	UTC-6	70°50.100	134°58.560	92
25 2b	N/A	Mapping (Start)	07/Sep/2010	02h00	UTC-6	70°52.320	135°03.360	260
2b 2b	N/A	Mapping (Start)	07/Sep/2010	02h20	UTC-6	70°52.620	135°02.040	251

Leg	Station ID	Station Type	Local Date	Local Time	UTC to local	Latitude (N)	Longitude (W)	Depth (m)
2b	N/A	Mapping (End)	07/Sep/2010	02h50	UTC-6	70°50.400	134°57.240	91
2b	N/A	Mapping (Start)	07/Sep/2010	03h00	UTC-6	70°50.700	134°55.920	94
2b	N/A	Mapping (End)	07/Sep/2010	03h20	UTC-6	70°52.920	135°00.660	233
2b	N/A	Mapping (Start)	07/Sep/2010	03h30	UTC-6	70°53.220	134°59.340	243
2b	N/A	Mapping (End)	07/Sep/2010	03h52	UTC-6	70°51.060	134°54.540	88
2b	N/A	Mapping (Start)	07/Sep/2010	04h25	UTC-6	70°55.100	135°04.300	379
2b	N/A	Mapping (End)	07/Sep/2010	05h40	UTC-6	71°00.400	135°21.400	360
2b	BP10-PC32	Piston Core	07/Sep/2010	06h35	UTC-6	71°00.950	134°22.660	339
2b	BP10-PC14	Piston Core	07/Sep/2010	09h10	UTC-6	70°55.388	134°12.301	101
2b	BP10-PC28	Piston Core	07/Sep/2010	11h03	UTC-6	70°53.879	134°14.681	83
2b	GSC10-BX01	Box Core	07/Sep/2010	N/A	UTC-6	N/A	N/A	80
2b	N/A	Mapping (Start)	07/Sep/2010	18h48	UTC-6	71°05.000	134°23.200	484
2b	N/A	Mapping (End)	07/Sep/2010	22h47	UTC-6	70°50.370	135°32.660	512
2b	N/A	Mapping (Start)	07/Sep/2010	23h00	UTC-6	70°50.795	135°33.513	546
2b	N/A	Mapping (End)	08/Sep/2010	03h28	UTC-6	71°05.650	134°23.610	523
2b	N/A	Mapping (Start)	08/Sep/2010	03h37	UTC-6	71°05.810	134°25.330	518
2b	N/A	Mapping (End)	08/Sep/2010	05h25	UTC-6	70°58.010	135°01.000	N/A
2b	GSC10-BX01	Box Core	08/Sep/2010	07h15	UTC-6	70°51.350	134°40.990	80
2b	N/A	Mapping (End)	08/Sep/2010	08h54	UTC-6	70°58.379	135°20.105	460
2b	N/A	Mapping (Start)	08/Sep/2010	09h50	UTC-6	70°55.377	135°18.167	536
2b	N/A	Mapping (End)	08/Sep/2010	12h44	UTC-6	71°06.300	134°25.890	559
2b 2b	N/A	Mapping (Start)	08/Sep/2010	13h10	UTC-6	71°06.600	134°27.530	532 551
2b 2b	N/A BP10-BX06	Mapping (End) Box Core	08/Sep/2010 08/Sep/2010	15h10 16h15	UTC-6 UTC-6	70°58.500 70°51.980	135°05.600 134°53.560	112
20 2b	BP10-BX00 BP10-BX07	Box Core	08/Sep/2010 08/Sep/2010	17h44	UTC-6	70°46.590	134 33.380 134°49.180	73
20 2b	BP10-BX07 BP10-BX08	Box Core	08/Sep/2010 08/Sep/2010	19h00	UTC-6	70°48.940	134 49.180 135°10.680	159
2b 2b	N/A	Mapping (Start)	08/Sep/2010	20h42	UTC-6	70°48.940 70°58.885	135°04.824	507
2b 2b	N/A	Mapping (Start)	08/Sep/2010	201142 21h25	UTC-6	70°55.097	135°25.489	574
2b 2b	N/A	Mapping (Start)	08/Sep/2010	21h25	UTC-6	70°55.251	135°23.485 135°24.758	570
2b	N/A	Mapping (Start)	08/Sep/2010	23h14	UTC-6	70°07.169	134°27.748	533
2b	N/A	Mapping (Start)	08/Sep/2010	23h23	UTC-6	71°07.540	134°29.260	550
2b	N/A	Mapping (End)	09/Sep/2010	01h05	UTC-6	70°54.740	135°29.806	581
2b	N/A	Mapping (Start)	09/Sep/2010	01h29	UTC-6	70°50.960	135°22.330	459
2b	N/A	Mapping (End)	09/Sep/2010	03h00	UTC-6	70°01.600	134°32.600	318
2b	N/A	Mapping (Start)	09/Sep/2010	03h05	UTC-6	70°01.500	134°31.400	318
2b	N/A	Mapping (End)	09/Sep/2010	04h30	UTC-6	70°50.700	135°22.100	449
2b	F-10	Mooring	09/Sep/2010	10h47	UTC-6	70°55.814	136°24.801	1003
2b	A1-09	Mooring	09/Sep/2010	14h05	UTC-6	70°45.410	135°59.910	672
2b	BP10-PC26	Piston Core	09/Sep/2010	19h23	UTC-6	70°51.570	134°59.680	103
2b	N/A	Mapping (Start)	09/Sep/2010	21h11	UTC-6	70°50.525	70°50.525	425
2b	N/A	Mapping (End)	10/Sep/2010	00h50	UTC-6	71°06.455	71°06.455	450
2b	N/A	Mapping (Start)	10/Sep/2010	00h56	UTC-6	71°06.125	134°06.145	452
2b	N/A	Mapping (End)	10/Sep/2010	04h15	UTC-6	70°49.900	135°22.800	N/A
2b	N/A	Mapping (Start)	10/Sep/2010	04h20	UTC-6	70°49.600	135°22.430	N/A
2b	N/A	Mapping (End)	10/Sep/2010	05h15	UTC-6	70°56.600	135°45.500	80
2b	GSC-PC01	Piston Core	10/Sep/2010	06h20	UTC-6	70°51.340	134°41.090	80
2b	BP10-PC09	Piston Core	10/Sep/2010	08h49	UTC-6	70°51.571	134°26.409	78
2b	BP10-PC08	Piston Core	10/Sep/2010	10h15	UTC-6	70°53.994	134°46.611	141
2b	BP10-PC30	Piston Core	10/Sep/2010	12h11	UTC-6	70°55.310	134°33.150	93
2b	BP10-PC41	Piston Core	10/Sep/2010	13h19	UTC-6	70°57.350	134°40.450	238
2b	GSC10-PC06	Piston Core	10/Sep/2010	14h43	UTC-6	70°54.870	134°48.530	190
2b	GSC10-BX06	Box Core	10/Sep/2010	15h35	UTC-6	70°54.870	134°48.530	182
2b	BP10-BX09	Box Core	10/Sep/2010	16h55	UTC-6	70°55.530	134°22.750	111
2b	BP10-BX13	Box Core	10/Sep/2010	18h16	UTC-6	70°58.450	134°43.110	285
2b	N/A	Mapping (Start)	10/Sep/2010	19h00	UTC-6	70°56.400	134°50.660	270
2b	N/A	Mapping (End)	10/Sep/2010	20h25	UTC-6	71°05.857	134°05.831	460
2b	N/A	Mapping (Start)	10/Sep/2010	20h30	UTC-6	71°05.533	134°06.103	465
2b	N/A	Mapping (End)	10/Sep/2010	22h45	UTC-6	70°49.373	135°20.905	389
2b	N/A	Mapping (Start)	10/Sep/2010	22h49	UTC-6	70°49.570	135°19.816	388

Leg	Station ID	Station Type	Local Date	Local Time	UTC to local	Latitude (N)	Longitude (W)	Depth (m)
2b	N/A	Mapping (End)	11/Sep/2010	01h04	UTC-6	71°05.400	134°04.810	440
2b	N/A	Mapping (Start)	11/Sep/2010	01h09	UTC-6	71°05.210	134°04.270	440
2b	N/A	Mapping (End)	11/Sep/2010	03h53	UTC-6	70°47.440	135°26.000	355
2b	N/A	Mapping (Start)	11/Sep/2010	03h52	UTC-6	70°47.700	135°25.340	220
2b	N/A	Mapping (End)	11/Sep/2010	04h30	UTC-6	70°51.500	135°08.150	274
2b	N/A	Mapping (Start)	11/Sep/2010	04h33	UTC-6	70°51.250	135°07.350	247
2b	N/A	Mapping (End)	11/Sep/2010	05h08	UTC-6	70°47.140	135°26.400	371
2b	A1-10	Mooring	11/Sep/2010	09h35	UTC-6	70°45.891	136°00.111	684
2b	A2-09	Mooring	11/Sep/2010	12h30	UTC-6	70°44.610	135°54.560	607
2b	BP10-PC18	Piston Core	11/Sep/2010	15h01	UTC-6	70°46.170	135°10.830	91
2b	BP10-PC44	Piston Core	11/Sep/2010	17h11	UTC-6	70°39.360	134°41.840	60
2b	GSC10-BX05	Box Core	11/Sep/2010	19h09	UTC-6	70°55.730	134°50.240	254
2b	BP10-BX16	Box Core	11/Sep/2010	20h14	UTC-6	71°01.943	134°49.352	453
2b	BP10-BX15	Box Core	11/Sep/2010	21h16	UTC-6	71°05.096	134°38.293	467
2b	N/A	Mapping (Start)	11/Sep/2010	22h39	UTC-6	71°04.978	134°04.305	429
2b	N/A	Mapping (End)	12/Sep/2010	00h36	UTC-6	70°51.500	135°08.000	245
2b	N/A	Mapping (Start)	12/Sep/2010	00h38	UTC-6	70°51.220	135°07.680	245
2b	N/A	Mapping (End)	12/Sep/2010	02h31	UTC-6	71°04.810	134°03.020	417
2b	N/A	Mapping (Start)	12/Sep/2010	02h34	UTC-6	71°04.660	134°02.670	417
2b	N/A	Mapping (End)	12/Sep/2010	04h42	UTC-6	70°49.500	135°14.500	257
2b	BP10-PC42	Piston Core	12/Sep/2010	06h49	UTC-6	70°49.520	134°21.610	70
2b	BP10-PC27	Piston Core	12/Sep/2010	08h22	UTC-6	70°46.989	134°25.682	69
2b	BP10-PC43	Piston Core	12/Sep/2010	09h23	UTC-6	70°47.558	134°33.153	56
2b	GSC10-PC05	Piston Core	12/Sep/2010	10h55	UTC-6	70°55.730	134°50.224	255
2b	BP10-PC36	Piston Core	12/Sep/2010	13h06	UTC-6	70°57.010	135°07.110	472
2b	BP10-PC37	Piston Core	12/Sep/2010	14h23	UTC-6	70°56.240	135°09.910	489
2b	BP10-PC01	Piston Core	12/Sep/2010	15h50	UTC-6	70°54.670	135°15.460	485
2b 2b	BP10-BX01	Box Core	12/Sep/2010	19h18	UTC-6	71°01.550	135°33.020	772
20 2b	BP10-BX02 N/A	Box Core	12/Sep/2010	21h08 22h10	UTC-6 UTC-6	71°01.775 71°02.223	135°35.157 135°39.184	839 897
20 2b	N/A N/A	Mapping (Start)	12/Sep/2010	22h10 22h26	UTC-6	71°02.223		730
20 2b	N/A N/A	Mapping (End) Mapping (Start)	12/Sep/2010 12/Sep/2010	23h35	UTC-6	71 01.282 70°46.573	135°30.133 135°25.587	248
20 2b	N/A N/A	Mapping (Start)	12/Sep/2010 13/Sep/2010	02h00	UTC-6	70 40.373 71°04.300	133 23.387 134°02.400	352
20 2b	N/A N/A	Mapping (Start)	13/Sep/2010	02h05	UTC-6	71°04.300 71°04.080	134°02.400	349
2b 2b	N/A	Mapping (Start)	13/Sep/2010	04h35	UTC-6	71°04.000 70°46.500	135°25.000	N/A
2b 2b	N/A	Mapping (Start)	13/Sep/2010	04h40	UTC-6	70°46.300	135°23.800	N/A
2b	N/A	Mapping (End)	13/Sep/2010	05h50	UTC-6	70°54.600	133°45.100	N/A
2b	N/A	Mapping (Start)	13/Sep/2010	05h55	UTC-6	70°55.000	134°43.000	N/A
2b	N/A	Mapping (End)	13/Sep/2010	07h15	UTC-6	70°46.000	134°24.000	N/A
2b	A2-10	Mooring	13/Sep/2010	10h56	UTC-6	70°44.652	135°54.966	609
2b	BP10-PC23	Piston Core	13/Sep/2010	15h04	UTC-6	71°00.590	135°34.020	776
2b	BP10-PC21	Piston Core	13/Sep/2010	17h10	UTC-6	71°00.030	135°32.850	696
2b	GSC10-BX04	Box Core	13/Sep/2010	19h27	UTC-6	71°03.810	135°07.440	629
2b	BP10-BX10	Box Core	13/Sep/2010	20h55	UTC-6	71°02.597	135°17.388	680
2b	N/A	Mapping (Start)	13/Sep/2010	23h37	UTC-6	71°00.700	134°54.150	459
2b	N/A	Mapping (End)	14/Sep/2010	00h05	UTC-6	71°03.900	134°41.100	429
2b	N/A	Mapping (Start)	14/Sep/2010	01h10	UTC-6	71°03.820	134°02.100	375
2b	N/A	Mapping (End)	14/Sep/2010	02h25	UTC-6	70°55.200	134°43.700	130
2b	N/A	Mapping (Start)	14/Sep/2010	02h30	UTC-6	70°55.100	134°42.900	130
2b	N/A	Mapping (End)	14/Sep/2010	03h30	UTC-6	71°03.690	134°01.580	N/A
2b	N/A	Mapping (Start)	14/Sep/2010	03h57	UTC-6	71°03.100	134°03.500	371
2b	N/A	Mapping (End)	14/Sep/2010	05h37	UTC-6	70°51.700	134°57.800	290
2b	N/A	Mapping (Start)	14/Sep/2010	05h46	UTC-6	70°51.700	134°57.800	290
2b	N/A	Mapping (End)	14/Sep/2010	07h30	UTC-6	71°51.500	134°00.350	349
2b	BP10-PC25	Piston Core	14/Sep/2010	08h32	UTC-6	70°57.924	134°08.281	194
2b	BP10-PC10	Piston Core	14/Sep/2010	12h12	UTC-6	70°47.170	133°47.170	81
2b	BP10-PC13	Piston Core	14/Sep/2010	19h50	UTC-6	70°40.249	133°21.264	54
2b	BP10-PC16	Piston Core	15/Sep/2010	10h43	UTC-6	70°40.751	132°59.300	20
2b	BP10-PC17	Piston Core	15/Sep/2010	13h13	UTC-6	70°47.040	132°35.580	30

Leg	Station ID	Station Type	Local Date	Local Time	UTC to local	Latitude (N)	Longitude (W)	Depth (m)
2b	BP10-PC07	Piston Core	15/Sep/2010	16h58	UTC-6	70°35.120	132°05.480	45
2b	BP10-PC11	Piston Core	15/Sep/2010	20h59	UTC-6	70°48.389	133°13.641	23
2b	BP10-PC15	Piston Core	16/Sep/2010	08h34	UTC-6	71°00.992	132°41.383	67
2b	BP10-PC33	Piston Core	16/Sep/2010	14h34	UTC-6	71°00.890	135°10.090	602
2b	BP10-PC43	ROV	16/Sep/2010	17h44	UTC-6	70°47.550	134°33.210	62
2b	N/A	Mapping (Start)	17/Sep/2010	00h55	UTC-6	70°46.110	135°22.240	262
2b	N/A	Mapping (End)	17/Sep/2010	01h45	UTC-6	70°51.570	134°58.280	118
2b 2b	N/A N/A	Mapping (Start)	17/Sep/2010	01h44	UTC-6	70°51.410	134°59.080	118 254
2b 2b	N/A N/A	Mapping (End) Mapping (Start)	17/Sep/2010 17/Sep/2010	02h30 02h35	UTC-6 UTC-6	70°45.990 70°45.680	135°24.180 135°23.720	254
2b 2b	N/A N/A	Mapping (Start)	17/Sep/2010	05h00	UTC-6	70°43.080 71°02.960	133 [°] 23.720	230 N/A
2b 2b	N/A	Mapping (Start)	17/Sep/2010	06h15	UTC-6	71°13.200	134°35.600	635
25 2b	N/A	Mapping (Start)	17/Sep/2010	08h25	UTC-6	70°57.639	135°51.482	831
2b	N/A	Mapping (Start)	17/Sep/2010	08h31	UTC-6	70°58.682	135°50.749	816
2b	N/A	Mapping (End)	17/Sep/2010	09h28	UTC-6	71°05.660	135°18.194	731
2b	GSC10-BX02	Box Core	17/Sep/2010	10h14	UTC-6	71°11.435	135°23.827	993
2b	GSC10-PC02	Piston Core	17/Sep/2010	12h05	UTC-6	71°11.407	135°23.863	999
2b	BP10-PC02	Piston Core	17/Sep/2010	13h53	UTC-6	71°06.990	135°05.930	680
2b	BP10-PC35	Piston Core	17/Sep/2010	15h37	UTC-6	70°58.900	135°17.040	600
2b	BP10-PC38	Piston Core	17/Sep/2010	18h11	UTC-6	71°02.900	135°46.340	970
2b	BP10-BX03	Box Core	17/Sep/2010	20h06	UTC-6	71°02.374	135°38.076	883
2b	BP10-BX04	Box Core	17/Sep/2010	21h09	UTC-6	71°03.413	135°40.252	854
2b	N/A	Mapping (Start)	17/Sep/2010	21h53	UTC-6	71°03.400	135°40.600	962
2b	N/A	Mapping (End)	17/Sep/2010	22h40	UTC-6	70°57.982	136°06.310	960
2b	N/A	Mapping (Start)	17/Sep/2010	22h47	UTC-6	70°58.738	136°08.509	979
2b	N/A	Mapping (End)	18/Sep/2010	01h00	UTC-6	71°14.900	134°51.500	N/A
2b 2b	N/A	Mapping (Start)	18/Sep/2010	02h55	UTC-6	71°03.000 70°45.900	134°09.100	N/A 359
2b 2b	N/A N/A	Mapping (End) Mapping (Start)	18/Sep/2010 18/Sep/2010	05h00 05h10	UTC-6 UTC-6	70°43.900 70°47.000	135°21.400 135°25.500	359
20 2b	N/A N/A	Mapping (Start)	18/Sep/2010	05h35	UTC-6	70°47.000 70°49.200	135°25.300 135°15.300	300
2b 2b	BP10-PC24	Piston Core	18/Sep/2010	08h28	UTC-6	70 43.200 71°08.475	135°30.771	909
25 2b	BP10-PC19	Piston Core	18/Sep/2010	10h18	UTC-6	71°10°382	135°53.910	1070
2b	BP10-PC20	Piston Core	18/Sep/2010	12h30	UTC-6	71°00.421	135°53.053	912
2b	BP10-BX05	Box Core	18/Sep/2010	14h08	UTC-6	71°02.320	135°44.920	924
2b	BP10-PC45	Piston Core	18/Sep/2010	15h54	UTC-6	70°59.490	135°13.710	598
2b	BP10-BX11	Box Core	18/Sep/2010	18h14	UTC-6	71°04.910	134°55.540	558
2b	N/A	Mapping (Start)	18/Sep/2010	20h35	UTC-6	71°05.457	134°18.085	485
2b	N/A	Mapping (End)	18/Sep/2010	22h47	UTC-6	70°49.870	135°32.133	497
2b	N/A	Mapping (Start)	18/Sep/2010	23h17	UTC-6	70°45.403	135°22.807	240
2b	N/A	Mapping (End)	19/Sep/2010	01h50	UTC-6	71°02.950	134°00.160	320
2b	N/A	Mapping (Start)	19/Sep/2010	01h55	UTC-6	71°02.810	133°59.710	317
2b	N/A	Mapping (End)	19/Sep/2010	04h20	UTC-6	70°45.800	135°22.700	219
2b	N/A	Mapping (Start)	19/Sep/2010	04h25	UTC-6	70°45.000	135°22.500	211
2b	N/A	Mapping (End)	19/Sep/2010	07h20	UTC-6	71°02.700	135°59.500	N/A
2b	BP10-PC46	Piston Core	19/Sep/2010	08h42	UTC-6	70°59.268	134°33.031	259
2b	BP10-PC04	Piston Core	19/Sep/2010	10h35	UTC-6	71°03.809	134°07.403	635
2b 2h	GSC10-PC03	Piston Core	19/Sep/2010	12h27	UTC-6	71°10.192	135°21.217	880
2b 2b	GSC10-BX03 N/A	Box Core Mapping (Start)	19/Sep/2010 19/Sep/2010	13h32 14h20	UTC-6 UTC-6	71°10.189 71°12.500	135°21.209 135°22.100	880 880
20 2b	N/A N/A	Mapping (Start)	19/Sep/2010	14h20 18h00	UTC-6	71 12.300 70°57.000	135°22.100 135°45.700	251
20 2b	N/A N/A	Surface Buoy	19/Sep/2010	18h33	UTC-6	70°56.830	133 43.700 134°44.980	250
2b 2b	N/A	Mapping (Start)	19/Sep/2010	20h13	UTC-6	70°54.635	134°43.720	118
25 2b	N/A	Mapping (Start)	19/Sep/2010	21h30	UTC-6	70°03.507	134°00.850	359
2b	N/A	Mapping (Start)	19/Sep/2010	21h40	UTC-6	71°02.544	133°59.386	317
2b	N/A	Mapping (End)	20/Sep/2010	00h22	UTC-6	71°02.540	133°59.160	197
2b	N/A	Mapping (Start)	20/Sep/2010	00h27	UTC-6	71°44.830	135°21.940	218
2b	N/A	Mapping (End)	20/Sep/2010	02h50	UTC-6	71°02.400	133°58.880	305
2b	N/A	Mapping (Start)	20/Sep/2010	02h53	UTC-6	71°02.270	133°58.610	305
2b	N/A	Mapping (End)	20/Sep/2010	06h00	UTC-6	70°55.500	134°59.700	N/A

Leg	Station ID	Station Type	Local Date	Local Time	UTC to local	Latitude (N)	Longitude (W)	Depth (m)
2b	N/A	Mapping (Start)	20/Sep/2010	N/A	UTC-6	N/A	N/A	N/A
2b	N/A	Mapping (End)	20/Sep/2010	07h10	UTC-6	N/A	N/A	440
2b	N/A	Mapping (Start)	20/Sep/2010	08h36	UTC-6	71°02.979	134°51.398	491
2b	N/A	Mapping (End)	20/Sep/2010	09h07	UTC-6	71°07.826	135°03.429	692
2b	N/A	Mapping (Start)	20/Sep/2010	09h16	UTC-6	71°08.822	135°03.072	758
2b	N/A	Mapping (End)	20/Sep/2010	09h37	UTC-6	71°10.867	134°52.173	733
2b	N/A	MVP (Start)	20/Sep/2010	09h50	UTC-6	71°10.183	134°49.144	673
2b	N/A	MVP (End)	20/Sep/2010	12h40	UTC-6	70°52.200	134°11.500	70
2b	N/A	Mapping (Start)	20/Sep/2010	14h20	UTC-6	71°02.130	133°58.330	300
2b	N/A	Mapping (End)	20/Sep/2010	16h50	UTC-6	70°44.500	135°21.400	100
2b	N/A	Mapping (Start)	20/Sep/2010	16h55	UTC-6	70°44.400	135°21.000	100
2b	N/A	Mapping (End)	20/Sep/2010	19h30	UTC-6	71°01.900	133°58.320	300
2b	N/A	Mapping (Start)	20/Sep/2010	19h34	UTC-6	71°01.800	133°58.200	305
2b	N/A	Mapping (End)	20/Sep/2010	21h54	UTC-6	70°44.320	135°20.874	140
2b	N/A	Mapping (Start)	20/Sep/2010	22h00	UTC-6	70°44.323	135°19.872	137
2b	N/A	Mapping (End)	21/Sep/2010	00h41	UTC-6	71°01.730	133°57.510	303
2b	N/A	Mapping (Start)	21/Sep/2010	00h43	UTC-6	71°01.670	133°57.370	303
2b	N/A	Mapping (End)	21/Sep/2010	03h11	UTC-6	70°44.040	135°20.430	102
2b	N/A	Mapping (Start)	21/Sep/2010	03h20	UTC-6	70°43.930	135°20.210	106
2b	N/A	Mapping (End)	21/Sep/2010	06h00	UTC-6	71°01.500	133°56.700	266
2b	N/A	Mapping (Start)	21/Sep/2010	06h08	UTC-6	71°01.400	133°57.000	266
2b	N/A	Mapping (End)	21/Sep/2010	06h40	UTC-6	70°59.700	134°14.000	N/A
2b	N/A	Mapping (Start)	21/Sep/2010	06h50	UTC-6	70°57.700	134°13.500	N/A
2b	N/A	Mapping (End)	21/Sep/2010	07h25	UTC-6	70°59.000	134°70.500	254
2b	CA04-10	Mooring	21/Sep/2010	10h55	UTC-6	71°04.865	133°37.866	308
2b	CA16-MMP-09	Mooring	22/Sep/2010	18h17	UTC-6	71°45.180	126°30.040	352
Leg 3a			-			-		
3a	CA16-09	Mooring	24/Sep/2010	12h17	UTC-6	71°48.450	126°32.150	307
3a	CA16-MMP-09	Mooring	24/Sep/2010	13h32	UTC-6	71°47.620	126°31.780	325
3a	CA05-09	Mooring	24/Sep/2010	16h43	UTC-6	71°19.660	127°35.730	214
3a	CA05-MMP-09	Mooring	24/Sep/2010	18h44	UTC-6	71°25.630	127°39.390	255
3a	LF-8	Hydrophone	25/Sep/2010	09h22	UTC-6	70°50.870	134°06.860	68
3a	LF-1	Hydrophone	25/Sep/2010	10h25	UTC-6	70°48.360	134°19.730	69
3a	LF-5	Hydrophone	25/Sep/2010	11h25	UTC-6	70°53.340	134°17.500	80
3a	HF-2	Hydrophone	25/Sep/2010	12h52	UTC-6	70°52.280	134°28.360	81
3a	N/A	Weather Balloon	25/Sep/2010	12h40	UTC-6	70°52.290	134°28.379	80
3a	LF-6	Hydrophone	25/Sep/2010	15h35	UTC-6	70°55.830	134°32.930	104
3a	LF-3	Hydrophone	25/Sep/2010	16h23	UTC-6	70°53.260	134°46.018	108
3a	HF-3	Hydrophone	25/Sep/2010	17h00	UTC-6	70°55.810	134°46.550	228
3a	LF-7	Hydrophone	25/Sep/2010	18h19	UTC-6	70°58.270	134°46.040	303
3a	LF-4	Hydrophone	25/Sep/2010	19h13	UTC-6	70°55.850	134°58.620	345
3a	N/A	Mapping (Start)	25/Sep/2010	20h40	UTC-6	70°56.810	134°18.600	172
3a	N/A	Mapping (End)	25/Sep/2010	22h22	UTC-6	70°44.190	135°17.360	97
3a	N/A	Weather Balloon	26/Sep/2010	00h30	UTC-6	70°57.484	134°14.247	181
3a	HF-4	Hydrophone	26/Sep/2010	08h00	UTC-6	70°45.540	135°08.940	77
3a	HF-5	Hydrophone	26/Sep/2010	09h33	UTC-6	70°53.330	135°22.230	524
За	HF-4	Hydrophone	26/Sep/2010	10h55	UTC-6	71°06.042	135°23.011	641
3a	N/A	Mapping (Start)	26/Sep/2010	12h15	UTC-6	71°03.877	134°52.204	519
3a	N/A	Weather Balloon	26/Sep/2010	12h38	UTC-6	71°06.430	134°40.030	499
3a	N/A	Mapping (End)	26/Sep/2010	14h21	UTC-6	71°10.170	134°40.000	599
3a	N/A	Weather Balloon	27/Sep/2010	00h00	UTC-6	72°40.560	130°37.740	1531
3a	N/A	Weather Balloon	28/Sep/2010	00h35	UTC-6	74°23.770	129°09.400	411
3a	N/A	On Ice Sampling	28/Sep/2010	09h05	UTC-6	74°21.840	129°10.150	428
3a	N/A	Weather Balloon	28/Sep/2010	12h11	UTC-6	74°24.460	129°09.550	287
3a	NWBI-1	Nutrient	28/Sep/2010	17h01	UTC-6	74°40.280	128°32.550	379
3a	N/A	On Ice Sampling	28/Sep/2010	19h29	UTC-6	74°39.930	128°15.500	378
3a	N/A	On Ice Sampling	29/Sep/2010	11h25	UTC-6	74°36.960	128°21.205	379
50								
3a 3a	N/A	On Ice Sampling	29/Sep/2010	15h30 11h20	UTC-6	74°45.340 71°55.860	127°56.620 125°20.520	367

Leg	Station ID	Station Type	Local Date	Local Time	UTC to local	Latitude (N)	Longitude (W)	Depth (m)
3a	N/A	Weather Balloon	30/Sep/2010	13h20	UTC-6	71°55.875	125°29.513	24
3a	CA16-10	Mooring	30/Sep/2010	19h36	UTC-6	71°47.178	126°29.762	318
3a	437	Full	30/Sep/2010	20h44	UTC-6	71°46.800	126°32.600	341
3a	410	Nutrient	01/Oct/2010	01h33	UTC-6	71°41.830	126°29.490	410
3a	412	Nutrient	01/Oct/2010	03h19	UTC-6	71°33.800	126°55.150	419
3a	414	Nutrient	01/Oct/2010	04h51	UTC-6	71°25.350	127°21.780	306
3a	416	Nutrient	01/Oct/2010	06h17	UTC-6	71°17.550	127°45.330	160
3a	418	Nutrient	01/Oct/2010	07h33	UTC-6	71°09.810	128°10.230	66
3a	N/A	Mapping	01/Oct/2010	10h00	UTC-6	71°28.300	127°30.280	312
3a	CA05-MMP-10	Mooring	01/Oct/2010	11h25	UTC-6	71°24.990	127°39.690	238
3a	N/A	Weather Balloon	01/Oct/2010	12h39	UTC-6	71°24.740	127°41.550	232
3a	N/A	Mapping (Start)	01/Oct/2010	13h47	UTC-6	71°24.970	127°43.580	225
3a	N/A	Mapping (End)	01/Oct/2010	15h30	UTC-6	71°42.510	126°55.181	439
3a	CA16-MMP-10	Mooring	01/Oct/2010	16h29	UTC-6	71°45.310	126°30.520	352
3a	Tuktoyaktuk	Weather Balloon	02/Oct/2010	12h38	UTC-6	69°51.933	133°20.440	16
3a	Pullen Pingos	Mapping (Start)	03/Oct/2010	01h18	UTC-6	70°59.363	133°58.999	218
3a	Pullen Pingos	Mapping (End)	03/Oct/2010	02h30	UTC-6	70°56.790	134°13.777	158
3a	Pullen Pingos	Mapping (Start)	03/Oct/2010	02h30	UTC-6	70°56.790	134°13.770	158
3a	Pullen Pingos	Mapping (End)	03/Oct/2010	14h14	UTC-6	70°56.390	134°13.510	143
3a	N/A	Mapping	03/Oct/2010	14h37	UTC-6	70°56.543	134°11.972	149
3a	N/A	Mapping (Start)	03/Oct/2010	17h15	UTC-6	70°44.149	135°16.982	86
3a	N/A	Mapping (End)	03/Oct/2010	23h45	UTC-6	70°53.260	134°27.800	N/A
3a	N/A	Mapping (Start)	04/Oct/2010	00h45	UTC-6	71°05.030	134°17.400	481
3a	N/A	Mapping (End)	04/Oct/2010	03h08	UTC-6	71°14.768	134°34.793	860
3a	N/A	Weather Balloon	04/Oct/2010	12h52	UTC-6	71°47.200	130°00.840	289
3a	N/A	Weather Balloon	05/Oct/2010	13h24	UTC-6	71°55.915	125°21.454	16
3a	408	Full	06/Oct/2010	14h35	UTC-6	71°19.050	127°35.600	205
3a	CA05-10	Mooring	06/Oct/2010	15h10	UTC-6	71°19.050	127°35.540	205
3a	CA08-10	Mooring	06/Oct/2010	20h40	UTC-6	71°00.220	126°04.376	392
3a	407	Full	06/Oct/2010	22h00	UTC-6	71°01.050	126°02.233	393
3a	N/A	Mapping (Start)	07/Oct/2010	02h27	UTC-6	70°32.890	123°15.300	419
3a	N/A	Mapping (End)	08/Oct/2010	07h09	UTC-6	70°27.150	123°10.100	479
Leg 3b					T		-	T
3b	405	Basic	08/Oct/2010	08h10	UTC-6	70°38.149	123°02.376	612
3b	450	Basic	09/Oct/2010	00h51	UTC-6	72°03.100	119°46.580	102
3b	308	Basic	10/Oct/2010	18h07	UTC-6	74°05.210	108°24.810	564
3b	MS01-10	Mooring	10/Oct/2010	19h03	UTC-6	74°05.590	108°24.790	524
3b	308	Full	10/Oct/2010	20h15	UTC-6	74°06.177	108°24.698	544
3b	304	Full	12/Oct/2010	15h10	UTC-6	74°15.060	091°31.040	315
3b	324	Nutrient	14/Oct/2010	12h29	UTC-4	73°52.590	080°10.440	797
3b	323	Basic	14/Oct/2010	15h41	UTC-4	76°11.260	079°46.540	778
3b	115	Full	15/Oct/2010	19h26	UTC-4	76°20.000	071°11.130	655
3b	114	CTD	16/Oct/2010	02h32	UTC-4	76°19.430	071°46.470	633
3b	113	Nutrient	16/Oct/2010	04h00	UTC-4	76°19.580	072°12.930	561
3b	112	CTD	16/Oct/2010	05h17	UTC-4	76°19.050	072°41.940	568
3b	111	Basic	16/Oct/2010	07h14	UTC-4	76°18.530	073°15.440	608
3b	110	Nutrient	16/Oct/2010	13h15	UTC-4	76°18.120	073°36.870	548
3b	109	CTD	16/Oct/2010	15h11	UTC-4	76°15.960	074°07.410	448
3b	108	Full	16/Oct/2010	17h32	UTC-4	76°16.220	074°43.430	458
3b	107	Nutrient	17/Oct/2010	00h56	UTC-4	76°16.440	075°01.650	426
3b	106	CTD	17/Oct/2010	02h20	UTC-4	76°18.290	075°22.710	384
3b	105	Basic	17/Oct/2010	10h10	UTC-4	76°20.580	075°48.350	330
3b	104	CTD	17/Oct/2010	17h54	UTC-4	76°19.000	076°13.740	169
3b	N/A	Mapping (Start)	19/Oct/2010	12h20	UTC-4	71°37.340	070°13.960	580
3b	N/A	Mapping (End)	19/Oct/2010	17h49	UTC-4	71°11.300	068°03.900	555
3b	N/A	Mapping (Start)	21/Oct/2010	18h32	UTC-4	62°31.990	066°11.750	380
3b	N/A	Mapping (End)	22/Oct/2010	05h30	UTC-4	63°06.200	067°30.700	591
Leg 3c								
3c	N/A	Mapping (Start)	23/Oct/2010	18h30	UTC-4	59°10.800	063°15.000	80

Leg	Station ID	Station Type	Local Date	Local Time	UTC to local	Latitude (N)	Longitude (W)	Depth (m)
3c	N/A	Mapping (End)	23/Oct/2010	21h15	UTC-4	59°06.700	063°23.450	140
3c	N/A	MVP (Start)	23/Oct/2010	21h30	UTC-4	59°06.560	063°23.280	140
3c	N/A	MVP (End)	23/Oct/2010	23h55	UTC-4	58°59.290	063°53.500	55
3c	600	Basic	24/Oct/2010	02h01	UTC-4	59°05.750	063°26.340	192
3c	601	CTD	24/Oct/2010	08h33	UTC-4	59°03.160	063°36.510	168
3c	602	Basic	24/Oct/2010	10h27	UTC-4	59°03.240	063°52.020	165
3c	604	Nutrient	24/Oct/2010	17h24	UTC-4	58°59.880	063°53.580	60
3c	Nachvak Fjord	N/A	24/Oct/2010	19h27	UTC-4	59°06.230	063°24.340	185
3c	617	Basic	25/Oct/2010	01h38	UTC-4	58°30.060	062°41.350	131
3c	610	Nutrient	25/Oct/2010	06h37	UTC-4	58°31.200	062°50.310	124
3c	N/A	Mapping	25/Oct/2010	07h38	UTC-4	58°29.770	062°54.490	62
3c	612	CTD	25/Oct/2010	09h24	UTC-4	58°28.290	062°59.200	48
3c	613	Nutrient	25/Oct/2010	10h26	UTC-4	58°29.030	063°13.110	255
3c	614	CTD	25/Oct/2010	13h47	UTC-4	58°24.080	063°23.360	93
3c	615	Basic	25/Oct/2010	14h45	UTC-4	58°19.180	063°32.450	129
3c	615	MVP (Start)	25/Oct/2010	18h18	UTC-4	58°20.060	063°31.840	141
3c	615	MVP (End)	25/Oct/2010	21h58	UTC-4	58°30.102	062°40.788	134
3c	633	Basic	26/Oct/2010	08h40	UTC-4	57°36.310	061°54.310	170
3c	632	Nutrient	26/Oct/2010	14h27	UTC-4	57°34.100	062°03.090	83
3c	631	Nutrient	26/Oct/2010	16h37	UTC-4	57°29.660	062°11.400	87
3c	630	Basic	26/Oct/2010	18h09	UTC-4	57°28.330	062°26.810	43
3c	N/A	MVP (Start)	26/Oct/2010	20h46	UTC-4	57°27.430	062°24.370	59
3c	N/A	MVP (End)	26/Oct/2010	23h23	UTC-4	57°37.230	062°51.660	161
3c	N/A	MVP	27/Oct/2010	09h48	UTC-4	56°26.152	061°22.677	125
3c	624	Basic	27/Oct/2010	13h03	UTC-4	56°25.120	062°04.260	56
3c	623	Nutrient	27/Oct/2010	16h20	UTC-4	56°26.800	061°56.470	110
3c	622	Nutrient	27/Oct/2010	17h43	UTC-4	56°25.010	061°44.020	79
3c	621	CTD	27/Oct/2010	20h54	UTC-4	56°25.000	061°31.170	110
3c	620	Basic	27/Oct/2010	21h15	UTC-4	56°24.020	061°12.700	79

Appen	dix 2: Scienti	fic Log															
Leg	Station ID	Station Type	Local Date	Local	UTC to	Latitude (N)	Longitude	Activity	Depth	Heading	w	'ind	Air	Water	Pr Baro	Hum	lce
-05	Station is	Station Type	Local Bate	Time	local	Lutitude (iv)	(W)		(m)	(°)	Dir	Speed	(ºC)	(ºC)		(%)	
Leg 1a																	
1a	Labrador Sea	CTD	05/Jul/2010	18h24	UTC-4	54°58.320	56°39.850	CTD-Rosette \downarrow	180	258	248	8	4.0	3.8	1020.6	93	N/A
1a	Labrador Sea	CTD	05/Jul/2010	18h28	UTC-4	54°58.300	56°39.900	CTD-Rosette 个	181	253	245	8	4.0	3.7	1020.6	93	N/A
1a	Labrador Sea	CTD	05/Jul/2010	18h30	UTC-4	54°58.296	056°39.925	CTD-Rosette \downarrow	183	261	241	8	4.1	3.7	1020.8	92	N/A
1a	Labrador Sea	CTD	05/Jul/2010	18h36	UTC-4	54°58.240	056°39.925	CTD-Rosette (bottom)	182	225	262	9	4.0	3.5	1020.8	92	N/A
1a	Labrador Sea	CTD	05/Jul/2010	18h41	UTC-4	54°58.192	056°39.939	CTD-Rosette 个	183	220	289	10	3.9	3.4	1020.9	93	N/A
1a	356	Nutrient	07/Jul/2010	04h40	UTC-4	60°48.400	064°43.834	Water Sampling $\downarrow \uparrow$	351	350	146	13	5.7	2.8	1019.0	78	Bergy
1a	356	Nutrient	07/Jul/2010	04h41	UTC-4	60°48.387	064°43.500	CTD-Rosette \downarrow	353	120	146	15	5.7	2.8	1019.2	78	Bergy
1a	356	Nutrient	07/Jul/2010	05h27	UTC-4	60°49.044	064°41.846	CTD-Rosette 个	384	125	151	13	6.2	2.5	1019.2	77	Bergy
1a	356	Nutrient	07/Jul/2010	05h49	UTC-4	60°42.449	064°43.135	Vertical Net Tow \downarrow	352	235	153	9	6.0	2.6	1019.4	75	Bergy
1a	356	Nutrient	07/Jul/2010	05h55	UTC-4	60°48.426	064°43.218	Vertical Net Tow 个	353	235	156	8	5.9	2.6	1019.4	75	Bergy
1a	354	Nutrient	07/Jul/2010	06h50	UTC-4	60°58.361	064°46.295	Water Sampling ${ m J}{ m \uparrow}$	570	329	172	13	4.3	2.7	1019.6	84	Bergy
1a	354	Nutrient	07/Jul/2010	07h15	UTC-4	60°58.158	064°45.734	CTD-Rosette ↓	582	275	121	10	4.4	3.3	1019.4	84	Bergy
1a	354	Nutrient	07/Jul/2010	08h15	UTC-4	60°58.500	064°42.000	CTD-Rosette 个	550	70	190	10	5.5	3.3	1019.3	80	Bergy
1a	352	Nutrient	07/Jul/2010	09h30	UTC-4	61°09.088	064°48.392	Water Sampling $\downarrow \uparrow$	442	91	251	5	4.9	3.6	1019.0	83	Bergy
1a	352	Nutrient	07/Jul/2010	09h36	UTC-4	61°09.000	064°48.200	CTD-Rosette \downarrow	415	105	250	5	4.9	3.6	1019.0	83	Bergy
1a	352	Nutrient	07/Jul/2010	10h15	UTC-4	61°08.600	064°48.000	CTD-Rosette 个	354	287	225	7	5.8	3.3	1019.1	77	Bergy
1a	352	Nutrient	07/Jul/2010	10h25	UTC-4	61°08.500	064°48.000	Hg Sampling \downarrow	345	341	225	7	5.9	3.2	1019.1	76	Bergy
1a	352	Nutrient	07/Jul/2010	10h30	UTC-4	61°08.400	064°48.100	Hg Sampling 个	338	344	225	7	5.5	3.2	1019.1	78	Bergy
1a	362	Nutrient	08/Jul/2010	03h35	UTC-4	N/A	N/A	Water Sampling $\downarrow \uparrow$	287	265	120	13	5.1	4.6	1008.0	91	0/10
1a	362	Nutrient	08/Jul/2010	03h55	UTC-4	N/A	N/A	CTD-Rosette \downarrow	298	103	103	13	5.2	4.5	1007.7	90	0/10
1a	362	Nutrient	08/Jul/2010	04h29	UTC-4	N/A	N/A	CTD-Rosette 个	292	74	104	14	5.1	4.2	1007.4	91	0/10
1a	362	Nutrient	08/Jul/2010	04h39	UTC-4	N/A	N/A	Vertical Net Tow \downarrow	291	100	99	14	5.2	4.1	1007.3	91	0/10
1a	362	Nutrient	08/Jul/2010	04h41	UTC-4	N/A	N/A	Vertical Net Tow ↑	291	114	95	15	5.2	4.1	1007.3	91	0/10
1a	360	Nutrient	08/Jul/2010	07h00	UTC-4	62°25.483	071°04.749	Water Sampling $\downarrow \uparrow$	338	83	107	15	6.4	5.0	1007.1	82	0/10
1a	360	Nutrient	08/Jul/2010	07h11	UTC-4	62°25.561	071°04.542	CTD-Rosette \downarrow	335	89	95	15	6.5	5.0	1007.2	80	0/10
1a	360	Nutrient	08/Jul/2010	07h53	UTC-4	62°26.100	071°04.700	CTD-Rosette 个	336	86	105	17	6.8	5.2	1006.9	77	0/10
1a	350	Basic	09/Jul/2010	02h57	UTC-4	64°35.100	079°06.400	Water Sampling $\downarrow \uparrow$	204	190	70	8	5.7	2.1	1005.2	84	0/10
1a	350	Basic	09/Jul/2010	03h08	UTC-4	64°35.300	079°06.400	CTD-Rosette \downarrow	208	57	70	8	5.8	2.7	1005.2	84	0/10

Leg	Station ID	Station Type	Local Date	Local	UTC to	Latitude (N)	Longitude	Activity	Depth	Heading	w	ind	Air	Water	Pr Baro	Hum	lce
8	00000012	otation i ype		Time	local		(W)	,	(m)	(°)	Dir	Speed	(ºC)	(ºC)		(%)	
1a	350	Basic	09/Jul/2010	03h35	UTC-4	64°35.000	079°06.000	CTD-Rosette 个	194	34	40	6	5.8	3.0	1005.1	84	0/10
1a	370	Nutrient	09/Jul/2010	04h05	UTC-4	64°35.528	079°06.343	SHO Profile \downarrow	178	14	29	14	4.7	3.7	1004.9	84	1/10
1a	370	Nutrient	09/Jul/2010	04h12	UTC-4	64°35.494	079°06.264	SHO Profile \downarrow	180	20	29	14	4.7	3.7	1004.9	84	1/10
1a	370	Nutrient	09/Jul/2010	04h20	UTC-4	64°35.431	079°06.212	SHO Profile 个	178	8	33	12	4.7	3.7	1004.9	84	1/10
1a	350	Basic	09/Jul/2010	07h25	UTC-4	64°26.555	080°27.405	PNF $\downarrow \uparrow$	381	50	34	13	4.6	4.0	1004.9	90	1/10
1a	350	Basic	09/Jul/2010	07h35	UTC-4	64°26.558	080°27.810	Secchi Disk ${igstar} {igstar}$	381	44	35	11	4.6	4.0	1004.9	90	1/10
1a	350	Basic	09/Jul/2010	07h37	UTC-4	64°26.604	080°27.515	SHO Profile \downarrow	381	24	34	11	4.6	4.1	1004.8	90	1/10
1a	350	Basic	09/Jul/2010	07h46	UTC-4	64°26.624	080°27.530	SHO Profile 个	380	18	32	12	4.6	4.1	1004.8	90	1/10
1a	350	Basic	09/Jul/2010	07h50	UTC-4	64°26.640	080°27.547	SHO Profile \downarrow	380	23	31	13	4.6	4.1	1004.8	90	1/10
1a	350	Basic	09/Jul/2010	08h02	UTC-4	64°26.680	080°27.730	SHO Profile 个	380	20	40	11	4.7	4.1	1004.8	89	1/10
1a	350	Basic	09/Jul/2010	08h08	UTC-4	64°26.690	080°27.830	Water Sampling $\downarrow \uparrow$	381	16	45	12	4.7	4.1	1004.8	89	1/10
1a	350	Basic	09/Jul/2010	08h13	UTC-4	64°26.720	080°27.930	CTD-Rosette \downarrow	380	6	45	12	4.7	4.1	1004.8	89	1/10
1a	350	Basic	09/Jul/2010	08h57	UTC-4	64°26.900	080°28.480	CTD-Rosette 个	383	42	50	10	4.4	4.1	1004.8	90	1/10
1a	350	Basic	09/Jul/2010	09h15	UTC-4	64°27.030	080°28.670	Zodiac Deployed (water sampling)	382	51	55	10	4.3	4.2	1004.8	89	1/10
1a	350	Basic	09/Jul/2010	09h30	UTC-4	64°27.110	080°28.850	Vertical Net Tow \downarrow	381	66	70	4	3.9	4.3	1004.7	90	1/10
1a	350	Basic	09/Jul/2010	10h15	UTC-4	64°27.500	080°29.000	Zodiac Recovered	392	9	350	7	3.9	4.4	1004.6	93	1/10
1a	350	Basic	09/Jul/2010	10h25	UTC-4	64°27.560	080°29.060	Vertical Net Tow 个	413	7	25	7	4.0	4.4	1004.4	93	1/10
1a	350	Basic	09/Jul/2010	10h51	UTC-4	64°27.720	080°29.570	Zodiac Deployed (water sampling)	386	21	30	10	4.3	4.5	1004.3	93	1/10
1a	350	Basic	09/Jul/2010	11h12	UTC-4	64°27.770	080°30.020	Zodiac Recovered (mechanical problem)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
1a	350	Basic	09/Jul/2010	11h43	UTC-4	64°27.740	080°30.730	CTD-Rosette \downarrow	382	52	45	9	4.1	4.6	1004.2	93	1/10
1a	350	Basic	09/Jul/2010	12h28	UTC-4	64°27.920	080°31.050	CTD-Rosette 个	382	57	50	8	3.8	4.5	1004.3	94	1/10
1a	350	Basic	09/Jul/2010	12h42	UTC-4	64°28.020	080°31.060	Zodiac Deployed	382	50	50	7	3.7	4.6	1004.3	95	1/10
1a	350	Basic	09/Jul/2010	13h17	UTC-4	64°26.260	080°27.620	Vertical Net Tow \downarrow	380	40	40	7	3.7	4.6	1004.0	97	1/10
1a	350	Basic	09/Jul/2010	13h40	UTC-4	64°26.120	080°27.750	Vertical Net Tow 个	378	56	40	10	4.1	4.7	1004.1	99	1/10
1a	350	Basic	09/Jul/2010	14h00	UTC-4	64°26.640	080°27.640	Horizontal Net Tow \downarrow	381	16	40	10	3.9	4.6	1004.2	99	1/10
1a	350	Basic	09/Jul/2010	14h14	UTC-4	64°26.720	080°28.440	Horizontal Net Tow 个	380	219	40	9	4.1	4.6	1004.3	99	1/10
1a	350	Basic	09/Jul/2010	14h25	UTC-4	64°26.490	080°28.720	Vertical Net Tow \downarrow	378	203	50	11	4.2	4.6	1004.4	99	1/10
1a	350	Basic	09/Jul/2010	14h46	UTC-4	64°26.480	080°28.720	Vertical Net Tow ↑	378	188	50	7	3.8	4.6	1004.4	99	1/10
1a	350	Basic	09/Jul/2010	14h58	UTC-4	64°26.120	080°28.590	Hg Sampling (test) \downarrow	378	159	60	10	3.8	4.6	1004.4	99	1/10
1a	350	Basic	09/Jul/2010	15h04	UTC-4	64°26.060	080°28.570	Hg Sampling (test) 个	377	170	50	9	3.8	4.6	1004.5	99	1/10

Leg	Station ID	Station Type	Local Date	Local	UTC to	Latitude (N)	Longitude	Activity	Depth	Heading	w	ind	Air	Water	Pr Baro	Hum	lce
8				Time	local		(W)	·····,	(m)	(°)	Dir	Speed	(ºC)	(ºC)		(%)	
1a	350	Basic	09/Jul/2010	15h09	UTC-4	64°25.990	080°28.530	Zodiac Recovered	376	167	50	9	3.9	4.6	1004.5	99	1/10
1a	350	Basic	09/Jul/2010	15h18	UTC-4	64°25.930	080°28.490	Box Core ↓	376	164	50	9	3.9	4.6	1004.5	99	1/10
1a	350	Basic	09/Jul/2010	15h59	UTC-4	64°25.696	080°28.502	Box Core 个	374	164	50	9	3.6	4.5	1004.7	99	1/10
1a	710	Nutrient	09/Jul/2010	23h29	UTC-4	62°57.820	080°13.000	Water Sampling $\downarrow \uparrow$	276	110	115	11	7.3	7.5	1003.1	99	0/10
1a	710	Nutrient	09/Jul/2010	23h44	UTC-4	62°57.810	080°12.890	SHO Profile \downarrow	276	111	130	12	7.3	7.7	1003.1	99	0/10
1a	710	Nutrient	10/Jul/2010	00h05	UTC-4	62°57.900	080°12.970	SHO Profile 个	277	98	140	10	7.5	7.5	1002.9	99	0/10
1a	710	Nutrient	10/Jul/2010	00h15	UTC-4	62°57.870	080°12.900	CTD-Rosette \downarrow	278	122	120	9	7.5	7.3	1003.0	98	0/10
1a	710	Nutrient	10/Jul/2010	00h54	UTC-4	62°57.990	080°13.000	CTD-Rosette 个	276	104	110	10	7.6	7.2	1003.1	96	0/10
1a	N/A	Mapping	10/Jul/2010	03h00	UTC-4	62°40.420	079°29.540	Bottom Mapping \downarrow	327	72	82	10	5.8	7.6	1002.4	98	0/10
1a	N/A	Mapping	10/Jul/2010	08h25	UTC-4	62°38.020	079°28.670	Bottom Mapping 个	274	254	60	8	5.3	6.6	1002.3	99	0/10
1a	698	Nutrient	10/Jul/2010	11h13	UTC-4	62°07.230	078°42.150	Water Sampling $\downarrow \uparrow$	153	50	355	10	7.4	7.1	1001.6	93	0/10
1a	698	Nutrient	10/Jul/2010	11h28	UTC-4	62°07.150	078°41.940	SHO Profile \downarrow	152	355	0	9	7.5	7.2	1001.5	93	0/10
1a	698	Nutrient	10/Jul/2010	11h47	UTC-4	62°06.880	078°42.050	SHO Profile 个	143	0	0	9	7.6	7.3	1001.5	94	0/10
1a	698	Nutrient	10/Jul/2010	11h50	UTC-4	62°06.830	078°42.070	Water Sampling $\downarrow \uparrow$	146	0	5	9	7.6	7.3	1001.4	93	0/10
1a	698	Nutrient	10/Jul/2010	12h23	UTC-4	62°06.480	078°42.280	CTD-Rosette \downarrow	141	8	0	7	7.8	7.3	1001.4	93	0/10
1a	698	Nutrient	10/Jul/2010	12h53	UTC-4	62°05.990	078°42.690	CTD-Rosette 个	140	14	10	7	8.0	7.3	1001.6	92	0/10
1a	699	Basic	10/Jul/2010	23h48	UTC-4	59°59.940	078°26.110	Water Sampling $\downarrow \uparrow$	84	242	250	7	8.2	10.1	1002.9	99	0/10
1a	699	Basic	10/Jul/2010	23h55	UTC-4	59°59.900	078°26.210	CTD-Rosette \downarrow	78	232	240	8	8.4	10.0	1003.0	99	0/10
1a	699	Basic	11/Jul/2010	00h20	UTC-4	59°55.850	078°26.270	CTD-Rosette 个	84	230	230	11	8.4	9.8	1003.1	99	0/10
1a	699	Basic	11/Jul/2010	00h41	UTC-4	59°59.840	078°26.280	Vertical Net Tow \downarrow	83	248	240	15	8.4	9.5	1003.1	99	0/10
1a	699	Basic	11/Jul/2010	00h47	UTC-4	59°59.840	078°26.250	Vertical Net Tow 个	84	242	240	15	8.4	9.5	1003.1	99	0/10
1a	699	Basic	11/Jul/2010	01h06	UTC-4	60°00.020	078°26.850	Horizontal Net Tow \downarrow	81	330	240	14	8.1	9.4	1003.2	99	0/10
1a	699	Basic	11/Jul/2010	01h12	UTC-4	60°00.020	078°26.850	Horizontal Net Tow 个	84	240	250	12	8.0	9.4	1003.2	99	0/10
1a	699	Basic	11/Jul/2010	01h25	UTC-4	59°59.990	078°27.070	Vertical Net Tow \downarrow	87	257	260	12	8.3	9.4	1003.1	99	0/10
1a	699	Basic	11/Jul/2010	01h30	UTC-4	59°59.990	078°27.010	Vertical Net Tow 个	86	260	260	11	8.3	9.5	1003.1	99	0/10
1a	699	Basic	11/Jul/2010	02h14	UTC-4	59°59.920	078°26.380	SHO Profile \checkmark	81	256	240	7	8.2	9.3	1003.1	99	0/10
1a	699	Basic	11/Jul/2010	02h34	UTC-4	59°59.960	078°26.280	SHO Profile 个	84	233	230	8	8.4	9.3	1003.1	99	0/10
1a	699	Basic	11/Jul/2010	02h43	UTC-4	59°59.980	078°26.270	Water Sampling $\downarrow \uparrow$	84	241	240	8	8.4	9.0	1003.0	99	0/10
1a	699	Basic	11/Jul/2010	02h50	UTC-4	60°00.000	078°26.240	CTD-Rosette \downarrow	83	221	240	7	8.3	8.9	1003.0	99	0/10
1a	699	Basic	11/Jul/2010	03h22	UTC-4	60°00.000	078°26.290	CTD-Rosette 个	83	218	220	8	8.4	8.9	1003.2	99	0/10

Leg	Station ID	Station Type	Local Date	Local	UTC to	Latitude (N)	Longitude	Activity	Depth	Heading	w	ind	Air	Water	Pr Baro	Hum	lce
8	••••••	oution type		Time	local		(W)	-	(m)	(°)	Dir	Speed	(ºC)	(ºC)		(%)	
1a	699	Basic	11/Jul/2010	04h10	UTC-4	59°59.860	078°25.460	Box Core $\downarrow \uparrow$	86	228	205	6	8.3	9.0	1002.9	99	0/10
1a	701b	Nutrient	11/Jul/2010	12h15	UTC-4	58°24.950	079°22.200	Water Sampling $\downarrow \uparrow$	124	98	100	10	6.1	7.7	1000.8	99	0/10
1a	701b	Nutrient	11/Jul/2010	12h15	UTC-4	58°24.950	079°22.200	SHO Profile \downarrow	124	98	100	10	6.1	7.7	1000.8	99	0/10
1a	701b	Nutrient	11/Jul/2010	12h36	UTC-4	58°25.010	079°22.230	SHO Profile 个	111	82	90	15	6.2	7.7	1000.7	99	0/10
1a	701b	Nutrient	11/Jul/2010	12h46	UTC-4	58°25.030	079°22.180	Water Sampling $\downarrow \uparrow$	111	93	90	15	6.3	7.6	1000.4	99	0/10
1a	701b	Nutrient	11/Jul/2010	12h48	UTC-4	58°25.050	079°22.140	CTD-Rosette ↓	110	100	100	14	6.3	7.6	1000.4	99	0/10
1a	701b	Nutrient	11/Jul/2010	13h20	UTC-4	58°25.170	079°22.170	CTD-Rosette 个	115	100	100	15	7.0	7.6	1000.3	99	0/10
1a	N/A	Mapping	11/Jul/2010	16h20	UTC-4	58°25.440	078°18.550	Bottom Mapping \downarrow	89	135	52	20	12.1	8.0	997.8	97	0/10
1a	N/A	Mapping	11/Jul/2010	18h30	UTC-4	58°22.270	078°16.230	Bottom Mapping 个	90	135	120	16	12.0	8.0	997.7	98	0/10
1a	720	Nutrient	12/Jul/2010	04h50	UTC-4	57°00.140	076°53.390	Water Sampling $\downarrow \uparrow$	88	160	79	6	7.2	7.6	998.3	99	0/10
1a	720	Nutrient	12/Jul/2010	04h55	UTC-4	57°00.000	076°53.300	SHO Profile \downarrow	88	39	54	5	7.3	7.6	998.3	99	0/10
1a	720	Nutrient	12/Jul/2010	05h15	UTC-4	56°59.950	076°53.500	SHO Profile 个	81	96	29	6	7.0	7.5	998.2	99	0/10
1a	720	Nutrient	12/Jul/2010	05h25	UTC-4	57°00.080	076°53.320	CTD-Rosette ↓	89	38	35	5	7.3	7.5	998.1	99	0/10
1a	720	Nutrient	12/Jul/2010	05h41	UTC-4	57°00.000	076°53.370	CTD-Rosette 个	87	46	50	5	7.3	7.5	998.1	99	0/10
1a	Lovejoy	N/A	12/Jul/2010	09h35	UTC-4	56°32.250	076°46.100	Water Sampling $\downarrow \uparrow$	113	28	40	12	8.5	8.0	998.5	99	0/10
1a	Lovejoy	N/A	12/Jul/2010	09h41	UTC-4	56°32.290	076°46.080	CTD-Rosette ↓	114	23	35	13	9.0	8.0	998.4	99	0/10
1a	Lovejoy	N/A	12/Jul/2010	09h59	UTC-4	56°32.520	076°46.000	CTD-Rosette 个	104	38	55	12	9.3	8.0	998.4	99	0/10
1a	Lovejoy	N/A	12/Jul/2010	14h30	UTC-4	56°09.180	076°41.000	Calibration (start)	105	210	210	22	9.4	9.2	1001.7	96	0/10
1a	Lovejoy	N/A	12/Jul/2010	15h09	UTC-4	56°09.160	076°40.960	River Crew \downarrow	105	210	220	22	10.4	9.2	1002.1	85	0/10
1a	Lovejoy	N/A	12/Jul/2010	16h05	UTC-4	56°09.170	076°40.990	Calibration (end)	105	209	209	16	9.6	9.5	1003.7	93	0/10
1a	702	Full	12/Jul/2010	23h56	UTC-4	55°28.800	077°48.070	Hydrography \downarrow	128	226	240	20	7.5	8.9	1007.2	99	0/10
1a	702	Full	13/Jul/2010	05h27	UTC-4	55°24.520	077°56.170	Hydrography 个	134	229	N/A	N/A	7.3	9.4	1010.7	99	0/10
1a	702	Full	13/Jul/2010	05h29	UTC-4	55°24.520	077°56.180	PNF \downarrow	134	229	227	13	7.3	9.4	1010.7	99	0/10
1a	702	Full	13/Jul/2010	05h30	UTC-4	55°24.490	077°56.180	PNF 个	134	221	227	13	7.3	9.4	1010.7	99	0/10
1a	702	Full	13/Jul/2010	05h37	UTC-4	55°24.490	077°56.180	Secchi Disk 🗸	134	221	227	13	7.3	9.4	1010.7	99	0/10
1a	702	Full	13/Jul/2010	05h39	UTC-4	55°24.000	077°56.200	Secchi Disk 个	134	230	227	13	7.3	9.4	1010.7	99	0/10
1a	702	Full	13/Jul/2010	07h25	UTC-4	55°24.506	077°55.631	SHO Profile \downarrow	131	230	240	10	7.5	9.8	1011.6	95	0/10
1a	702	Full	13/Jul/2010	07h53	UTC-4	55°24.525	077°55.756	SHO Profile 个	141	220	235	9	7.4	9.8	1011.7	98	0/10
1a	702	Full	13/Jul/2010	07h47	UTC-4	55°24.514	077°55.759	Water Sampling ${igstar}{bigstar}{bigstar}{bigstar}{bigstar}{bigstar}{bigstar}{bigstar}{bigstar}{bigstar}{bigstar}{bigstar}{bigstar}{bigstar}{bigstar$	141	216	253	8	7.2	9.8	1011.7	97	0/10
1a	702	Full	13/Jul/2010	08h07	UTC-4	55°24.620	077°55.880	CTD-Rosette \downarrow	136	241	230	9	7.4	9.8	1011.8	97	0/10

Leg	Station ID	Station Type	Local Date	Local	UTC to	Latitude (N)	Longitude	Activity	Depth	Heading	w	ind	Air	Water	Pr Baro	Hum	lce
0				Time	local		(W)	·····,	(m)	(°)	Dir	Speed	(ºC)	(ºC)		(%)	
1a	702	Full	13/Jul/2010	08h36	UTC-4	55°24.800	077°55.890	CTD-Rosette 个	129	225	250	10	7.7	9.8	1012.0	97	0/10
1a	702	Full	13/Jul/2010	11h05	UTC-4	55°25.220	077°54.750	Vertical Net Tow \downarrow	135	290	295	9	7.3	9.7	1013.0	98	0/10
1a	702	Full	13/Jul/2010	11h15	UTC-4	55°25.350	077°54.690	Vertical Net Tow 个	126	260	285	10	7.1	9.9	1013.2	98	0/10
1a	702	Full	13/Jul/2010	11h38	UTC-4	55°25.710	077°55.110	Horizontal Net Tow \downarrow	117	260	290	10	6.8	10.0	1013.2	98	0/10
1a	702	Full	13/Jul/2010	11h54	UTC-4	55°25.800	077°54.700	Horizontal Net Tow 个	123	330	280	12	6.9	10.1	1013.5	95	0/10
1a	702	Full	13/Jul/2010	12h04	UTC-4	55°26.010	077°55.640	Vertical Net Tow \downarrow	117	272	270	12	6.5	10.1	1013.6	95	0/10
1a	702	Full	13/Jul/2010	12h08	UTC-4	55°26.070	077°54.600	Vertical Net Tow 个	117	268	270	9	6.5	10.1	1013.6	95	0/10
1a	702	Full	13/Jul/2010	14h25	UTC-4	55°26.530	077°55.800	Barge Recovered	99	269	270	11	6.8	10.4	1015.3	90	0/10
1a	702	Full	13/Jul/2010	12h35	UTC-4	55°25.550	077°54.420	CTD-Rosette ↓	116	267	270	10	7.0	10.2	1013.9	88	0/10
1a	702	Full	13/Jul/2010	13h04	UTC-4	55°25.840	077°55.490	CTD-Rosette 个	120	287	270	8	6.6	10.2	1014.2	90	0/10
1a	702	Full	13/Jul/2010	12h43	UTC-4	55°25.620	077°55.420	Hg Sampling \downarrow	104	257	260	12	6.8	10.2	1014.1	89	0/10
1a	702	Full	13/Jul/2010	13h30	UTC-4	55°26.230	077°55.490	Water Sampling $\downarrow \uparrow$	88	250	260	9	6.6	10.3	1014.8	89	0/10
1a	702	Full	13/Jul/2010	14h46	UTC-4	55°26.640	077°55.900	Hg Sampling 个	97	269	270	11	6.8	10.4	1015.6	92	0/10
1a	AN03-10	Mooring	13/Jul/2010	18h23	UTC-4	55°24.860	077°55.180	Mooring AN03-10 Deployed	138	165	245	5	7.2	8.8	1017.3	98	0/10
1a	AN03-10	Mooring	13/Jul/2010	18h39	UTC-4	55°24.824	077°55.120	Mooring AN03-10 Deployed (end)	139	176	337	3	8.1	8.8	1017.3	94	0/10
1a	702	Full	13/Jul/2010	19h08	UTC-4	55°24.702	077°55.672	CTD-Rosette ↓	135	293	355	2	8.3	8.9	1017.3	93	0/10
1a	702	Full	13/Jul/2010	19h26	UTC-4	55°25.026	077°55.844	CTD-Rosette 个	132	32	329	0	7.4	9.0	1017.4	98	0/10
1a	702	Full	13/Jul/2010	19h47	UTC-4	55°24.720	077°55.860	Box Core 🗸	134	151	Calm	Calm	7.1	9.1	1017.6	99	0/10
1a	702	Full	13/Jul/2010	19h54	UTC-4	55°24.775	077°55.884	Box Core (bottom)	134	170	Calm	Calm	7.2	9.2	1017.6	99	0/10
1a	702	Full	13/Jul/2010	20h01	UTC-4	55°24.830	077°55.990	Box Core 个	130	177	Calm	Calm	7.3	9.1	1017.7	99	0/10
1a	702	Full	13/Jul/2010	20h27	UTC-4	55°24.920	077°56.470	Agassiz Trawl 🗸	129	310	Calm	Calm	7.3	9.0	1017.7	99	0/10
1a	702	Full	13/Jul/2010	20h45	UTC-4	55°25.030	077°56.530	Agassiz Trawl 个	119	28	320	2	7.3	8.9	1017.7	99	0/10
1a	702	N/A	14/Jul/2010	08h24	UTC-4	55°20.900	077°45.870	Zodiac Deployed (water sampling)	83	60	35	2	8.6	9.9	1021.6	97	0/10
1a	GW-1	Piston Core	14/Jul/2010	08h56	UTC-4	55°20.850	077°45.690	Piston Core \downarrow	95	180	33	4	9.1	9.7	1021.7	98	0/10
1a	GW-1	Piston Core	14/Jul/2010	09h07	UTC-4	55°20.800	077°45.690	Piston Core ↑	95	180	33	4	9.1	9.7	1021.7	98	0/10
1a	GW-1	Piston Core	14/Jul/2010	09h53	UTC-4	55°20.850	077°45.780	Piston Core \downarrow	98	130	15	5	9.4	9.4	1021.4	98	0/10
1a	GW-1	Piston Core	14/Jul/2010	09h57	UTC-4	55°20.850	077°45.690	Piston Core ↑	100	116	15	6	9.4	9.7	1021.6	98	0/10
1a	N/A	N/A	14/Jul/2010	11h09	UTC-4	55°19.910	077°48.870	Zodiac Recovered	74	267	30	10	10.3	9.4	1021.1	89	0/10
1a	GW-2	Piston Core	14/Jul/2010	11h19	UTC-4	55°19.780	077°48.780	Piston Core \downarrow	80	203	35	8	10.3	9.5	1021.2	89	0/10
1a	GW-2	Piston Core	14/Jul/2010	11h24	UTC-4	55°19.770	077°48.780	Piston Core ↑	80	205	35	8	10.3	9.5	1021.2	89	0/10

Leg	Station ID	Station Type	Local Date	Local	UTC to	Latitude (N)	Longitude	Activity	Depth	Heading	w	ind	Air	Water	Pr Baro	Hum	lce
8				Time	local		(W)	·····,	(m)	(°)	Dir	Speed	(ºC)	(ºC)		(%)	
1a	GW-3	Piston Core	14/Jul/2010	12h28	UTC-4	55°17.160	077°49.850	Piston Core \checkmark	69	19	35	15	10.3	9.7	1020.9	90	0/10
1a	GW-3	Piston Core	14/Jul/2010	12h34	UTC-4	55°17.200	077°49.850	Piston Core 个	69	40	31	14	10.4	10.5	1021.1	89	0/10
1a	N/A	Weather	14/Jul/2010	15h50	UTC-4	55°14.600	078°08.530	Weather Balloon	109	250	50	18	10.9	9.2	1020.1	82	0/10
1a	703	Nutrient	14/Jul/2010	21h28	UTC-4	54°40.740	079°57.460	Water Sampling $\downarrow \uparrow$	45	61	70	20	13.0	10.9	1016.2	78	0/10
1a	703	Nutrient	14/Jul/2010	21h36	UTC-4	54°40.780	079°57.470	SHO Profile \downarrow	48	60	70	20	12.8	10.7	1016.2	80	0/10
1a	703	Nutrient	14/Jul/2010	21h48	UTC-4	54°40.770	079°57.540	SHO Profile 个	49	80	65	21	12.8	10.5	1016.2	79	0/10
1a	703	Nutrient	14/Jul/2010	22h02	UTC-4	54°40.810	079°57.430	CTD-Rosette \downarrow	49	70	70	20	12.8	10.1	1016.2	79	0/10
1a	703	Nutrient	14/Jul/2010	22h21	UTC-4	54°40.850	079°57.470	CTD-Rosette 个	44	85	65	21	12.6	10.2	1016.1	80	0/10
1a	709	Basic	15/Jul/2010	00h50	UTC-4	54°42.690	080°46.760	Water Sampling $\downarrow \uparrow$	88	104	100	20	12.6	10.1	1014.5	82	0/10
1a	709	Basic	15/Jul/2010	00h50	UTC-4	54°42.690	080°46.760	CTD-Rosette \downarrow	88	104	100	20	13.6	10.1	1014.5	82	0/10
1a	709	Basic	15/Jul/2010	01h07	UTC-4	54°42.870	080°46.520	CTD-Rosette 个	88	113	100	21	13.0	10.1	1014.1	81	0/10
1a	709	Basic	15/Jul/2010	01h36	UTC-4	54°43.170	080°45.940	Vertical Net Tow \downarrow	89	108	110	21	13.7	10.2	1013.6	79	0/10
1a	709	Basic	15/Jul/2010	01h44	UTC-4	54°43.240	080°45.850	Vertical Net Tow 个	89	139	110	20	13.9	10.2	1013.4	78	0/10
1a	709	Basic	15/Jul/2010	01h59	UTC-4	54°43.590	080°44.720	Horizontal Net Tow \downarrow	89	110	110	23	14.0	10.2	1012.3	75	0/10
1a	709	Basic	15/Jul/2010	02h13	UTC-4	54°43.360	080°44.700	Horizontal Net Tow 个	89	21	110	22	14.5	10.3	1012.5	73	0/10
1a	709	Basic	15/Jul/2010	02h28	UTC-4	54°43.060	080°46.330	Vertical Net Tow \downarrow	88	124	110	24	14.3	10.2	1012.2	72	0/10
1a	709	Basic	15/Jul/2010	02h32	UTC-4	54°43.090	080°46.270	Vertical Net Tow 个	88	122	110	22	14.3	10.2	1012.2	72	0/10
1a	709	Basic	15/Jul/2010	02h56	UTC-4	54°43.360	080°45.850	SHO Profile \downarrow	88	123	110	22	14.3	10.1	1012.1	71	0/10
1a	709	Basic	15/Jul/2010	03h32	UTC-4	54°43.810	080°45.470	SHO Profile 个	89	127	110	21	14.2	10.1	1012.0	72	0/10
1a	709	Basic	15/Jul/2010	03h34	UTC-4	54°43.840	080°45.440	SHO Profile \downarrow	88	136	110	21	13.9	9.5	1011.8	76	0/10
1a	709	Basic	15/Jul/2010	03h47	UTC-4	54°44.010	080°45.390	SHO Profile 个	89	139	110	21	13.7	9.5	1011.7	76	0/10
1a	709	Basic	15/Jul/2010	04h10	UTC-4	54°42.763	080°46.867	CTD-Rosette \downarrow	87	121	117	22	13.7	9.3	1011.3	75	0/10
1a	709	Basic	15/Jul/2010	04h25	UTC-4	54°42.194	080°46.746	CTD-Rosette 个	87	116	123	22	13.8	9.8	1011.1	75	0/10
1a	709	Basic	15/Jul/2010	05h05	UTC-4	54°42.936	080°46.685	Box Core $\downarrow \uparrow$	87	115	123	23	13.9	9.5	1010.4	76	0/10
1a	709	Basic	15/Jul/2010	05h24	UTC-4	54°43.207	080°46.232	Agassiz Trawl \downarrow	87	123	121	22	13.8	8.8	1010.1	76	0/10
1a	709	Basic	15/Jul/2010	05h30	UTC-4	54°43.236	080°46.271	Agassiz Trawl 个	87	295	120	22	14.2	9.3	1010.1	73	0/10
1a	704	Nutrient	15/Jul/2010	08h30	UTC-4	54°45.490	081°42.310	CTD-Rosette \downarrow	27	130	130	30	12.8	9.8	1006.3	75	0/10
1a	704	Nutrient	15/Jul/2010	08h37	UTC-4	54°45.260	081°42.200	CTD-Rosette 个	27	135	120	23	13.3	9.7	1006.0	73	0/10
1a	730	Nutrient	15/Jul/2010	13h12	UTC-4	55°26.720	080°33.100	PNF \downarrow	96	97	100	21	11.2	7.9	1006.4	86	0/10
1a	730	Nutrient	15/Jul/2010	13h17	UTC-4	55°26.690	080°33.150	PNF 个	96	95	100	22	11.6	7.8	1006.1	86	0/10

Leg	Station ID	Station Type	Local Date	Local	UTC to	Latitude (N)	Longitude	Activity	Depth	Heading	w	ind	Air	Water	Pr Baro	Hum	lce
8	00000012	oution type		Time	local		(W)		(m)	(°)	Dir	Speed	(ºC)	(ºC)		(%)	
1a	730	Nutrient	15/Jul/2010	13h22	UTC-4	55°26.680	080°33.160	Water Sampling ${igstar}{bigstar}{bigstar}{bigstar}{bigstar}{bigstar}{bigstar}{bigstar}{bigstar}{bigstar}{bigstar}{bigstar}{bigstar}{bigstar}{bigstar$	96	99	100	20	11.6	7.8	1006.1	86	0/10
1a	730	Nutrient	15/Jul/2010	13h27	UTC-4	55°26.690	080°33.150	Secchi Disk $\downarrow \uparrow$	96	95	100	22	11.6	7.8	1006.1	86	0/10
1a	730	Nutrient	15/Jul/2010	13h29	UTC-4	55°26.670	080°33.250	SHO Profile \downarrow	96	95	100	20	11.7	7.2	1005.9	87	0/10
1a	730	Nutrient	15/Jul/2010	13h56	UTC-4	55°26.650	080°33.300	SHO Profile 个	96	97	100	21	11.5	7.2	1005.6	89	0/10
1a	730	Nutrient	15/Jul/2010	13h57	UTC-4	55°26.650	080°33.640	Water Sampling $\downarrow \uparrow$	98	62	100	22	11.2	7.2	1005.3	89	0/10
1a	730	Nutrient	15/Jul/2010	14h09	UTC-4	55°26.890	080°33.300	CTD-Rosette \downarrow	95	92	100	23	11.1	7.3	1005.2	89	0/10
1a	730	Nutrient	15/Jul/2010	14h32	UTC-4	55°27.000	080°33.690	CTD-Rosette 个	97	91	100	23	10.6	6.9	1005.2	90	0/10
1a	735	Basic	15/Jul/2010	20h47	UTC-4	56°47.760	080°49.880	Water Sampling $\downarrow \uparrow$	177	99	100	21	9.0	7.0	1003.6	97	0/10
1a	735	Basic	15/Jul/2010	20h51	UTC-4	56°47.730	080°49.740	PNF \downarrow	182	98	95	21	9.2	7.2	1003.9	97	0/10
1a	735	Basic	15/Jul/2010	20h56	UTC-4	56°47.710	080°49.740	PNF 个	181	96	100	21	9.2	7.2	1003.9	97	0/10
1a	735	Basic	15/Jul/2010	20h56	UTC-4	56°47.710	080°49.740	Secchi Disk \downarrow	181	96	100	21	9.2	7.2	1003.9	97	0/10
1a	735	Basic	15/Jul/2010	20h58	UTC-4	56°47.700	080°49.750	Secchi Disk 个	181	94	100	20	9.2	7.2	1003.9	97	0/10
1a	735	Basic	15/Jul/2010	21h06	UTC-4	56°47.670	080°49.830	CTD-Rosette ↓	183	89	95	20	9.8	7.8	1004.1	96	0/10
1a	735	Basic	15/Jul/2010	21h31	UTC-4	56°47°550	080°50.180	CTD-Rosette 个	187	94	95	23	9.6	8.2	1003.8	98	0/10
1a	735	Basic	15/Jul/2010	21h53	UTC-4	56°47.560	080°50.140	Vertical Net Tow \downarrow	188	90	90	23	10.6	8.1	1003.3	99	0/10
1a	735	Basic	15/Jul/2010	22h05	UTC-4	56°47.540	080°50.170	Vertical Net Tow 个	186	93	95	25	10.7	8.1	1003.3	99	0/10
1a	735	Basic	15/Jul/2010	22h22	UTC-4	56°47.450	080°49.690	Horizontal Net Tow \downarrow	185	86	80	27	10.9	8.1	1002.8	98	0/10
1a	735	Basic	15/Jul/2010	22h27	UTC-4	56°47.440	080°49.560	Horizontal Net Tow \uparrow (canceled)	182	127	75	27	10.9	8.1	1002.6	97	0/10
1a	735	Basic	15/Jul/2010	22h33	UTC-4	56°47.320	080°49.440	Horizontal Net Tow \downarrow	182	135	75	28	10.9	7.9	1002.6	97	0/10
1a	735	Basic	15/Jul/2010	22h49	UTC-4	56°46.760	080°48.580	Horizontal Net Tow 个	151	128	80	27	10.7	8.2	1002.7	96	0/10
1a	735	Basic	15/Jul/2010	23h05	UTC-4	56°47.000	080°49.750	Vertical Net Tow \downarrow	185	106	80	26	10.6	7.9	1002.7	96	0/10
1a	735	Basic	15/Jul/2010	23h15	UTC-4	56°46.910	080°49.730	Vertical Net Tow 个	186	104	75	26	10.6	7.7	1002.4	96	0/10
1a	735	Basic	15/Jul/2010	23h23	UTC-4	56°46.880	080°49.820	SHO Profile \downarrow	182	76	75	21	10.4	7.6	1002.4	97	0/10
1a	735	Basic	15/Jul/2010	23h55	UTC-4	56°47.000	080°50.200	SHO Profile 个	181	66	70	23	9.9	7.5	1001.9	96	0/10
1a	735	Basic	16/Jul/2010	00h37	UTC-4	56°47.650	080°50.220	CTD-Rosette ↓	184	85	90	27	10.1	7.5	1001.8	98	0/10
1a	735	Basic	16/Jul/2010	01h13	UTC-4	56°47.910	080°50.500	CTD-Rosette 个	193	76	80	24	10.2	8.0	1001.4	98	0/10
1a	735	Basic	16/Jul/2010	01h40	UTC-4	56°47.650	080°50.240	Box Core ↓	184	73	80	26	10.3	8.2	1000.7	95	0/10
1a	735	Basic	16/Jul/2010	01h45	UTC-4	56°47.700	080°50.370	Box Core 个↓	186	90	80	24	10.3	8.2	1000.7	95	0/10
1a	735	Basic	16/Jul/2010	01h55	UTC-4	56°47.770	080°50.530	Box Core 个	185	73	80	26	9.9	8.1	1000.7	96	0/10
1a	735	Basic	16/Jul/2010	02h14	UTC-4	56°47.800	080°50.350	Agassiz Trawl 🗸	185	80	80	21	10.0	8.2	1000.4	91	0/10

Leg	Station ID	Station Type	Local Date	Local	UTC to	Latitude (N)	Longitude	Activity	Depth	Heading	w	ind	Air	Water	Pr Baro	Hum	lce
8	00000012	••••••••••••		Time	local		(W)	-	(m)	(°)	Dir	Speed	(ºC)	(ºC)		(%)	
1a	735	Basic	16/Jul/2010	02h38	UTC-4	56°48.080	080°50.900	Agassiz Trawl 个	136	283	80	20	10.6	8.4	1000.6	88	0/10
1a	745	Basic	16/Jul/2010	22h46	UTC-4	60°25.780	085°00.420	PNF \downarrow	180	20	40	16	7.7	6.3	1013.0	93	0/10
1a	745	Basic	16/Jul/2010	22h50	UTC-4	60°25.800	085°00.440	PNF 个	180	37	35	16	7.6	6.2	1013.4	94	0/10
1a	745	Basic	16/Jul/2010	22h50	UTC-4	60°25.800	085°00.440	Secchi Disk \downarrow \uparrow	180	41	35	16	7.6	6.2	1013.4	94	0/10
1a	745	Basic	16/Jul/2010	23h20	UTC-4	60°30.320	085°00.850	Water Sampling $\downarrow \uparrow$	182	35	30	17	7.6	6.0	1013.4	94	0/10
1a	745	Basic	16/Jul/2010	23h28	UTC-4	60°30.320	085°00.870	CTD-Rosette ↓	185	23	35	17	7.6	6.0	1013.4	94	0/10
1a	745	Basic	16/Jul/2010	23h32	UTC-4	60°30.340	085°00.880	Water Pumping	185	18	35	17	7.6	5.9	1013.6	94	0/10
1a	745	Basic	16/Jul/2010	23h56	UTC-4	60°30.410	085°00.910	CTD-Rosette 个	186	33	30	18	7.5	5.8	1013.6	94	0/10
1a	745	Basic	17/Jul/2010	00h43	UTC-4	60°30.400	085°00.840	Vertical Net Tow \downarrow	186	30	30	15	7.5	5.9	1013.6	94	0/10
1a	745	Basic	17/Jul/2010	00h55	UTC-4	60°30.340	085°00.870	Vertical Net Tow 个	185	55	30	17	7.5	5.9	1013.6	94	0/10
1a	745	Basic	17/Jul/2010	01h10	UTC-4	60°30.400	085°00.830	Horizontal Net Tow \downarrow	184	80	30	15	7.3	5.7	1013.6	92	0/10
1a	745	Basic	17/Jul/2010	01h25	UTC-4	60°30.680	085°00.850	Horizontal Net Tow 个	186	256	20	13	7.5	5.7	1013.5	92	0/10
1a	745	Basic	17/Jul/2010	01h38	UTC-4	60°30.490	085°00.660	Vertical Net Tow \downarrow	183	55	30	17	7.5	5.8	1013.7	92	0/10
1a	745	Basic	17/Jul/2010	01h48	UTC-4	60°30.450	085°00.600	Vertical Net Tow 个	184	108	30	16	7.4	5.9	1013.7	92	0/10
1a	745	Basic	17/Jul/2010	02h01	UTC-4	60°30.350	085°00.740	CTD-Rosette ↓	184	29	30	16	7.5	5.8	1013.8	91	0/10
1a	745	Basic	17/Jul/2010	02h21	UTC-4	60°30.400	085°00.660	CTD-Rosette 个	184	50	30	16	7.7	5.8	1013.9	91	0/10
1a	745	Basic	17/Jul/2010	02h40	UTC-4	60°30.440	085°00.630	SHO Profile \downarrow	183	37	40	17	7.9	5.7	1013.9	89	0/10
1a	745	Basic	17/Jul/2010	02h59	UTC-4	60°30.410	085°00.640	Water Sampling $\downarrow \uparrow$	184	33	40	16	8.0	5.7	1013.9	88	0/10
1a	745	Basic	17/Jul/2010	03h14	UTC-4	60°30.340	085°00.700	SHO Profile 个	183	34	40	15	7.9	5.7	1014.0	89	0/10
1a	745	Basic	17/Jul/2010	03h37	UTC-4	60°30.260	085°00.840	CTD-Rosette ↓	185	37	40	15	8.0	5.8	1014.1	88	0/10
1a	745	Basic	17/Jul/2010	04h02	UTC-4	60°30.280	085°00.874	CTD-Rosette 个	186	7	44	16	7.9	5.8	1014.3	89	0/10
1a	745	Basic	17/Jul/2010	04h34	UTC-4	60°30.410	085°01.060	Box Core (bottom)	185	31	34	17	7.6	5.5	1014.4	91	0/10
1a	745	Basic	17/Jul/2010	04h46	UTC-4	60°30.406	085°01.081	Box Core (bottom)	185	35	32	16	7.5	5.4	1014.4	91	0/10
1a	745	Basic	17/Jul/2010	05h10	UTC-4	60°30.040	085°00.570	Agassiz Trawl 🗸	184	121	30	17	7.8	5.7	1014.6	91	0/10
1a	745	Basic	17/Jul/2010	05h30	UTC-4	60°29.929	085°00.334	Agassiz Trawl 个	184	102	30	16	7.8	5.7	1014.6	91	0/10
1a	750	Nutrient	17/Jul/2010	11h02	UTC-4	60°40.790	087°28.200	Water Sampling ${igstar}{bigstar}{bigstar}{bigstar}{bigstar}{bigstar}{bigstar}{bigstar}{bigstar}{bigstar}{bigstar}{bigstar}{bigstar}{bigstar}{bigstar$	196	30	40	12	7.3	6.3	1016.5	93	0/10
1a	750	Nutrient	17/Jul/2010	11h10	UTC-4	60°40.850	087°28.190	SHO Profile \downarrow	192	29	40	12	7.3	6.3	1016.6	92	0/10
1a	750	Nutrient	17/Jul/2010	11h33	UTC-4	60°40.920	087°28.350	SHO Profile 个	197	37	50	12	7.4	6.0	1016.7	92	0/10
1a	750	Nutrient	17/Jul/2010	11h48	UTC-4	60°40.990	087°28.410	CTD-Rosette \downarrow	195	26	40	13	7.6	5.9	1016.7	92	0/10
1a	750	Nutrient	17/Jul/2010	12h16	UTC-4	60°41.060	087°28.490	CTD-Rosette 个	195	30	40	13	7.1	5.8	1016.8	94	0/10

Leg	Station ID	Station Type	Local Date	Local	UTC to	Latitude (N)	Longitude	Activity	Depth	Heading	w	ind	Air	Water	Pr Baro	Hum	lce
8				Time	local		(W)	· · · · · · · · · · · · · · · · · · ·	(m)	(°)	Dir	Speed	(ºC)	(ºC)		(%)	
1a	750	Nutrient	17/Jul/2010	12h26	UTC-4	60°41.110	087°28.480	Vertical Net Tow \downarrow	195	29	40	14	7.1	5.9	1016.8	94	0/10
1a	750	Nutrient	17/Jul/2010	12h37	UTC-4	60°41.040	087°28.560	Vertical Net Tow 个	195	40	40	13	7.2	6.0	1016.8	93	0/10
1a	760	Nutrient	17/Jul/2010	23h09	UTC-4	63°03.810	088°24.130	Water Sampling $\downarrow \uparrow$	136	253	260	9	9.6	8.9	1016.4	84	0/10
1a	760	Nutrient	17/Jul/2010	23h18	UTC-4	63°03.740	088°24.470	SHO Profile \downarrow	138	254	250	10	9.7	8.9	1016.5	84	0/10
1a	760	Nutrient	17/Jul/2010	23h49	UTC-4	63°03.570	088°24.850	SHO Profile 个	137	243	250	10	9.6	8.6	1016.7	84	0/10
1a	760	Nutrient	17/Jul/2010	23h59	UTC-4	63°03.520	088°24.940	CTD-Rosette ↓	137	250	250	10	9.7	8.1	1016.7	84	0/10
1a	760	Nutrient	18/Jul/2010	00h27	UTC-4	63°03.350	088°24.920	CTD-Rosette 个	137	151	260	10	9.9	8.3	1016.7	84	0/10
1a	765	Basic	18/Jul/2010	06h24	UTC-4	62°18.240	090°40.000	Water Sampling $\downarrow \uparrow$	104	319	310	5	7.2	7.9	1017.3	94	0/10
1a	765	Basic	18/Jul/2010	06h29	UTC-4	62°18.276	090°39.958	PNF \downarrow	106	3305	310	5	7.2	7.9	1017.3	94	0/10
1a	765	Basic	18/Jul/2010	06h34	UTC-4	62°18.319	090°39.874	PNF 个	105	300	310	6	7.2	7.9	1017.3	94	0/10
1a	765	Basic	18/Jul/2010	06h35	UTC-4	62°18.337	090°39.846	Secchi Disk 🗸	106	299	300	6	7.1	7.7	1017.4	95	0/10
1a	765	Basic	18/Jul/2010	06h38	UTC-4	62°18.345	090°39.835	Secchi Disk 个	106	299	300	6	7.1	7.7	1017.4	95	0/10
1a	765	Basic	18/Jul/2010	06h42	UTC-4	62°18.384	090°39.763	SHO Profile \downarrow	104	299	301	6	7.0	7.3	1017.5	95	0/10
1a	765	Basic	18/Jul/2010	07h03	UTC-4	62°18.537	090°39.472	Water Sampling $\downarrow \uparrow$	103	297	287	6	6.9	6.6	1017.3	95	0/10
1a	765	Basic	18/Jul/2010	07h07	UTC-4	62°18.558	090°39.415	SHO Profile 个	101	297	285	6	6.9	6.0	1017.3	95	0/10
1a	765	Basic	18/Jul/2010	07h33	UTC-4	62°18.505	090°39.716	CTD-Rosette ↓	105	305	292	5	7.6	6.3	1017.1	93	0/10
1a	765	Basic	18/Jul/2010	07h56	UTC-4	62°18.589	090°39.580	CTD-Rosette 个	105	286	270	5	7.4	6.8	1017.1	93	0/10
1a	765	Basic	18/Jul/2010	08h33	UTC-4	62°18.600	090°39.550	Zodiac Deployed	106	270	250	5	7.5	6.5	1016.9	92	0/10
1a	765	Basic	18/Jul/2010	08h42	UTC-4	62°18.580	090°39.630	Vertical Net Tow \downarrow	106	280	260	5	7.6	6.4	1016.9	92	0/10
1a	765	Basic	18/Jul/2010	08h49	UTC-4	62°18.570	090°39.650	Vertical Net Tow 个	105	322	250	5	7.6	6.7	1016.8	91	0/10
1a	765	Basic	18/Jul/2010	09h05	UTC-4	62°18.440	090°39.630	Horizontal Net Tow 🗸	106	236	230	3	7.6	6.9	1016.8	91	0/10
1a	765	Basic	18/Jul/2010	09h22	UTC-4	62°18.190	090°39.540	Horizontal Net Tow 个	107	35	260	3	8.0	6.8	1016.9	91	0/10
1a	765	Basic	18/Jul/2010	09h28	UTC-4	62°18.250	090°39.530	Zodiac Recovered	107	326	255	8	8.0	6.8	1016.9	91	0/10
1a	765	Basic	18/Jul/2010	09h33	UTC-4	62°18.220	090°39.690	Zodiac Deployed	107	304	255	7	7.8	7.0	1016.7	91	0/10
1a	765	Basic	18/Jul/2010	09h49	UTC-4	62°18.050	090°39.800	CTD-Rosette ↓	107	266	250	7	7.5	7.1	1016.6	91	0/10
1a	765	Basic	18/Jul/2010	10h11	UTC-4	62°18.780	090°39.980	CTD-Rosette 个	106	269	260	9	8.3	6.9	1016.2	87	0/10
1a	765	Basic	18/Jul/2010	11h16	UTC-4	62°16.680	090°41.630	Zodiac Recovered	107	140	270	8	8.1	7.0	1016.2	90	0/10
1a	N/A	Mapping	18/Jul/2010	15h45	UTC-4	61°30.450	092°05.050	Bottom Mapping \downarrow	107	166	240	5	7.8	6.3	1016.2	91	0/10
1a	N/A	Mapping	18/Jul/2010	16h40	UTC-4	61°29.680	092°02.520	Bottom Mapping 个	119	90	245	6	7.8	6.2	1016.2	90	0/10
1a	770	Nutrient	18/Jul/2010	19h25	UTC-4	60°56.181	091°47.758	Water Sampling $\downarrow \uparrow$	109	252	202	4	8.9	8.2	1015.9	93	0/10

Leg	Station ID	Station Type	Local Date	Local	UTC to	Latitude (N)	Longitude	Activity	Depth	Heading	w	ind	Air	Water	Pr Baro	Hum	lce
8	••••••	••••••••••••		Time	local		(W)		(m)	(°)	Dir	Speed	(ºC)	(ºC)		(%)	
1a	770	Nutrient	18/Jul/2010	19h28	UTC-4	60°56.181	091°47.940	SHO Profile \downarrow	109	209	210	4	8.9	8.2	1015.9	93	0/10
1a	770	Nutrient	18/Jul/2010	19h55	UTC-4	60°56.260	091°47.884	SHO Profile 个	110	208	210	4	9.5	7.6	1015.8	92	0/10
1a	770	Nutrient	18/Jul/2010	19h48	UTC-4	60°56.236	091°47.844	Water Sampling $\downarrow \uparrow$	109	214	205	4	9.6	7.9	1015.9	91	0/10
1a	770	Nutrient	18/Jul/2010	20h08	UTC-4	60°56.240	091°48.000	CTD-Rosette ↓	109	171	215	4	9.4	7.4	1015.8	92	0/10
1a	770	Nutrient	18/Jul/2010	20h26	UTC-4	60°56.310	091°48.090	CTD-Rosette 个	111	118	220	4	9.3	7.3	1015.6	93	0/10
1a	770	Nutrient	18/Jul/2010	20h36	UTC-4	60°56.330	091°48.190	Vertical Net Tow \downarrow	110	196	215	4	9.6	7.3	1015.6	92	0/10
1a	770	Nutrient	18/Jul/2010	20h43	UTC-4	60°56.350	091°48.280	Vertical Net Tow 个	109	190	200	4	9.5	7.2	1015.6	92	0/10
1a	707	Full	19/Jul/2010	01h07	UTC-4	59°58.090	091°57.090	CTD-Rosette \downarrow	111	211	215	11	8.4	7.6	1015.1	97	0/10
1a	707	Full	19/Jul/2010	01h26	UTC-4	59°57.850	091°57.300	CTD-Rosette 个	115	184	215	11	8.5	7.2	1015.1	97	0/10
1a	707	Full	19/Jul/2010	01h41	UTC-4	59°57.970	091°57.240	Hg Sampling \downarrow	112	197	215	11	8.5	6.9	1015.2	96	0/10
1a	707	Full	19/Jul/2010	03h21	UTC-4	59°57.880	091°57.270	Hg Sampling 个	110	320	215	10	8.7	6.6	1015.1	93	0/10
1a	707	Full	19/Jul/2010	03h36	UTC-4	59°58.140	091°57.000	Vertical Net Tow \downarrow	107	229	220	9	8.6	6.6	1015.0	91	0/10
1a	707	Full	19/Jul/2010	03h43	UTC-4	59°58.160	091°56.900	Vertical Net Tow 个	105	230	220	10	8.8	6.7	1015.0	90	0/10
1a	707	Full	19/Jul/2010	04h18	UTC-4	59°58.648	091°56.305	Horizontal Net Tow \downarrow	103	N/A	216	8	8.9	7.0	1015.0	88	0/10
1a	707	Full	19/Jul/2010	04h35	UTC-4	59°58.797	091°57.215	Horizontal Net Tow 个	103	180	216	8	8.9	7.0	1015.0	88	0/10
1a	707	Full	19/Jul/2010	04h46	UTC-4	59°58.569	091°57.192	Vertical Net Tow \downarrow	104	212	211	8	8.9	7.0	1014.9	88	0/10
1a	707	Full	19/Jul/2010	04h53	UTC-4	59°58.577	091°57.164	Vertical Net Tow 个	104	217	207	9	8.9	7.0	1014.9	88	0/10
1a	707	Full	19/Jul/2010	05h05	UTC-4	59°58.578	091°57.142	SHO Profile \downarrow	101	204	191	9	8.8	7.1	1014.9	89	0/10
1a	707	Full	19/Jul/2010	05h29	UTC-4	59°58.665	091°56.996	Water Sampling $\downarrow \uparrow$	100	197	192	9	8.2	6.9	1014.8	92	0/10
1a	707	Full	19/Jul/2010	05h35	UTC-4	59°58.687	091°56.957	SHO Profile 个	104	176	197	10	8.2	6.9	1014.7	92	0/10
1a	707	Full	19/Jul/2010	05h30	UTC-4	59°58.697	091°56.951	Secchi Disk 🗸	104	186	198	10	8.2	6.9	1014.7	92	0/10
1a	707	Full	19/Jul/2010	05h38	UTC-4	59°58.688	091°56.927	Secchi Disk 个	104	177	199	10	8.2	6.9	1014.7	92	0/10
1a	707	Full	19/Jul/2010	05h41	UTC-4	59°58.686	091°56.906	PNF \downarrow	101	198	195	10	8.2	6.9	1017.7	92	0/10
1a	707	Full	19/Jul/2010	05h45	UTC-4	59°58.693	091°56.891	PNF 个	102	200	189	10	8.4	6.8	1014.7	91	0/10
1a	707	Full	19/Jul/2010	05h50	UTC-4	59°58.676	091°56.860	CTD-Rosette \downarrow	101	189	195	9	8.5	6.8	1014.7	91	0/10
1a	707	Full	19/Jul/2010	06h05	UTC-4	59°58.700	091°56.745	CTD-Rosette 个	102	192	198	10	8.5	6.8	1014.8	91	0/10
1a	AN01-09	Mooring	19/Jul/2010	06h42	UTC-4	59°58.225	091°57.012	Mooring AN01-09 Recovered	105	217	205	12	9.0	7.2	1014.8	87	0/10
1a	AN01-09	Mooring	19/Jul/2010	07h14	UTC-4	59°58.428	091°56.635	Mooring AN01-09 Recovered (end)	106	211	209	13	9.2	6.7	1015.0	86	0/10
1a	707	Full	19/Jul/2010	08h08	UTC-4	59°58.990	091°56.540	Zodiac Deployed	100	280	210	15	8.5	6.9	1014.9	89	0/10
1a	707	Full	19/Jul/2010	08h15	UTC-4	59°59.050	091°56.520	Hg Sampling \downarrow	100	285	210	14	8.7	6.9	1014.8	88	0/10

Leg	Station ID	Station Type	Local Date	Local	UTC to	Latitude (N)	Longitude	Activity	Depth	Heading	w	ind	Air	Water	Pr Baro	Hum	lce
8				Time	local		(W)		(m)	(°)	Dir	Speed	(ºC)	(ºC)		(%)	
1a	707	Full	19/Jul/2010	09h11	UTC-4	59°59.690	091°56.620	Zodiac Recovered Hg Sampling ↑	107	295	210	12	8.5	6.9	1014.5	86	0/10
1a	707	Full	19/Jul/2010	09h18	UTC-4	59°59.690	091°56.620	Zodiac Deployed Hg Sampling \downarrow	107	295	210	12	8.5	6.9	1014.5	86	0/10
1a	707	Full	19/Jul/2010	10h35	UTC-4	59°59.990	091°57.160	Hg Sampling 个	113	299	210	11	8.3	6.9	1014.2	90	0/10
1a	707	Full	19/Jul/2010	10h44	UTC-4	60°00.010	091°57.240	Zodiac Recovered	116	304	210	12	8.4	6.8	1014.0	90	0/10
1a	AN01-10	Mooring	19/Jul/2010	11h05	UTC-4	59°58.280	091°56.940	Zodiac Deployed Mooring AN01-10 Deployed	102	135	212	12	8.5	6.8	1013.9	89	0/10
1a	AN01-10	Mooring	19/Jul/2010	11h27	UTC-4	59°58.172	091°56.986	Mooring AN01-10 Deployed (end)	106	224	204	13	8.7	7.1	1013.9	89	0/10
1a	AN01-11	Mooring	19/Jul/2010	11h33	UTC-4	59°58.170	091°56.990	Zodiac Recovered	105	282	205	14	8.7	7.1	1013.9	89	0/10
1a	707	Full	19/Jul/2010	11h53	UTC-4	59°58.630	091°57.120	CTD-Rosette \downarrow	104	186	220	13	8.6	7.1	1013.8	90	0/10
1a	707	Full	19/Jul/2010	12h06	UTC-4	59°58.550	091°57.180	CTD-Rosette 个	103	190	210	12	8.7	7.2	1013.8	90	0/10
1a	N/A	N/A	20/Jul/2010	N/A	UTC-4	N/A	N/A	Water Sampling $\downarrow \uparrow$	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
1a	VIP	N/A	20/Jul/2010	05h58	UTC-4	58°54.714	093°57.290	CTD-Rosette \downarrow	32	102	104	13	17.4	13.2	1011.7	63	0/10
1a	VIP	N/A	20/Jul/2010	06h05	UTC-4	58°54.739	093°57.205	CTD-Rosette 个	31	107	316	13	17.4	13.0	1011.9	63	0/10
1a	VIP	N/A	20/Jul/2010	N/A	UTC-4	N/A	N/A	Horizontal Net Tow \downarrow (canceled)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0/10
1a	N/A	Box Core	21/Jul/2010	03h57	UTC-4	59°36.733	091°49.794	Box Core ↓	120	164	170	14	10.4	10.9	1013.0	93	0/10
1a	N/A	Box Core	21/Jul/2010	04h05	UTC-4	59°36.764	091°49.627	Box Core (bottom)	120	181	123	14	10.4	10.7	1013.1	92	0/10
1a	N/A	Box Core	21/Jul/2010	04h00	UTC-4	59°36.756	091°49.747	Box Core ↑	119	N/A	123	14	10.4	10.7	1013.1	92	0/10
1a	N/A	Box Core	21/Jul/2010	04h21	UTC-4	59°36.915	091°49.919	Agassiz Trawl 🗸	122	300	184	14	10.1	10.4	1012.9	93	0/10
1a	N/A	Box Core	21/Jul/2010	04h38	UTC-4	59°36.778	091°50.461	Agassiz Trawl 个	121	192	178	13	10.1	10.4	1012.9	93	0/10
1a	706	Full	21/Jul/2010	08h23	UTC-4	58°47.070	091°31.650	PNF \downarrow	76	126	135	9	10.0	11.1	1013.3	91	0/10
1a	706	Full	21/Jul/2010	08h28	UTC-4	58°47.090	091°31.590	PNF 个	75	135	135	10	10.0	11.1	1013.3	91	0/10
1a	706	Full	21/Jul/2010	08h28	UTC-4	58°47.090	091°31.590	Secchi Disk ${igstar} {igstar}$	75	135	135	10	10.0	11.1	1013.3	91	0/10
1a	706	Full	21/Jul/2010	08h41	UTC-4	58°47.150	091°31.490	SHO Profile \downarrow	76	80	150	10	10.1	11.1	1013.5	90	0/10
1a	706	Full	21/Jul/2010	09h00	UTC-4	58°47.140	091°31.440	SHO Profile 个	75	38	150	9	11.6	10.5	1013.5	85	0/10
1a	706	Full	21/Jul/2010	09h12	UTC-4	58°47.150	091°31.310	CTD-Rosette \downarrow	77	168	160	8	11.2	10.4	1013.6	87	0/10
1a	706	Full	21/Jul/2010	09h39	UTC-4	58°47.290	091°31.150	CTD-Rosette 个	75	150	165	11	10.5	10.5	1013.7	86	0/10
1a	706	Full	21/Jul/2010	10h38	UTC-4	58°46.770	091°31.850	Zodiac Deployed (Hg sampling)	80	159	160	12	10.8	11.1	1013.5	85	0/10
1a	706	Full	21/Jul/2010	10h38	UTC-4	58°46.770	091°31.850	Zodiac Deployment Canceled (mechanical problem)	80	159	160	12	10.8	11.1	1013.5	85	0/10
1a	706	Full	21/Jul/2010	12h43	UTC-4	58°47.900	091°32.300	Zodiac Deployed (Hg sampling)	77	175	140	10	10.9	10.3	1013.7	86	0/10
1a	706	Full	21/Jul/2010	12h58	UTC-4	58°47.940	091°32.300	Hg Sampling ↑	76	175	140	11	10.7	10.3	1013.5	87	0/10
1a	AN02-09	Mooring	21/Jul/2010	13h22	UTC-4	58°47.140	091°32.040	Grappling Mooring AN02-09	75	Var	143	13	10.8	10.5	1013.5	87	0/10

Leg	Station ID	Station Type	Local Date	Local	UTC to	Latitude (N)	Longitude	Activity	Depth	Heading	w	ind	Air	Water	Pr Baro	Hum	lce
8				Time	local		(W)	,	(m)	(°)	Dir	Speed	(ºC)	(ºC)		(%)	
1a	AN02-09	Mooring	21/Jul/2010	13h41	UTC-4	58°46.550	091°32.050	Grappling Mooring AN02-09	78	Var	150	11	10.7	10.7	1013.3	87	0/10
1a	AN02-09	Mooring	21/Jul/2010	13h46	UTC-4	58°46.650	091°31.620	Grappling Mooring AN02-09	81	Var	155	12	10.7	10.7	1013.3	87	0/10
1a	AN02-09	Mooring	21/Jul/2010	14h05	UTC-4	58°47.000	091°32.170	Grappling Mooring AN02-09 (not recovered)	77	Var	153	12	10.5	10.9	1013.3	87	0/10
1a	706	Full	21/Jul/2010	14h32	UTC-4	58°46.950	091°32.350	Vertical Net Tow \downarrow	78	149	160	12	11.4	10.8	1013.1	85	0/10
1a	706	Full	21/Jul/2010	14h38	UTC-4	58°45.950	091°32.380	Vertical Net Tow ↑	78	169	150	14	11.4	10.8	1013.1	85	0/10
1a	706	Full	21/Jul/2010	15h00	UTC-4	58°46.560	091°32.400	Horizontal Net Tow \downarrow	77	176	150	16	10.0	10.7	1012.9	87	0/10
1a	706	Full	21/Jul/2010	15h10	UTC-4	58°46.130	091°32.560	Horizontal Net Tow 个	78	148	150	14	10.8	11.0	1012.6	88	0/10
1a	706	Full	21/Jul/2010	15h29	UTC-4	58°46.070	091°32.380	Vertical Net Tow \downarrow	80	151	150	14	11.1	11.2	1012.7	89	0/10
1a	706	Full	21/Jul/2010	15h34	UTC-4	58°46.070	091°32.370	Vertical Net Tow ↑	81	156	150	13	11.0	11.2	1012.6	89	0/10
1a	706	Full	21/Jul/2010	15h26	UTC-4	58°46.130	091°32.560	Zodiac Recovered	78	229	150	14	10.8	11.0	1012.6	88	0/10
1a	706	Full	21/Jul/2010	15h48	UTC-4	58°46.380	091°32.020	CTD-Rosette \downarrow	78	152	150	14	11.0	11.2	1012.5	89	0/10
1a	706	Full	21/Jul/2010	16h05	UTC-4	58°46.348	091°31.956	CTD-Rosette 个	80	151	153	12	11.0	11.2	1012.4	89	0/10
1a	706	Full	21/Jul/2010	16h20	UTC-4	58°46.343	091°31.941	Box Core ↓	79	145	150	10	11.0	11.1	1012.4	89	0/10
1a	706	Full	21/Jul/2010	16h24	UTC-4	58°46.334	091°31.926	Box Core (bottom)	81	145	149	10	10.9	10.8	1012.4	89	0/10
1a	706	Full	21/Jul/2010	16h27	UTC-4	58°46.328	091°31.927	Box Core 个	81	150	151	11	10.9	10.8	1012.4	89	0/10
1a	706	Full	21/Jul/2010	16h45	UTC-4	58°46.464	091°32.525	Agassiz Trawl 🗸	77	300	141	11	10.5	10.7	1012.5	89	0/10
1a	706	Full	21/Jul/2010	16h55	UTC-4	58°46.456	091°33.059	Agassiz Trawl 个	77	238	141	11	10.7	10.5	1012.5	89	0/10
1a	A11	River (Hayes- Nelson)	21/Jul/2010	21h45	UTC-4	57°44.190	091°43.830	Water Sampling + CTD \downarrow	39	280	190	6	11.5	9.4	1012.2	87	0/10
1a	A11	River (Hayes- Nelson)	21/Jul/2010	21h49	UTC-4	57°44.260	091°43.860	Water Sampling + CTD ↑	40	288	195	7	11.5	9.4	1012.2	87	0/10
1a	A12	River (Hayes- Nelson)	21/Jul/2010	22h16	UTC-4	57°44.970	091°36.610	Water Sampling + CTD \downarrow	51	88	175	9	13.1	9.9	1012.1	80	0/10
1a	A12	River (Hayes- Nelson)	21/Jul/2010	22h27	UTC-4	57°45.080	091°36.280	Water Sampling + CTD ↑	50	74	170	7	11.9	10.1	1012.0	90	0/10
1a	A13	River (Hayes- Nelson)	21/Jul/2010	22h58	UTC-4	57°46.000	091°27.890	Water Sampling + CTD \downarrow	53	84	185	9	12.5	10.3	1011.5	88	0/10
1a	A13	River (Hayes- Nelson)	21/Jul/2010	23h13	UTC-4	57°46.130	091°27.350	Water Sampling + CTD ↑	62	70	175	7	14.0	10.4	1011.0	79	0/10
1a	A14	River (Hayes- Nelson)	21/Jul/2010	23h50	UTC-4	57°46.950	091°19.950	Water Sampling + CTD \downarrow	63	110	185	6	12.8	9.8	1010.3	87	0/10
1a	A14	River (Hayes- Nelson)	22/Jul/2010	00h15	UTC-4	57°46.950	091°25.300	Water Sampling + CTD ↑	64	120	180	7	12.7	9.5	1010.3	87	0/10
1a	A15	River (Hayes- Nelson)	22/Jul/2010	00h34	UTC-4	57°42.780	091°20.120	Water Sampling + CTD \downarrow	45	199	160	15	13.0	9.1	1010.1	89	0/10

Leg	Station ID	Station Type	Local Date	Local	UTC to	Latitude (N)	Longitude	Activity	Depth	Heading	w	ind	Air	Water	Pr Baro	Hum	lce
8	••••••	oution type		Time	local		(W)		(m)	(°)	Dir	Speed	(ºC)	(ºC)		(%)	
1a	A15	River (Hayes- Nelson)	22/Jul/2010	00h43	UTC-4	57°42.660	091°20.190	Water Sampling + CTD ↑	47	191	160	15	13.0	9.1	1010.1	89	0/10
1a	A16	River (Hayes- Nelson)	22/Jul/2010	01h15	UTC-4	57°38°740	091°20.310	Water Sampling + CTD \downarrow	46	232	190	11	13.6	9.5	1010.4	87	0/10
1a	A16	River (Hayes- Nelson)	22/Jul/2010	01h22	UTC-4	57°38°670	091°20.430	Water Sampling + CTD ↑	46	190	180	13	14.2	10.7	1010.4	85	0/10
1a	A17	River (Hayes- Nelson)	22/Jul/2010	01h55	UTC-4	57°34.640	091°20.440	Water Sampling + CTD \downarrow	37	194	200	10	14.3	12.4	1010.5	89	0/10
1a	A17	River (Hayes- Nelson)	22/Jul/2010	02h05	UTC-4	57°34.480	091°20.390	Water Sampling + CTD ↑	38	148	200	13	14.0	12.5	1010.5	90	0/10
1a	A17	River (Hayes- Nelson)	22/Jul/2010	02h47	UTC-4	57°29.920	091°22.660	Water Sampling + CTD \downarrow	27	133	220	14	14.5	11.7	1010.1	91	0/10
1a	A17	River (Hayes- Nelson)	22/Jul/2010	02h55	UTC-4	57°29.930	091°22.660	Water Sampling + CTD ↑	30	117	210	16	14.4	11.7	1010.2	93	0/10
1a	Α7	River (Hayes- Nelson)	22/Jul/2010	04h10	UTC-4	57°26.094	091°34.557	Water Sampling + CTD $\downarrow \uparrow$	28	270	132	1	14.5	12.5	1010.2	95	0/10
1a	A7	River (Hayes- Nelson)	22/Jul/2010	04h21	UTC-4	57°26.000	091°34.850	Water Sampling + CTD $\downarrow \uparrow$	27	273	132	1	14.5	12.5	1010.2	95	0/10
1a	A6	River (Hayes- Nelson)	22/Jul/2010	05h10	UTC-4	57°24.670	091°42.230	Water Sampling + CTD $\downarrow \uparrow$	49	255	180	5	14.8	12.7	1009.6	95	0/10
1a	A6	River (Hayes- Nelson)	22/Jul/2010	05h18	UTC-4	57°24.580	091°42.580	Water Sampling + CTD $\downarrow \uparrow$	49	285	180	5	14.8	12.7	1009.0	95	0/10
1a	A5	River (Hayes- Nelson)	22/Jul/2010	05h55	UTC-4	57°23.450	091°49.240	Water Sampling + CTD $\downarrow \uparrow$	43	288	164	7	15.0	12.9	1009.5	94	0/10
1a	A5	River (Hayes- Nelson)	22/Jul/2010	06h05	UTC-4	57°23.390	091°49.570	Water Sampling + CTD $\downarrow \uparrow$	42	291	164	7	15.0	12.9	1009.5	94	0/10
1a	A4	River (Hayes- Nelson)	22/Jul/2010	06h53	UTC-4	57°22.060	091°56.900	Water Sampling + CTD $\downarrow \uparrow$	34	326	162	3	14.5	12.8	1009.5	96	0/10
1a	A8	River (Hayes- Nelson)	22/Jul/2010	06h56	UTC-4	57°22.050	091°56.950	Water Sampling + CTD $\downarrow \uparrow$	34	328	162	3	14.5	12.8	1009.5	96	0/10
1a	A8	River (Hayes- Nelson)	22/Jul/2010	06h59	UTC-4	57°21.997	091°57.077	Water Sampling + CTD $\downarrow \uparrow$	34	324	162	3	14.5	12.8	1009.6	96	0/10
1a	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Barge Deployed	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
1a	NR-B12	River (Hayes- Nelson)	22/Jul/2010	07h20	UTC-4	57°19.314	092°06.894	Sampling from barge	23	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
1a	NR-B10	River (Hayes- Nelson)	22/Jul/2010	08h45	UTC-4	57°14.820	092°13.194	Sampling from barge	11	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
1a	705B	Nutrient	22/Jul/2010	09h09	UTC-4	57°25.530	091°53.470	PNF $\downarrow \uparrow$	36	350	220	8	N/A	N/A	1009.6	97	0/10
1a	705B	Nutrient	22/Jul/2010	09h20	UTC-4	57°25.530	091°53.470	SHO Profile	36	330	222	9	13.6	9.6	1009.6	97	0/10

Leg	Station ID	Station Type	Local Date	Local	UTC to	Latitude (N)	Longitude	Activity	Depth	Heading	w	ind	Air	Water	Pr Baro	Hum	lce
8				Time	local		(W)	· · · · · · · · · · · · · · · · · · ·	(m)	(°)	Dir	Speed	(ºC)	(ºC)		(%)	
1a	NR-B9	River (Hayes- Nelson)	22/Jul/2010	09h20	UTC-4	57°12.645	092°15.738	Sampling from barge	9	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
1a	NR-B8	River (Hayes- Nelson)	22/Jul/2010	09h35	UTC-4	57°10.746	092°19.872	Sampling from barge	10	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
1a	705B	Nutrient	22/Jul/2010	09h52	UTC-4	57°25.530	091°53.470	Water Pumping \checkmark	36	328	235	6	13.7	9.0	1009.6	97	0/10
1a	705B	Nutrient	22/Jul/2010	09h59	UTC-4	57°25.530	091°53.470	CTD-Rosette \downarrow	36	316	237	6	13.9	8.1	1009.6	97	0/10
1a	705B	Nutrient	22/Jul/2010	10h07	UTC-4	57°25.500	091°53.500	CTD-Rosette 个	36	326	227	5	13.8	7.9	1009.6	97	0/10
1a	NR-B7	River (Hayes- Nelson)	22/Jul/2010	10h15	UTC-4	57°08.784	092°23.166	Sampling from barge	19	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
1a	705B	Nutrient	22/Jul/2010	10h34	UTC-4	57°25.500	091°53.500	Vertical Net Tow \downarrow	36	284	223	3	13.8	7.5	1009.4	96	0/10
1a	705B	Nutrient	22/Jul/2010	10h39	UTC-4	57°25.500	091°53.500	Vertical Net Tow 个	36	280	19	2	14.0	7.6	1009.3	95	0/10
1a	705B	Nutrient	22/Jul/2010	10h52	UTC-4	57°25.500	091°53.500	Vertical Net Tow \downarrow	36	263	Calm	Calm	14.6	7.6	1009.2	93	0/10
1a	705B	Nutrient	22/Jul/2010	10h56	UTC-4	57°25.500	091°53.500	Vertical Net Tow ↑	36	254	Calm	Calm	14.6	7.6	1009.2	93	0/10
1a	705B	Nutrient	22/Jul/2010	11h21	UTC-4	57°25.500	091°53.500	CTD ↓	35	193	160	6	14.1	7.6	1009.4	95	0/10
1a	705B	Nutrient	22/Jul/2010	11h32	UTC-4	57°25.600	091°53.500	CTD 个	35	174	148	7	14.0	7.4	1009.5	96	0/10
1a	NR-B6	River (Hayes- Nelson)	22/Jul/2010	11h40	UTC-4	57°06.684	092°26.496	Sampling from barge (annabelle)	9	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
1a	705B	Nutrient	22/Jul/2010	12h14	UTC-4	57°25.600	091°53.470	Water Pumping 个	34	180	210	7	14.7	7.0	1009.6	95	0/10
1a	705B	Nutrient	22/Jul/2010	12h48	UTC-4	57°25.600	091°53.480	CTD-Rosette \downarrow	35	180	210	7	14.7	7.0	1009.6	95	0/10
1a	705B	Nutrient	22/Jul/2010	12h51	UTC-4	57°25.600	091°53.480	Water Pumping \downarrow	35	180	205	5/7	15.0	7.0	1009.6	92	0/10
1a	705B	Nutrient	22/Jul/2010	13h15	UTC-4	57°25.610	091°53.540	Box Core ↓	34	180	200	5	15.1	7.1	1009.7	90	0/10
1a	705B	Nutrient	22/Jul/2010	13h21	UTC-4	57°25.610	091°53.520	Box Core 个	35	180	Calm	Calm	15.5	7.1	1009.1	91	0/10
1a	HR-D7	River (Hayes- Nelson)	22/Jul/2010	13h45	UTC-4	57°12.870	091°54.923	Sampling from barge	14	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
1a	705B	Nutrient	22/Jul/2010	13h50	UTC-4	57°25.600	091°53.520	Piston Core 🗸	35	180	Calm	Calm	15.8	7.1	1009.1	89	0/10
1a	705B	Nutrient	22/Jul/2010	14h00	UTC-4	57°25.580	091°53.520	Piston Core 个	34	Var	Calm	Calm	16.0	7.1	1009.1	87	0/10
1a	HR-D8	River (Hayes- Nelson)	22/Jul/2010	14h30	UTC-4	57°14.442	091°52.150	Sampling from barge	16	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0/10
1a	705B	Nutrient	22/Jul/2010	14h55	UTC-4	57°25.580	091°53.520	Water Pumping 个	34	Var	Calm	Calm	13.0	8.3	1009.1	97	0/10
1a	NR-BD20	River (Hayes- Nelson)	22/Jul/2010	15h10	UTC-4	57°14.470	091°52.194	Sampling from barge	28	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0/10
1a	705B	Nutrient	22/Jul/2010	15h15	UTC-4	57°25.580	091°53.520	CTD ↓	34	Var	0	5	13.2	8.3	1009.1	97	0/10
1a	705B	Nutrient	22/Jul/2010	15h28	UTC-4	57°25.580	091°53.520	CTD ↑	34	N/A	5	8	13.1	8.3	1009.1	97	0/10
1a	705A	Full	22/Jul/2010	19h22	UTC-4	57°25.520	091°53.510	Piston Core $\downarrow \uparrow$	36	Var	55	3	14.2	11.5	1008.4	98	0/10

Leg	Station ID	Station Type	Local Date	Local	UTC to	Latitude (N)	Longitude	Activity	Depth	Heading	w	ind	Air	Water	Pr Baro	Hum	lce
205	Station ib	Station Type		Time	local	Latitude (IV)	(W)	Activity	(m)	(°)	Dir	Speed	(ºC)	(ºC)		(%)	ice
1a	705C	Nutrient	23/Jul/2010	04h22	UTC-4	57°42.262	090°45.636	Water Sampling $\downarrow \uparrow$	37	107	80	9	8.8	11.4	1012.3	99	0/10
1a	705C	Nutrient	23/Jul/2010	04h27	UTC-4	57°42.262	090°45.636	Sampling $\downarrow \uparrow$	38	60	74	7	8.8	11.4	1012.3	99	0/10
1a	705C	Nutrient	23/Jul/2010	04h34	UTC-4	57°42.298	090°45.676	SHO Profile \downarrow	37	72	86	6	8.9	11.4	1012.6	99	0/10
1a	705C	Nutrient	23/Jul/2010	04h40	UTC-4	57°42.323	090°45.717	SHO Profile 个	38	74	86	7	8.9	11.4	1012.6	99	0/10
1a	705C	Nutrient	23/Jul/2010	04h45	UTC-4	57°42.336	090°45.851	SHO Profile \downarrow	39	74	96	7	8.9	11.4	1012.6	99	0/10
1a	705C	Nutrient	23/Jul/2010	04h50	UTC-4	57°42.336	090°45.851	SHO Profile 个	40	86	87	7	8.9	11.4	1012.5	99	0/10
1a	705C	Nutrient	23/Jul/2010	04h53	UTC-4	57°42.337	090°45.904	Water Sampling $\downarrow \uparrow$	40	81	91	9	8.9	11.1	1012.6	99	0/10
1a	705A	Full	23/Jul/2010	05h57	UTC-4	57°25.530	091°53.530	PNF \downarrow	29	N/A	22	10	10.4	8.8	1009.3	99	0/10
1a	705A	Full	23/Jul/2010	06h01	UTC-4	57°25.520	091°53.540	PNF 个	35	Var	19	10	10.4	9.0	1009.3	99	0/10
1a	705A	Full	23/Jul/2010	06h02	UTC-4	57°25.520	091°53.540	Secchi Disk \downarrow	35	Var	23	10	10.4	9.0	1009.3	99	0/10
1a	705A	Full	23/Jul/2010	06h05	UTC-4	57°25.520	091°53.540	Secchi Disk 个	35	Var	23	10	10.4	9.0	1009.3	99	0/10
1a	705A	Full	23/Jul/2010	07h18	UTC-4	57°25.442	091°53.475	CTD-Rosette \downarrow	36	17	20	7	9.6	8.9	1009.4	99	0/10
1a	705A	Full	23/Jul/2010	07h36	UTC-4	57°25.330	091°53.582	CTD-Rosette 个	36	8	13	8	9.9	9.3	1009.5	99	0/10
1a	705A	Full	23/Jul/2010	07h48	UTC-4	57°24.970	091°53.280	Horizontal Net Tow \downarrow	37	105	15	8	10.0	9.3	1009.6	99	0/10
1a	705A	Full	23/Jul/2010	07h53	UTC-4	57°24.860	091°52.850	Horizontal Net Tow 个	37	64	40	7	9.8	9.0	1009.7	99	0/10
1a	705A	Full	23/Jul/2010	08h13	UTC-4	57°24.830	091°52.830	Agassiz Trawl 🗸	37	132	45	7	10.9	9.4	1010.1	99	0/10
1a	705A	Full	23/Jul/2010	08h28	UTC-4	57°24.470	091°52.650	Agassiz Trawl 个	37	120	45	7	11.0	9.5	1010.2	99	0/10
1a	Intermediate A8- 705A	River (Hayes- Nelson)	23/Jul/2010	09h15	UTC-4	57°26.590	091°44.520	Water Sampling + CTD \downarrow	41	46	Calm	Calm	11.9	12.3	1010.5	99	0/10
1a	Intermediate A8- 705A	River (Hayes- Nelson)	23/Jul/2010	09h22	UTC-4	57°26.630	091°44.350	Water Sampling + CTD ↑	41	63	70	5	11.8	12.7	1010.8	99	0/10
1a	A8	River (Hayes- Nelson)	23/Jul/2010	09h59	UTC-4	57°29.670	091°35.330	Water Sampling + CTD \downarrow	37	44	Calm	Calm	11.4	12.6	1010.9	99	0/10
1a	A8	River (Hayes- Nelson)	23/Jul/2010	10h07	UTC-4	57°29.780	091°35.150	Water Sampling + CTD ↑	39	43	Calm	Calm	11.3	12.5	1010.9	99	0/10
1a	A8	River (Hayes- Nelson)	23/Jul/2010	10h07	UTC-4	57°29.780	091°35.150	Zodiac Deployed	39	43	Calm	Calm	11.3	12.5	1010.9	99	0/10
1a	Intermediate A8- 705B	River (Hayes- Nelson)	23/Jul/2010	10h43	UTC-4	57°32.160	091°28.370	Water Sampling + CTD \downarrow	34	62	320	5	11.1	12.3	1010.9	99	0/10
1a	Intermediate A8- 705B	River (Hayes- Nelson)	23/Jul/2010	10h52	UTC-4	57°32.280	091°28.170	Water Sampling + CTD ↑	34	43	300	6	11.0	12.6	1010.9	99	0/10
1a	705B	Nutrient	23/Jul/2010	11h24	UTC-4	57°34.670	091°20.750	Water Sampling + CTD \downarrow	40	302	310	5	10.5	12.9	1010.8	99	0/10
1a	705B	Nutrient	23/Jul/2010	11h32	UTC-4	57°34.780	091°20.780	Water Sampling + CTD 个	42	340	325	7	10.5	12.9	1010.8	99	0/10
1a	705B	Nutrient	23/Jul/2010	12h04	UTC-4	57°34.940	091°20.600	Zodiac Recovered	42	110	350	8	10.1	11.3	1010.6	99	0/10

Leg	Station ID	Station Type	Local Date	Local	UTC to	Latitude (N)	Longitude	Activity	Depth	Heading	w	ind	Air	Water	Pr Baro	Hum	lce
8	00000012	otation i ype		Time	local		(W)		(m)	(°)	Dir	Speed	(ºC)	(ºC)		(%)	
1a	705B	Nutrient	23/Jul/2010	12h24	UTC-4	57°35.080	091°20.430	Barge Deployed	42	110	20	8	10.2	9.7	1010.9	99	0/10
1a	705B	Nutrient	23/Jul/2010	12h47	UTC-4	57°34.710	091°20.340	SHO Profile \downarrow	38	357	20	6	10.7	10.6	1010.9	99	0/10
1a	705B	Nutrient	23/Jul/2010	13h08	UTC-4	57°34.900	091°20.210	SHO Profile 个	38	18	20	8	9.8	10.4	1011.2	99	0/10
1a	705B	Nutrient	23/Jul/2010	13h16	UTC-4	57°34.980	091°21.160	CTD-Rosette \downarrow	38	23	23	8	9.9	9.7	1011.1	99	0/10
1a	705B	Nutrient	23/Jul/2010	13h28	UTC-4	57°35.110	091°20.080	CTD-Rosette 个	39	28	25	10	9.7	9.1	1011.2	99	0/10
1a	705B	Nutrient	23/Jul/2010	13h12	UTC-4	57°34.910	091°20.200	Water Sampling $\downarrow \uparrow$	38	21	20	8	9.9	9.7	1011.1	99	0/10
1a	Intermediate 705B-C	River (Hayes- Nelson)	23/Jul/2010	14h12	UTC-4	57°37.020	091°11.650	Water Sampling + CTD $\downarrow \uparrow$	44	93	40	8	9.3	11.3	1011.2	99	0/10
1a	Intermediate 705B-C	River (Hayes- Nelson)	23/Jul/2010	14h54	UTC-4	57°38.740	091°02.810	Water Sampling + CTD $\downarrow \uparrow$	38	34	50	9	9.1	11.5	1011.6	99	0/10
1a	Intermediate 705B-C	River (Hayes- Nelson)	23/Jul/2010	15h34	UTC-4	57°40.300	090°54.810	Water Sampling + CTD $\downarrow \uparrow$	35	145	50	8	8.8	12.0	1011.9	99	0/10
1a	705C	Nutrient	23/Jul/2010	17h02	UTC-4	57°42.340	090°46.030	CTD-Rosette ↓	41	78	80	6	8.9	11.1	1012.5	99	0/10
1a	705C	Nutrient	23/Jul/2010	17h11	UTC-4	57°42.350	090°46.180	CTD-Rosette 个	43	81	80	8	8.9	11.0	1012.6	99	0/10
1a	A25	River (Hayes- Nelson)	23/Jul/2010	18h05	UTC-4	57°47.180	090°49.920	Water Sampling $\downarrow \uparrow$	40	351	96	7	8.9	10.9	1012.7	99	0/10
1a	A25	River (Hayes- Nelson)	23/Jul/2010	18h05	UTC-4	57°47.210	090°50.070	Water Sampling + CTD $\downarrow \uparrow$	40	328	77	7	9.0	11.1	1012.8	99	0/10
1a	A24	River (Hayes- Nelson)	23/Jul/2010	18h41	UTC-4	57°45.553	090°56.907	Water Sampling $\downarrow \uparrow$	47	241	60	6	8.8	11.0	1012.8	99	0/10
1a	A24	River (Hayes- Nelson)	23/Jul/2010	18h44	UTC-4	57°45.537	090°57.054	Water Sampling + CTD $\downarrow \uparrow$	45	251	304	1	8.8	11.0	1012.8	99	0/10
1a	A23	River (Hayes- Nelson)	23/Jul/2010	19h21	UTC-4	57°41.321	090°57.477	Water Sampling $\sqrt{\uparrow}$	39	164	67	7	8.7	11.0	1012.9	99	0/10
1a	A23	River (Hayes- Nelson)	23/Jul/2010	19h27	UTC-4	57°41.270	090°57.548	Water Sampling + CTD $\downarrow \uparrow$	40	169	72	7	8.7	11.0	1012.9	99	0/10
1a	A23	River (Hayes- Nelson)	23/Jul/2010	19h56	UTC-4	57°41.190	090°57.960	Barge Recovered	40	138	70	10	8.5	11.2	1012.9	99	0/10
1a	705M	Full	24/Jul/2010	05h55	UTC-4	57°40.517	091°34.801	PNF \downarrow	52	41	125	4	11.7	10.7	1013.8	99	0/10
1a	705M	Full	24/Jul/2010	05h59	UTC-4	57°40.510	091°34.801	PNF 个	52	41	125	4	11.7	10.7	1013.8	99	0/10
1a	705M	Full	24/Jul/2010	06h00	UTC-4	57°40.517	091°34.801	Secchi Disk 🗸	52	41	125	4	11.7	10.7	1013.8	99	0/10
1a	705M	Full	24/Jul/2010	06h01	UTC-4	57°40.517	091°34.801	Secchi Disk 个	52	41	142	5	11.7	10.7	1013.8	99	0/10
1a	705M	Full	24/Jul/2010	06h25	UTC-4	57°40.514	091°34.814	SHO Profile \downarrow	52	37	135	5	11.8	10.9	1013.8	99	0/10
1a	705M	Full	24/Jul/2010	06h36	UTC-4	57°40.509	091°34.809	SHO Profile 个	52	38	147	5	11.8	10.9	1014.0	99	0/10

Leg	Station ID	Station Type	Local Date	Local	UTC to	Latitude (N)	Longitude	Activity	Depth	Heading	w	ind	Air	Water	Pr Baro	Hum	lce
8				Time	local		(W)	·····,	(m)	(°)	Dir	Speed	(ºC)	(ºC)		(%)	
1a	705M	Full	24/Jul/2010	06h39	UTC-4	57°40.508	091°34.815	Water Sampling $\downarrow \uparrow$	53	38	141	5	11.8	10.9	1014.0	99	0/10
1a	705M	Full	24/Jul/2010	06h50	UTC-4	57°40.502	091°34.834	CTD-Rosette \downarrow	53	36	140	5	11.8	10.9	1014.0	98	0/10
1a	705M	Full	24/Jul/2010	07h13	UTC-4	57°40.505	091°34.841	CTD-Rosette 个	53	36	141	6	12.1	11.0	1013.9	94	0/10
1a	AN04-09	Mooring	24/Jul/2010	08h55	UTC-4	57°40.150	091°36.240	Mooring AN04-09 Recovered	59	95	133	4	11.8	11.1	1012.0	95	0/10
1a	705M	Full	24/Jul/2010	09h35	UTC-4	57°39.910	091°36.310	Vertical Net Tow \downarrow	57	122	145	6	12.1	10.9	1014.5	95	0/10
1a	705M	Full	24/Jul/2010	09h40	UTC-4	57°39.880	091°36.300	Vertical Net Tow 个	57	131	135	6	12.0	10.7	1014.5	95	0/10
1a	705M	Full	24/Jul/2010	09h54	UTC-4	57°39.820	091°36.310	Zodiac Deployed	57	127	160	5	12.1	10.6	1014.4	95	0/10
1a	705M	Full	24/Jul/2010	10h05	UTC-4	57°39.770	091°36.110	Horizontal Net Tow \downarrow	55	Var	165	5	12.4	10.6	1014.5	93	0/10
1a	705M	Full	24/Jul/2010	10h13	UTC-4	57°39.990	091°35.820	Horizontal Net Tow 个	63	Var	150	4	12.5	10.6	1014.5	93	0/10
1a	705M	Full	24/Jul/2010	10h24	UTC-4	57°40.120	091°35.970	Vertical Net Tow \downarrow	61	320	150	4	12.5	10.8	1014.4	92	0/10
1a	705M	Full	24/Jul/2010	10h29	UTC-4	57°40.130	091°35.970	Vertical Net Tow 个	61	312	155	5	12.5	10.8	1014.4	92	0/10
1a	705M	Full	24/Jul/2010	10h35	UTC-4	57°40.140	091°35.980	Zodiac Recovered	61	302	160	6	12.1	10.9	1014.3	94	0/10
1a	705M	Full	24/Jul/2010	10h36	UTC-4	57°40.140	091°35.980	Zodiac Deployed	61	298	160	5	12.1	10.9	1014.3	94	0/10
1a	705M	Full	24/Jul/2010	10h38	UTC-4	57°40.1530	091°35.984	Hg Sampling \downarrow	61	283	154	6	12.1	10.9	1014.3	94	0/10
1a	705M	Full	24/Jul/2010	11h35	UTC-4	57°40.190	091°35.660	Zodiac Recovered	63	156	140	5	12.2	10.6	1014.2	95	0/10
1a	705M	Full	24/Jul/2010	12h49	UTC-4	57°40.870	091°34.790	Hg Sampling 个	58	256	180	5	12.8	10.4	1013.9	93	0/10
1a	705M	Full	24/Jul/2010	13h00	UTC-4	57°40.430	091°35.920	Mooring AN04-10A + Piston Core (preparing to deploy)	63	268	170	5	12.9	11.1	1013.9	93	0/10
1a	AN04-10A	Mooring	24/Jul/2010	14h31	UTC-4	57°40.208	091°36.179	Mooring AN04-10A Deployed	60	202	Calm	Calm	14.7	12.2	1013.5	90	0/10
1a	AN04-10A	Mooring	24/Jul/2010	14h40	UTC-4	57°40.217	091°36.201	Mooring AN04-10A Deployed	60	208	Calm	Calm	14.7	12.2	1013.9	89	0/10
1a	705M	Full	24/Jul/2010	15h04	UTC-4	57°39.540	091°35.500	CTD-Rosette \downarrow	70	71	20	8	14.9	12.3	1013.9	87	0/10
1a	705M	Full	24/Jul/2010	15h20	UTC-4	57°39.670	091°35.420	CTD-Rosette 个	67	36	20	8	13.0	12.2	1013.8	95	0/10
1a	705M	Full	24/Jul/2010	15h38	UTC-4	57°39.536	091°35.629	Box Core ↓	70	65	20	8	12.8	12.1	1013.8	94	0/10
1a	705M	Full	24/Jul/2010	15h44	UTC-4	57°39.540	091°35.610	Box Core 个	70	101	30	9	12.7	12.5	1013.7	95	0/10
1a	705M	Full	24/Jul/2010	16h17	UTC-4	57°39.550	091°35.631	Piston Core ↓	70	126	57	8	12.2	11.8	1013.8	96	0/10
1a	705M	Full	24/Jul/2010	16h26	UTC-4	57°39.565	091°35.629	Piston Core (bottom)	70	193	68	6	12.2	11.8	1013.8	96	0/10
1a	705M	Full	24/Jul/2010	16h31	UTC-4	57°39.568	091°35.655	Piston Core ↑	68	205	73	5	12.3	11.8	1013.7	95	0/10
1a	705M	Full	24/Jul/2010	17h05	UTC-4	57°39.490	091°35.590	Agassiz Trawl \downarrow	71	200	N/A	N/A	12.3	11.9	1013.7	95	0/10
1a	705M	Full	24/Jul/2010	17h18	UTC-4	57°39.160	091°35.920	Agassiz Trawl 个	61	170	N/A	N/A	12.3	12.6	1013.6	95	0/10
1a	Nelson River mouth	River (Hayes- Nelson)	26/Jul/2010	11h47	UTC-4	57°16.800	092°06.780	Hg Sampling \downarrow	20	192	235	6	16.2	11.6	1005.3	99	0/10

Leg	Station ID	Station Type	Local Date	Local	UTC to	Latitude (N)	Longitude	Activity	Depth	Heading	w	ind	Air	Water	Pr Baro	Hum	lce
8	0.000.00	•••••••		Time	local		(W)		(m)	(°)	Dir	Speed	(ºC)	(ºC)		(%)	
1a	Nelson River mouth	River (Hayes- Nelson)	26/Jul/2010	12h53	UTC-4	57°16.810	092°06.860	Zodiac Deployed	20	150	Calm	Calm	18.5	6.9	1005.3	97	0/10
1a	Nelson River mouth	River (Hayes- Nelson)	26/Jul/2010	13h18	UTC-4	57°16.820	092°06.830	СТD ↓	20	179	Calm	Calm	18.2	6.8	1005.2	94	0/10
1a	Nelson River mouth	River (Hayes- Nelson)	26/Jul/2010	13h25	UTC-4	57°16.820	092°06.820	СТD ↑	20	183	Calm	Calm	18.2	6.8	1005.2	94	0/10
1a	Nelson River mouth	River (Hayes- Nelson)	26/Jul/2010	13h43	UTC-4	57°16.810	092°06.800	Barge Deployed	20	194	Calm	Calm	18.4	6.9	1004.9	95	0/10
1a	Nelson River mouth	River (Hayes- Nelson)	26/Jul/2010	14h28	UTC-4	57°16.800	092°06.760	Zodiac Recovered	19	204	Calm	Calm	19.1	6.7	1004.8	88	0/10
1a	Nelson River mouth	River (Hayes- Nelson)	26/Jul/2010	14h44	UTC-4	57°16.800	092°06.760	Hg Sampling ↑	19	205	Calm	Calm	19.2	6.3	1004.7	86	0/10
1a	Nelson River mouth	River (Hayes- Nelson)	26/Jul/2010	14h52	UTC-4	57°16.800	092°06.750	Vertical Net Tow \checkmark	19	206	90	4	19.4	6.3	1004.7	85	0/10
1a	Nelson River mouth	River (Hayes- Nelson)	26/Jul/2010	14h55	UTC-4	57°16.800	092°06.760	Vertical Net Tow ↑	19	206	90	4	19.4	6.3	1004.7	85	0/10
1a	Nelson River mouth	River (Hayes- Nelson)	26/Jul/2010	15h14	UTC-4	57°16.800	092°06.750	Box Core ↓	18	202	90	5	19.7	6.6	1004.6	81	0/10
1a	Nelson River mouth	River (Hayes- Nelson)	26/Jul/2010	15h17	UTC-4	57°16.800	092°06.750	Box Core 个	18	199	90	5	19.7	6.6	1004.6	81	0/10
1a	Nelson River mouth	River (Hayes- Nelson)	26/Jul/2010	15h26	UTC-4	57°16.800	092°06.740	Box Core ↓	18	208	70	8	19.3	6.6	1004.5	84	0/10
1a	Nelson River mouth	River (Hayes- Nelson)	26/Jul/2010	15h28	UTC-4	57°16.800	092°06.750	Box Core 个	18	208	70	8	19.3	6.6	1004.5	84	0/10
1a	Nelson River mouth	River (Hayes- Nelson)	26/Jul/2010	15h29	UTC-4	57°16.800	092°06.750	Box Core ↓	17	209	70	8	19.3	6.6	1004.5	84	0/10
1a	Nelson River mouth	River (Hayes- Nelson)	26/Jul/2010	15h31	UTC-4	57°16.800	092°06.750	Box Core 个	18	209	70	8	19.2	6.9	1004.6	84	0/10
1a	Nelson River mouth	River (Hayes- Nelson)	26/Jul/2010	15h48	UTC-4	57°16.800	092°06.750	Barge Recovered	17	203	70	8	18.8	7.2	1004.6	84	0/10
1a	Nelson River mouth	River (Hayes- Nelson)	26/Jul/2010	16h16	UTC-4	57°17.100	092°06.360	Horizontal Net Tow \downarrow	17	34	79	8	18.3	6.4	1004.4	87	0/10
1a	Nelson River mouth	River (Hayes- Nelson)	26/Jul/2010	16h30	UTC-4	57°17.669	092°05.592	Horizontal Net Tow 个	16	34	79	8	18.3	6.4	1004.4	87	0/10
1a	Nelson River mouth	River (Hayes- Nelson)	26/Jul/2010	16h43	UTC-4	57°18.183	092°04.954	Agassiz Trawl ↓	19	34	78	9	18.3	6.4	1004.4	87	0/10
1a	Nelson River mouth	River (Hayes- Nelson)	26/Jul/2010	16h48	UTC-4	57°18.347	092°04.752	Agassiz Trawl 个	17	37	83	9	18.4	6.1	1004.4	90	0/10
1a	705A	Full	27/Jul/2010	07h40	UTC-4	57°26.369	091°54.746	Water Sampling ${igstyle }{igstyle }$	33	35	282	11	14.6	11.8	1003.3	92	0/10

Leg	Station ID	Station Type	Local Date	Local	UTC to	Latitude (N)	Longitude	Activity	Depth	Heading	w	ind	Air	Water	Pr Baro	Hum	lce
8	••••••	otation i ype		Time	local		(W)	· · • • • • •	(m)	(°)	Dir	Speed	(ºC)	(ºC)		(%)	
1a	705A	Full	27/Jul/2010	07h48	UTC-4	57°26.493	091°54.593	CTD $\downarrow \uparrow$	33	69	275	10	14.6	11.8	1003.2	91	0/10
1a	A8	N/A	27/Jul/2010	08h42	UTC-4	57°30.420	091°37.700	Water Sampling + CTD \downarrow	67	65	Calm	Calm	14.7	12.6	1003.3	92	0/10
1a	A8	N/A	27/Jul/2010	08h52	UTC-4	57°30.350	091°37.500	Water Sampling + CTD 个	68	66	20	5	14.9	13.0	1003.6	92	0/10
1a	705B	Nutrient	27/Jul/2010	09h54	UTC-4	57°34.620	091°20.660	Water Sampling + CTD \downarrow	39	60	135	9	12.8	14.4	1003.2	99	0/10
1a	705B	Nutrient	27/Jul/2010	09h58	UTC-4	57°34.620	091°20.770	Water Sampling + CTD 个	40	12	130	10	12.8	14.4	1003.2	99	0/10
1a	N/A	MVP	27/Jul/2010	10h57	UTC-4	57°36.360	091°13.270	MVP \downarrow	38	253	140	10	12.5	12.9	1003.2	99	0/10
1a	N/A	MVP	27/Jul/2010	12h50	UTC-4	57°37.640	091°07.950	MVP 个	35	70	Calm	Calm	14.1	12.9	1003.7	97	0/10
1a	Intermediate 705B-C	N/A	27/Jul/2010	13h08	UTC-4	57°38.640	091°02.570	Water Sampling + CTD $\downarrow \uparrow$	38	160	Calm	Calm	14.1	12.9	1003.7	97	0/10
1a	705C	Nutrient	27/Jul/2010	13h59	UTC-4	57°42.090	090°46.030	Water Sampling + CTD $\downarrow \uparrow$	41	79	150	7	11.2	12.7	1003.5	99	0/10
1a	705C	Nutrient	27/Jul/2010	14h19	UTC-4	57°42.560	090°42.830	Water Sampling + CTD $\downarrow \uparrow$	48	40	Calm	Calm	11.2	12.7	1003.5	99	0/10
1a	705C	Nutrient	27/Jul/2010	14h37	UTC-4	57°43.320	090°39.540	Water Sampling + CTD $\downarrow \uparrow$	44	60	180	5	11.6	12.8	1003.6	99	0/10
1a	800	Nutrient	27/Jul/2010	20h47	UTC-4	58°10.160	088°14.300	Water Sampling $\downarrow \uparrow$	119	57	60	10	8.6	9.8	1004.3	99	0/10
1a	800	Nutrient	27/Jul/2010	20h51	UTC-4	58°10.190	088°14.310	SHO Profile \downarrow	119	84	70	10	8.5	9.8	1004.5	99	0/10
1a	800	Nutrient	27/Jul/2010	21h15	UTC-4	58°10.290	088°14.510	SHO Profile 个	121	83	100	10	8.4	9.7	1004.9	99	0/10
1a	800	Nutrient	27/Jul/2010	21h27	UTC-4	58°10.340	088°14.620	CTD-Rosette ↓	118	81	75	11	8.5	9.7	1004.9	99	0/10
1a	800	Nutrient	27/Jul/2010	21h48	UTC-4	58°10.420	088°14.890	CTD-Rosette 个	116	61	100	9	8.4	9.6	1004.7	99	0/10
1a	795	Nutrient	28/Jul/2010	00h18	UTC-4	57°39.530	088°33.230	Water Sampling \downarrow	72	47	45	11	8.2	9.2	1005.0	99	0/10
1a	795	Nutrient	28/Jul/2010	00h22	UTC-4	57°39.530	088°33.230	Water Sampling 个	72	47	45	11	8.2	9.2	1005.0	99	0/10
1a	795	Nutrient	28/Jul/2010	00h27	UTC-4	57°39.500	088°33.220	SHO Profile \downarrow	72	47	45	11	8.1	9.2	1005.0	99	0/10
1a	795	Nutrient	28/Jul/2010	00h48	UTC-4	57°39.370	088°33.250	SHO Profile 个	72	31	50	10	8.3	8.0	1005.1	99	0/10
1a	795	Nutrient	28/Jul/2010	00h45	UTC-4	57°39.400	088°33.240	Water Sampling $\downarrow \uparrow$	72	30	50	10	8.3	8.0	1005.1	99	0/10
1a	795	Nutrient	28/Jul/2010	01h04	UTC-4	57°39.540	088°33.100	CTD-Rosette \downarrow	70	51	60	10	8.3	7.0	1005.2	99	0/10
1a	795	Nutrient	28/Jul/2010	01h22	UTC-4	57°39.420	088°33.120	CTD-Rosette 个	71	46	70	11	8.2	7.4	1005.5	99	0/10
1a	790	Basic	28/Jul/2010	03h37	UTC-4	57°14.740	088°52.630	Water Sampling $\downarrow \uparrow$	40	28	30	14	7.4	8.1	1005.7	99	0/10
1a	790	Basic	28/Jul/2010	03h46	UTC-4	57°14.670	088°52.410	SHO Profile \downarrow	41	10	30	13	7.5	8.4	1005.6	99	0/10
1a	790	Basic	28/Jul/2010	04h00	UTC-4	57°14.640	088°52.070	SHO Profile 个	38	7	18	13	7.5	7.8	1005.7	99	0/10
1a	790	Basic	28/Jul/2010	04h20	UTC-4	57°14.859	088°52.849	Vertical Net Tow \downarrow	40	24	26	12	7.3	7.7	1005.8	99	0/10
1a	790	Basic	28/Jul/2010	04h27	UTC-4	57°14.849	088°52.789	Vertical Net Tow 个	40	24	25	11	7.3	7.7	1005.8	99	0/10
1a	790	Basic	28/Jul/2010	04h40	UTC-4	57°14.856	088°52.497	Vertical Net Tow \downarrow	41	20	32	12	7.2	7.4	1006.1	99	0/10
1a	790	Basic	28/Jul/2010	04h45	UTC-4	57°14.841	088°52.433	Vertical Net Tow 个	40	22	32	10	7.2	7.4	1006.1	99	0/10

Leg	Station ID	Station Type	Local Date	Local	UTC to	Latitude (N)	Longitude	Activity	Depth	Heading	w	ind	Air	Water	Pr Baro	Hum	lce
8		otation i ype		Time	local		(W)	· · · · · · · · · · · · · · · · · · ·	(m)	(°)	Dir	Speed	(ºC)	(ºC)		(%)	
1a	790	Basic	28/Jul/2010	05h05	UTC-4	57°14.825	088°52.433	Horizontal Net Tow \downarrow	40	150	32	10	7.2	7.4	1006.1	99	0/10
1a	790	Basic	28/Jul/2010	05h14	UTC-4	57°14.688	088°51.614	Horizontal Net Tow 个	40	150	32	10	7.2	7.4	1006.1	99	0/10
1a	790	Basic	28/Jul/2010	05h36	UTC-4	57°14.891	088°52.826	Secchi Disk $\downarrow \uparrow$	39	6	12	14	7.1	8.2	1006.5	99	0/10
1a	790	Basic	28/Jul/2010	05h38	UTC-4	57°14.904	088°52.804	PNF \downarrow	39	7	12	14	7.1	8.2	1006.5	99	0/10
1a	790	Basic	28/Jul/2010	05h40	UTC-4	57°14.916	088°52.776	PNF 个	39	3	7	13	7.2	8.1	1006.7	99	0/10
1a	790	Basic	28/Jul/2010	05h45	UTC-4	57°14.885	088°52.711	CTD-Rosette ↓	39	12	3	13	7.2	8.1	1006.7	99	0/10
1a	790	Basic	28/Jul/2010	06h05	UTC-4	57°14.871	088°52.526	CTD-Rosette 个	40	16	16	12	7.3	6.8	1007.1	99	0/10
1a	790	Basic	28/Jul/2010	07h07	UTC-4	57°15.072	088°53.047	CTD-Rosette \downarrow	40	357	357	11	7.1	8.0	1007.9	107	0/10
1a	790	Basic	28/Jul/2010	07h18	UTC-4	57°15.149	088°53.076	CTD-Rosette 个	37	2	359	10	7.4	7.6	1008.1	106	0/10
1a	790	Basic	28/Jul/2010	07h38	UTC-4	57°14.932	088°52.967	Box Core ↓	39	2	359	10	7.5	6.7	1008.2	104	0/10
1a	790	Basic	28/Jul/2010	07h41	UTC-4	57°14.942	088°52.975	Box Core (bottom)	39	6	359	10	7.5	6.7	1008.2	104	0/10
1a	790	Basic	28/Jul/2010	07h44	UTC-4	57°14.955	088°52.975	Box Core ↑	39	6	359	10	7.5	6.7	1008.2	104	0/10
1a	790	Basic	28/Jul/2010	08h03	UTC-4	57°14.950	088°53.070	Agassiz Trawl 🗸	38	274	15	13	7.4	7.0	1008.6	109	0/10
1a	790	Basic	28/Jul/2010	08h15	UTC-4	57°14.980	088°53.400	Agassiz Trawl 个	37	231	5	13	8.0	7.3	1008.8	110	0/10
1a	810	Nutrient	28/Jul/2010	13h03	UTC-4	56°52.620	087°23.350	Helicopter on Station	60	118	330	17	8.2	8.9	1010.7	98	0/10
1a	810	Nutrient	28/Jul/2010	13h28	UTC-4	50°50.560	087°16.040	Water Sampling $\downarrow \uparrow$	60	320	330	17	8.2	8.9	1010.7	98	0/10
1a	810	Nutrient	28/Jul/2010	13h37	UTC-4	56°50.550	087°16.270	SHO Profile \downarrow	60	327	330	17	8.2	8.8	1010.6	97	0/10
1a	810	Nutrient	28/Jul/2010	13h51	UTC-4	56°50.520	087°16.470	SHO Profile 个	59	289	330	17	8.5	8.5	1010.4	98	0/10
1a	810	Nutrient	28/Jul/2010	13h53	UTC-4	56°50.420	087°16.520	Water Sampling $\downarrow \uparrow$	60	323	330	17	8.5	8.5	1010.4	98	0/10
1a	810	Nutrient	28/Jul/2010	14h04	UTC-4	56°50.440	087°16.610	CTD-Rosette \downarrow	60	7	370	18	8.5	8.4	1010.5	97	0/10
1a	810	Nutrient	28/Jul/2010	14h18	UTC-4	56°50.420	087°16.500	CTD-Rosette 个	60	33	330	17	8.4	8.3	1010.8	97	0/10
1a	820	Basic	28/Jul/2010	21h31	UTC-4	55°41.830	085°07.160	PNF \downarrow	47	304	335	20	7.5	8.0	1012.8	96	0/10
1a	820	Basic	28/Jul/2010	21h35	UTC-4	55°41.820	085°07.280	PNF 个	47	313	330	20	7.5	8.0	1012.8	96	0/10
1a	820	Basic	28/Jul/2010	21h35	UTC-4	55°41.820	085°07.280	Secchi Disk $\downarrow \uparrow$	47	313	330	20	7.5	8.0	1012.8	96	0/10
1a	820	Basic	28/Jul/2010	22h20	UTC-4	55°41.510	084°52.800	Water Sampling ${igstar}{bigstar}{bigstar}{bigstar}{bigstar}{bigstar}{bigstar}{bigstar}{bigstar}{bigstar}{bigstar}{bigstar}{bigstar}{bigstar}{bigstar$	53	325	310	20	7.2	7.8	1013.3	97	0/10
1a	820	Basic	28/Jul/2010	22h34	UTC-4	55°41.630	084°53.340	CTD-Rosette \downarrow	53	332	315	20	7.4	7.7	1013.2	97	0/10
1a	820	Basic	28/Jul/2010	22h46	UTC-4	55°41.590	084°53.480	CTD-Rosette 个	53	328	315	21	7.3	7.7	1013.4	97	0/10
1a	820	Basic	28/Jul/2010	23h04	UTC-4	55°41.570	084°53.490	Vertical Net Tow \downarrow	53	60	325	20	7.2	7.5	1013.7	97	0/10
1a	820	Basic	28/Jul/2010	23h08	UTC-4	55°41.570	084°53.510	Vertical Net Tow 个	53	68	325	21	7.2	7.5	1013.7	97	0/10
1a	820	Basic	28/Jul/2010	23h28	UTC-4	55°41.550	084°53.580	Vertical Net Tow \downarrow	53	80	330	22	7.1	7.6	1013.5	97	0/10

Leg	Station ID	Station Type	Local Date	Local	UTC to	Latitude (N)	Longitude	Activity	Depth	Heading	w	ind	Air	Water	Pr Baro	Hum	lce
8	00000012	••••••••••••		Time	local		(W)	· · · · · · · · · · · · · · · · · · ·	(m)	(°)	Dir	Speed	(ºC)	(ºC)		(%)	
1a	820	Basic	28/Jul/2010	23h35	UTC-4	55°41.540	084°53.600	Vertical Net Tow \uparrow	53	65	325	20	7.0	7.7	1013.6	97	0/10
1a	820	Basic	28/Jul/2010	23h58	UTC-4	55°41.600	084°53.830	SHO Profile \downarrow	53	358	315	19	7.2	7.7	1014.1	97	0/10
1a	820	Basic	29/Jul/2010	00h11	UTC-4	55°41.580	084°54.040	SHO Profile 个	49	6	315	17	7.2	7.6	1014.2	97	0/10
1a	820	Basic	29/Jul/2010	00h26	UTC-4	55°41.630	084°54.280	CTD-Rosette ↓	53	350	315	18	7.2	7.6	1014.3	98	0/10
1a	820	Basic	29/Jul/2010	00h42	UTC-4	55°41.660	084°54.470	CTD-Rosette 个	53	12	315	23	7.1	7.5	1014.4	98	0/10
1a	820	Basic	29/Jul/2010	00h29	UTC-4	55°41.620	084°54.300	Water Sampling $\downarrow \uparrow$	53	7	315	18	7.2	7.6	1014.3	98	0/10
1a	820	Basic	29/Jul/2010	01h03	UTC-4	55°41.760	084°54.420	Box Core ↓	53	64	340	20	6.9	7.6	1014.4	99	0/10
1a	820	Basic	29/Jul/2010	01h08	UTC-4	55°41.730	084°54.490	Box Core 个	53	84	330	19	6.9	7.6	1014.3	99	0/10
1a	820	Basic	29/Jul/2010	01h22	UTC-4	55°41.720	084°54.120	Agassiz Trawl 🗸	53	N/A	340	15	6.9	7.6	1014.6	99	0/10
1a	820	Basic	29/Jul/2010	01h34	UTC-4	55°41.750	084°53.410	Agassiz Trawl 个	53	N/A	340	14	6.8	7.6	1014.6	99	0/10
1a	825	Nutrient	29/Jul/2010	04h30	UTC-4	56°10.749	084°37.109	Water Sampling $\downarrow \uparrow$	120	330	334	13	6.0	5.6	1014.8	99	0/10
1a	825	Nutrient	29/Jul/2010	04h48	UTC-4	56°10.699	084°36.979	CTD-Rosette ↓	121	10	335	15	6.0	5.6	1014.8	99	0/10
1a	825	Nutrient	29/Jul/2010	05h05	UTC-4	56°10.596	084°36.787	CTD-Rosette 个	120	3	319	15	6.0	5.6	1014.8	99	0/10
1a	830	Nutrient	29/Jul/2010	08h20	UTC-4	56°46.600	084°16.700	Zodiac Deployed	162	38	306	15	5.8	7.9	1015.8	99	0/10
1a	830	Nutrient	29/Jul/2010	08h22	UTC-4	56°46.600	084°16.700	Water Sampling $\downarrow \uparrow$	162	38	305	15	5.8	7.9	1015.8	99	0/10
1a	830	Nutrient	29/Jul/2010	08h37	UTC-4	56°46.580	084°16.370	Zodiac Recovered	162	90	300	10	5.7	7.9	1016.0	99	0/10
1a	830	Nutrient	29/Jul/2010	09h04	UTC-4	56°47.230	084°15.600	SHO Profile \downarrow	163	353	295	13	5.7	8.0	1016.0	99	0/10
1a	830	Nutrient	29/Jul/2010	09h25	UTC-4	56°47.220	084.15.500	SHO Profile 个	163	2	300	12	5.8	7.8	1016.1	99	0/10
1a	830	Nutrient	29/Jul/2010	09h57	UTC-4	56°47.190	084°15.420	CTD-Rosette ↓	163	338	285	12	5.8	7.9	1016.2	99	0/10
1a	830	Nutrient	29/Jul/2010	10h21	UTC-4	56°47.180	084°15.300	CTD-Rosette 个	163	12	300	14	5.8	7.6	1016.3	99	0/10
1a	830	Nutrient	29/Jul/2010	13h48	UTC-4	57°30.320	083°51.960	Water Sampling $\downarrow \uparrow$	169	260	250	14	7.4	8.4	1014.9	99	0/10
1a	835	Nutrient	29/Jul/2010	13h55	UTC-4	57°30.280	083°51.980	SHO Profile \downarrow	169	262	250	14	7.4	8.4	1014.9	99	0/10
1a	835	Nutrient	29/Jul/2010	14h10	UTC-4	57°30.130	083°52.040	SHO Profile 个	168	243	250	13	8.0	8.5	1014.7	97	0/10
1a	835	Nutrient	29/Jul/2010	14h05	UTC-4	57°30.190	083°52.010	Water Sampling $\downarrow \uparrow$	169	250	260	14	7.8	8.4	1014.8	98	0/10
1a	835	Nutrient	29/Jul/2010	14h18	UTC-4	57°30.020	083°52.180	CTD-Rosette ↓	169	257	250	14	8.0	8.5	1014.8	96	0/10
1a	835	Nutrient	29/Jul/2010	14h46	UTC-4	57°30.030	083°52.570	CTD-Rosette 个	169	307	250	17	8.1	8.5	1014.8	96	0/10
1a	840	Basic	29/Jul/2010	19h01	UTC-4	58°24.669	083°18.918	Water Sampling $\downarrow \uparrow$	175	351	248	18	8.3	8.6	1012.2	92	0/10
1a	840	Basic	29/Jul/2010	19h13	UTC-4	58°24.737	083°18.704	PNF \downarrow	175	241	237	18	8.3	8.6	1012.2	92	0/10
1a	840	Basic	29/Jul/2010	19h18	UTC-4	58°24.723	083°18.608	PNF 个	175	234	241	18	8.8	8.5	1011.9	90	0/10
1a	840	Basic	29/Jul/2010	19h19	UTC-4	58°24.706	083°18.677	Secchi Disk 🗸	174	239	241	18	8.8	8.5	1011.9	90	0/10

Leg	Station ID	Station Type	Local Date	Local	UTC to	Latitude (N)	Longitude	Activity	Depth	Heading	w	ind	Air	Water	Pr Baro	Hum	lce
8				Time	local		(W)	·····,	(m)	(°)	Dir	Speed	(ºC)	(ºC)		(%)	
1a	840	Basic	29/Jul/2010	19h20	UTC-4	58°24.696	083°18.677	Secchi Disk 个	174	238	241	18	8.8	8.5	1011.9	90	0/10
1a	840	Basic	29/Jul/2010	19h24	UTC-4	58°24.690	083°18.648	SHO Profile \downarrow	176	234	241	18	8.8	8.5	1011.9	90	0/10
1a	840	Basic	29/Jul/2010	19h43	UTC-4	58°24.525	083°18.400	SHO Profile 个	176	245	237	18	8.8	8.5	1011.9	90	0/10
1a	840	Basic	29/Jul/2010	19h36	UTC-4	58°24.531	083°18.429	Water Sampling $\downarrow \uparrow$	176	245	241	18	8.8	8.5	1011.9	90	0/10
1a	840	Basic	29/Jul/2010	20h04	UTC-4	58°24.588	083°18.213	CTD-Rosette \downarrow	176	258	230	15	8.6	8.6	1011.5	91	0/10
1a	840	Basic	29/Jul/2010	20h34	UTC-4	58°24.700	083°18.090	CTD-Rosette 个	175	274	230	17	8.4	8.6	1011.2	93	0/10
1a	840	Basic	29/Jul/2010	20h50	UTC-4	58°24.730	083°18.080	Vertical Net Tow \downarrow	176	282	230	18	8.8	8.6	1011.0	91	0/10
1a	840	Basic	29/Jul/2010	21h02	UTC-4	58°24.810	083°17.980	Vertical Net Tow 个	176	276	235	16	8.6	8.6	1011.1	93	0/10
1a	840	Basic	29/Jul/2010	21h18	UTC-4	58°24.870	083°18.320	Horizontal Net Tow \downarrow	176	294	235	19	8.4	8.6	1010.9	94	0/10
1a	840	Basic	29/Jul/2010	21h36	UTC-4	58°25.320	083°19.310	Horizontal Net Tow 个	176	296	235	19	8.5	8.5	1010.8	92	0/10
1a	840	Basic	29/Jul/2010	21h45	UTC-4	58°25.390	083°19.400	Vertical Net Tow \downarrow	176	290	240	18	8.4	8.5	1010.8	93	0/10
1a	840	Basic	29/Jul/2010	21h56	UTC-4	58°25.460	083°19.280	Vertical Net Tow 个	176	316	240	17	8.5	8.5	1010.7	93	0/10
1a	840	Basic	29/Jul/2010	22h23	UTC-4	58°25.360	083°19.240	CTD-Rosette \downarrow	174	265	240	13	8.6	8.4	1010.5	94	0/10
1a	840	Basic	29/Jul/2010	22h47	UTC-4	58°25.270	083°19.210	CTD-Rosette 个	176	269	245	14	8.5	8.4	1010.5	95	0/10
1a	840	Basic	29/Jul/2010	23h04	UTC-4	58°25.230	083°19.330	Box Core ↓	174	309	245	15	8.6	8.4	1010.4	95	0/10
1a	840	Basic	29/Jul/2010	23h16	UTC-4	58°25.270	083°19.220	Box Core 个	176	336	255	14	8.5	8.4	1010.4	95	0/10
1a	840	Basic	29/Jul/2010	23h24	UTC-4	58°25.350	083°19.240	Agassiz Trawl 🗸	174	330	260	16	8.5	8.4	1010.4	95	0/10
1a	840	Basic	29/Jul/2010	23h52	UTC-4	58°26.020	083°19.700	Agassiz Trawl 个	176	332	260	14	8.5	8.4	1010.1	97	0/10
1a	840	Basic	30/Jul/2010	00h22	UTC-4	58°25.170	083°19.430	Box Core \downarrow	179	309	260	14	8.6	8.4	1010.0	97	0/10
1a	840	Basic	30/Jul/2010	00h35	UTC-4	58°25.180	083°19.460	Box Core 个	175	331	265	14	8.5	8.4	1010.1	97	0/10
1a	740	Nutrient	30/Jul/2010	09h54	UTC-4	60°22.130	081°59.160	Water Sampling $\downarrow \uparrow$	149	287	300	10	10.0	9.8	1007.7	99	0/10
1a	740	Nutrient	30/Jul/2010	09h58	UTC-4	60°22.170	081°59.160	Zodiac Deployed	153	344	295	12	10.0	9.8	1007.7	99	0/10
1a	740	Nutrient	30/Jul/2010	10h04	UTC-4	60°22.240	081°59.070	Secchi Disk 🗸	151	288	300	10	10.2	9.7	1007.8	99	0/10
1a	740	Nutrient	30/Jul/2010	10h06	UTC-4	60°22.250	081°59.050	Secchi Disk 个	151	277	305	10	10.2	9.7	1007.8	99	0/10
1a	740	Nutrient	30/Jul/2010	10h09	UTC-4	60°22.260	081°59.020	SHO Profile \downarrow	151	268	315	10	10.2	9.7	1007.8	99	0/10
1a	740	Nutrient	30/Jul/2010	10h30	UTC-4	60°22.200	081°58.870	SHO Profile 个	150	254	320	12	10.5	9.7	1007.6	98	0/10
1a	740	Nutrient	30/Jul/2010	10h37	UTC-4	60°22.210	081°58.780	Zodiac Recovered	151	15	310	13	10.5	9.7	1007.6	98	0/10
1a	740	Nutrient	30/Jul/2010	10h41	UTC-4	60°22.220	081°58.640	Zodiac Deployed	150	55	315	12	10.4	9.7	1007.6	97	0/10
1a	740	Nutrient	30/Jul/2010	10h53	UTC-4	60°22.270	081°58.350	CTD-Rosette \downarrow	147	278	320	12	10.3	9.8	1007.6	97	0/10
1a	740	Nutrient	30/Jul/2010	11h20	UTC-4	60°22.110	081°58.220	CTD-Rosette 个	152	249	315	11	10.6	9.7	1007.5	96	0/10
1a	740	Nutrient	30/Jul/2010	11h45	UTC-4	60°22.150	081°57.940	Zodiac Recovered	152	21	305	12	10.5	9.8	1007.6	97	0/10

Leg	Station ID	Station Type	Local Date	Local	UTC to	Latitude (N)	Longitude	Activity	Depth	Heading	w	ind	Air	Water	Pr Baro	Hum	lce
8				Time	local		(W)	· · · · · · · · · · · · · · · · · · ·	(m)	(°)	Dir	Speed	(ºC)	(ºC)		(%)	
1a	740	Nutrient	30/Jul/2010	11h30	UTC-4	60°22.070	081°58.140	Vertical Net Tow \downarrow	153	310	310	12	10.6	9.8	1007.6	96	0/10
1a	740	Nutrient	30/Jul/2010	11h40	UTC-4	60°22.110	081°58.030	Vertical Net Tow 个	153	312	310	12	10.5	9.8	1007.6	97	0/10
1a	Ex1	N/A	30/Jul/2010	20h09	UTC-4	62°07.970	081°23.960	SHO Profile \downarrow	207	265	Calm	Calm	10.4	11.3	1006.6	87	0/10
1a	Ex1	N/A	30/Jul/2010	20h30	UTC-4	62°08.027	081°23.960	SHO Profile 个	209	242	275	4	11.1	11.0	1006.5	85	0/10
1a	Ex1	N/A	30/Jul/2010	20h45	UTC-4	62°08.070	081°24.010	CTD-Rosette ↓	208	269	Calm	Calm	10.9	11.1	1006.4	87	0/10
1a	Ex1	N/A	30/Jul/2010	21h06	UTC-4	62°08.170	081°23.920	CTD-Rosette 个	208	256	333	3	10.9	11.1	1006.4	84	0/10
1a	Ex2	N/A	31/Jul/2010	01h43	UTC-4	62°39.740	079°27.710	CTD-Rosette ↓	320	293	300	9	9.5	10.4	1005.0	93	0/10
1a	Ex2	N/A	31/Jul/2010	02h01	UTC-4	62°39.690	079°27.800	CTD-Rosette 个	317	282	290	6	9.6	10.6	1005.1	93	0/10
1a	Ex2	N/A	31/Jul/2010	02h09	UTC-4	62°39.650	079°27.690	Gravity Core ↓	320	280	280	8	9.6	10.5	1005.0	93	0/10
1a	Ex2	N/A	31/Jul/2010	02h25	UTC-4	62°39.590	079°27.850	Gravity Core ↑	320	284	280	8	9.6	10.4	1005.0	94	0/10
1a	Ex2	N/A	31/Jul/2010	02h43	UTC-4	62°39.550	079°27.570	Box Core ↓	317	263	250	8	9.6	10.5	1004.9	94	0/10
1a	Ex2	N/A	31/Jul/2010	03h02	UTC-4	62°39.450	079°27.680	Box Core 个	315	265	260	7	9.7	10.3	1004.9	92	0/10
1a	Ex2	N/A	31/Jul/2010	03h17	UTC-4	62°39.590	079°27.750	Agassiz Trawl \downarrow	316	26	250	8	9.6	10.3	1004.8	92	0/10
1a	Ex2	N/A	31/Jul/2010	03h26	UTC-4	62°39.870	079°27.490	Agassiz Trawl $\uparrow \downarrow$	319	30	250	8	9.6	9.6	1004.7	92	0/10
1a	Ex2	N/A	31/Jul/2010	03h51	UTC-4	62°40.470	079°27.800	Agassiz Trawl 个	325	303	230	9	9.6	9.6	1004.7	92	0/10
1a	N/A	MVP	31/Jul/2010	17h38	UTC-4	62°38.440	073°22.280	MVP \downarrow	223	105	140	10	9.0	9.3	1003.3	93	Bergy
1a	N/A	MVP	31/Jul/2010	22h12	UTC-4	62°29.800	071°32.490	MVP 个	327	74	196	8	6.7	6.0	1002.2	96	Bergy
Leg 1b																	
1b	Сар Науе	MVP	06/Aug/2010	12h05	UTC-4	73°50.650	080°02.700	$MVP \downarrow$	843	340	240	18	0.8	2.4	1004.6	95	3/10
1b	Сар Науе	MVP	06/Aug/2010	16h47	UTC-4	74°32.140	080°34.490	MVP 个	553	2	250	15	1.9	2.9	1006.5	93	3/10
1b	301	Basic	06/Aug/2010	23h44	UTC-4	74°10.980	083°56.410	Hg Sampling ↓	669	174	185	5	2.0	2.3	1010.8	88	Bergy
1b	301	Basic	06/Aug/2010	23h47	UTC-4	74°10.990	083°56.430	PNF \downarrow	669	170	175	5	2.0	2.3	1010.8	88	Bergy
1b	301	Basic	06/Aug/2010	23h51	UTC-4	74°10.990	083°56.470	PNF 个	669	172	175	5	2.0	2.2	1010.9	87	Bergy
1b	301	Basic	06/Aug/2010	23h51	UTC-4	74°10.990	083°56.470	Secchi Disk $\downarrow \uparrow$	669	172	175	5	2.0	2.2	1010.9	87	Bergy
1b	301	Basic	07/Aug/2010	00h44	UTC-4	74°11.120	083°57.020	CTD-Rosette ↓	670	164	150	7	2.6	2.7	1011.1	87	Bergy
1b	301	Basic	07/Aug/2010	01h23	UTC-4	74°11.280	083°57.450	CTD-Rosette 个	671	167	160	4	3.0	3.0	1011.6	86	Bergy
1b	301	Basic	07/Aug/2010	01h52	UTC-4	74°11.350	083°57.740	Water Pumping 🗸	670	146	130	4	3.3	3.0	1011.7	86	Bergy
1b	301	Basic	07/Aug/2010	02h18	UTC-4	74°11.390	083°58.020	Water Pumping ↑	671	149	140	4	3.7	3.1	1011.8	85	Bergy
1b	301	Basic	07/Aug/2010	03h22	UTC-4	74°11.000	083°56.440	CTD-Rosette \downarrow	669	117	110	7	2.1	2.9	1012.3	89	Bergy
1b	301	Basic	07/Aug/2010	04h01	UTC-4	74°11.139	083°57.324	CTD-Rosette 个	668	348	101	8	2.3	2.6	1012.7	92	Bergy

Leg	Station ID	Station Type	Local Date	Local	UTC to	Latitude (N)	Longitude	Activity	Depth	Heading	w	ind	Air	Water	Pr Baro	Hum	lce
8	0.000.00	oution type		Time	local		(W)		(m)	(°)	Dir	Speed	(ºC)	(ºC)		(%)	
1b	301	Basic	07/Aug/2010	04h10	UTC-4	74°11.192	083°57.526	Hg Sampling 个	669	19	100	7	2.5	2.6	1012.7	90	Bergy
1b	301	Basic	07/Aug/2010	04h35	UTC-4	74°11.254	083°57.757	Vertical Net Tow \downarrow	668	105	94	9	1.4	2.6	1012.8	93	Bergy
1b	301	Basic	07/Aug/2010	05h17	UTC-4	74°11.360	083°58.074	Vertical Net Tow 个	670	98	78	9	1.4	2.8	1012.8	94	Bergy
1b	301	Basic	07/Aug/2010	05h39	UTC-4	74°11.216	083°59.062	Horizontal Net Tow \downarrow	669	230	84	10	1.7	2.6	1013.0	92	Bergy
1b	301	Basic	07/Aug/2010	05h54	UTC-4	74°10.785	084°00.515	Horizontal Net Tow 个	669	195	84	10	1.7	2.6	1013.0	92	Bergy
1b	301	Basic	07/Aug/2010	06h15	UTC-4	74°10.944	083°57.197	Small Ring Net \downarrow	668	103	90	10	2.0	2.5	1012.8	88	Bergy
1b	301	Basic	07/Aug/2010	06h19	UTC-4	74°10.949	083°57.151	Small Ring Net 个	667	107	90	10	2.0	2.5	1012.8	88	Bergy
1b	301	Basic	07/Aug/2010	06h44	UTC-4	74°10.978	083°56.952	Box Core ↓	667	109	111	9	1.8	2.7	1012.8	91	Bergy
1b	301	Basic	07/Aug/2010	06h58	UTC-4	74°11.004	083°56.802	Box Core (bottom)	669	108	111	9	1.8	2.7	1012.8	91	Bergy
1b	301	Basic	07/Aug/2010	07h13	UTC-4	74°11.037	083°56.679	Box Core 个	668	125	130	10	1.6	3.0	1012.9	93	Bergy
1b	301	Basic	07/Aug/2010	07h44	UTC-4	74°11.316	083°58.424	Agassiz Trawl 🗸	671	292	140	11	1.9	2.9	1013.5	90	Bergy
1b	301	Basic	07/Aug/2010	08h12	UTC-4	74°11.640	084°00.830	Agassiz Trawl 个	671	285	140	11	1.9	2.9	1013.5	90	Bergy
1b	301	Basic	07/Aug/2010	08h55	UTC-4	74°11.030	083°56.630	Gravity Core \downarrow	668	150	127	12	2.2	2.6	1012.9	90	1/10
1b	301	Basic	07/Aug/2010	09h28	UTC-4	74°10.990	083°56.410	Gravity Core 个	668	206	120	8	2.1	2.9	1013.1	90	1/10
1b	N/A	N/A	07/Aug/2010	12h43	UTC-4	74°09.750	086°10.330	Hg Sampling \downarrow	522	175	180	7	4.0	9.7	1012.4	91	1/10
1b	302	Nutrient	07/Aug/2010	12h51	UTC-4	74°09.730	086°10.280	CTD-Rosette \downarrow	522	179	190	4	4.1	10.3	1012.2	91	1/10
1b	302	Nutrient	07/Aug/2010	13h28	UTC-4	74°09.690	086°10.290	CTD-Rosette 个	522	278	240	3	4.6	8.5	1012.3	88	1/10
1b	302	Nutrient	07/Aug/2010	13h58	UTC-4	74°09.700	086°10.720	Secchi Disk 🗸	522	241	Calm	Calm	5.1	10.1	1012.5	86	1/10
1b	302	Nutrient	07/Aug/2010	14h04	UTC-4	74°09.680	086°10.690	Secchi Disk 个	521	227	Calm	Calm	5.1	10.1	1012.5	86	1/10
1b	302	Nutrient	07/Aug/2010	14h43	UTC-4	74°09.690	086°10.540	CTD-Rosette ↓	521	267	Calm	Calm	3.7	8.8	1012.9	99	1/10
1b	302	Nutrient	07/Aug/2010	15h01	UTC-4	74°09.670	086°10.620	CTD-Rosette 个	521	258	160	3	5.6	8.2	1012.6	98	1/10
1b	N/A	N/A	07/Aug/2010	15h12	UTC-4	74°09.640	086°10.530	Hg Sampling 个	521	218	180	5	4.6	8.1	1012.6	99	1/10
1b	302	Nutrient	07/Aug/2010	15h20	UTC-4	74°09.670	086°10.670	Small Ring Net \downarrow	521	1	140	5	4.8	8.1	1012.6	99	1/10
1b	302	Nutrient	07/Aug/2010	15h24	UTC-4	74°09.672	086°10.668	Small Ring Net 个	521	Var	140	5	4.8	8.1	1012.6	99	1/10
1b	303	Nutrient	07/Aug/2010	19h59	UTC-4	74°13.340	089°37.140	PNF \downarrow	236	188	180	12	2.3	4.7	1010.8	99	1/10
1b	303	Nutrient	07/Aug/2010	20h05	UTC-4	74°13.350	089°37.010	PNF 个	236	187	180	14	2.3	4.7	1010.8	99	1/10
1b	303	Nutrient	07/Aug/2010	20h06	UTC-4	74°13.250	089°37.010	Secchi Disk ${igstar}$	236	187	180	14	2.3	4.7	1010.8	99	1/10
1b	303	Nutrient	07/Aug/2010	20h19	UTC-4	74°13.340	089°36.720	CTD-Rosette \downarrow	236	197	180	12	2.4	4.9	1010.8	99	1/10
1b	303	Nutrient	07/Aug/2010	20h53	UTC-4	74°13.290	089°36.000	CTD-Rosette 个	237	187	180	9	2.3	5.2	1010.8	99	1/10
1b	LS01-10	Mooring	07/Aug/2010	22h51	UTC-4	74°28.180	090°23.280	Mooring LS01-10 Deployed	269	90	87	17	1.6	4.6	1010.0	99	2/10

Leg	Station ID	Station Type	Local Date	Local	UTC to	Latitude (N)	Longitude	Activity	Depth	Heading	w	ind	Air	Water	Pr Baro	Hum	lce
8	0000012	oution type		Time	local		(W)		(m)	(°)	Dir	Speed	(ºC)	(ºC)		(%)	
1b	LS01-10	Mooring	07/Aug/2010	23h15	UTC-4	74°28.176	090°23.297	Mooring LS01-10 Deployed (end)	270	90	85	17	1.6	4.7	1009.9	99	2/10
1b	BIO	CTD	07/Aug/2010	23h40	UTC-4	74°27.690	090°22.450	CTD-Rosette ↓	282	86	90	18	1.5	4.7	1010.0	99	2/10
1b	BIO	CTD	07/Aug/2010	23h57	UTC-4	74°27.670	090°22.720	CTD-Rosette 个	281	81	95	16	1.4	4.6	1010.0	99	2/10
1b	304	Nutrient	08/Aug/2010	00h42	UTC-5	74°18.420	091°20.480	CTD-Rosette \downarrow	328	80	90	18	1.4	4.5	1008.4	99	5/10
1b	304	Nutrient	08/Aug/2010	01h09	UTC-5	74°18.470	091°20.950	CTD-Rosette 个	336	88	90	20	1.3	4.8	1008.2	99	5/10
1b	305	Basic	08/Aug/2010	04h05	UTC-5	74°19.686	093°24.527	Hg Sampling \downarrow	340	32	33	19	1.1	3.7	1008.6	99	5/10
1b	305	Basic	08/Aug/2010	04h07	UTC-5	74°19.699	093°24.514	PNF \downarrow	335	32	33	19	1.1	3.1	1008.6	99	5/10
1b	305	Basic	08/Aug/2010	04h10	UTC-5	74°19.705	093°24.524	PNF 个	332	34	33	19	1.1	3.1	1008.6	99	5/10
1b	305	Basic	08/Aug/2010	04h12	UTC-5	74°19.718	093°24.569	Secchi Disk ${igstar} {igstar}$	323	26	38	18	1.1	3.1	1008.6	99	5/10
1b	305	Basic	08/Aug/2010	04h24	UTC-5	74°19.723	093°24.628	CTD-Rosette \downarrow	168	26	35	17	1.1	3.1	1008.6	99	5/10
1b	305	Basic	08/Aug/2010	04h38	UTC-5	74°19.866	093°24.599	CTD-Rosette ↑	168	119	30	14	0.9	4.0	1009.1	99	5/10
1b	305	Basic	08/Aug/2010	04h55	UTC-5	74°19.731	093°24.999	Water Sampling \downarrow	161	22	40	15	0.8	4.0	1009.4	99	5/10
1b	305	Basic	08/Aug/2010	05h23	UTC-5	74°19.730	093°24.932	Water Sampling 个	162	46	39	14	0.7	3.9	1009.8	99	5/10
1b	305	Basic	08/Aug/2010	05h37	UTC-5	74°19.724	093°24.791	CTD-Rosette ↓	162	36	48	14	0.8	4.0	1010.0	99	5/10
1b	305	Basic	08/Aug/2010	05h54	UTC-5	74°19.785	093°24.362	Hg Sampling 个	160	38	64	13	1.2	4.0	1010.2	99	5/10
1b	305	Basic	08/Aug/2010	06h00	UTC-5	74°19.795	093°24.235	CTD-Rosette 个	159	11	66	13	1.2	4.0	1010.2	99	5/10
1b	305	Basic	08/Aug/2010	06h20	UTC-5	74°19.686	093°25.544	Vertical Net Tow \downarrow	166	65	55	11	1.5	3.8	1010.6	99	5/10
1b	305	Basic	08/Aug/2010	06h34	UTC-5	74°19.697	093°25.242	Vertical Net Tow 个	165	51	44	10	1.5	4.0	1010.7	99	5/10
1b	305	Basic	08/Aug/2010	06h43	UTC-5	74°19.740	093°24.080	Horizontal Net Tow \downarrow	162	0	45	12	1.5	4.1	1010.9	99	5/10
1b	305	Basic	08/Aug/2010	07h10	UTC-5	74°20.080	093°12.561	Horizontal Net Tow 个	160	6	45	10	1.5	4.1	1010.9	99	5/10
1b	305	Basic	08/Aug/2010	07h24	UTC-5	74°19.680	093°25.470	Small Ring Net \downarrow	163	51	40	13	1.5	4.0	1011.2	99	5/10
1b	305	Basic	08/Aug/2010	07h27	UTC-5	74°19.680	093°25.320	Small Ring Net 个	162	60	40	13	1.5	4.0	1011.2	99	5/10
1b	305	Basic	08/Aug/2010	07h40	UTC-5	74°19.599	093°24.950	Box Core \downarrow	164	43	48	12	1.6	3.8	1011.1	99	1/10
1b	305	Basic	08/Aug/2010	07h46	UTC-5	74°19.594	093°24.870	Box Core (bottom)	164	41	48	12	1.6	3.8	1011.1	99	1/10
1b	305	Basic	08/Aug/2010	07h52	UTC-5	74°19.567	093°24.645	Box Core ↑	164	47	48	12	1.6	3.8	1011.1	99	1/10
1b	305	Basic	08/Aug/2010	08h11	UTC-5	74°19.400	093°24.740	Box Core ↓	166	39	35	10	1.0	4.0	1011.3	99	1/10
1b	305	Basic	08/Aug/2010	08h22	UTC-5	74°19.390	093°24.360	Box Core ↑	167	30	35	9	0.8	4.0	1011.5	99	1/10
1b	305	Basic	08/Aug/2010	08h53	UTC-5	74°18.530	093°25.610	Agassiz Trawl 🗸	172	30	37	9	0.6	3.9	1011.7	99	1/10
1b	305	Basic	08/Aug/2010	09h14	UTC-5	74°18.950	093°24.280	Agassiz Trawl 个	172	5	34	10	0.7	3.9	1011.7	99	1/10
1b	310	Basic	09/Aug/2010	03h15	UTC-5	71°17.440	097°41.980	PNF + Secchi Disk $\downarrow \uparrow$	124	181	181	18	3.7	4.3	1007.7	96	4/10

Leg	Station ID	Station Type	Local Date	Local	UTC to	Latitude (N)	Longitude	Activity	Depth	Heading	w	ind	Air	Water	Pr Baro	Hum	lce
8				Time	local		(W)	·····,	(m)	(°)	Dir	Speed	(ºC)	(ºC)		(%)	
1b	310	Basic	09/Aug/2010	03h24	UTC-5	71°17.490	097°41.900	Hg Sampling \downarrow	124	181	181	18	3.7	4.3	1007.7	96	4/10
1b	310	Basic	09/Aug/2010	03h57	UTC-6	71°17.598	097°41.432	CTD-Rosette \downarrow	132	179	196	15	3.3	4.5	1008.6	97	4/10
1b	310	Basic	09/Aug/2010	04h24	UTC-6	71°17.512	097°41.235	CTD-Rosette 个	130	194	192	16	3.1	4.5	1008.6	97	4/10
1b	310	Basic	09/Aug/2010	05h43	UTC-6	71°17.622	097°39.949	Vertical Net Tow \downarrow	142	191	193	14	3.1	4.6	1008.8	96	4/10
1b	310	Basic	09/Aug/2010	05h38	UTC-6	71°17.660	097°40.076	Hg Sampling 个	140	190	183	13	3.1	4.6	1008.8	96	4/10
1b	310	Basic	09/Aug/2010	05h57	UTC-6	71°17.630	097°39.840	Vertical Net Tow 个	143	185	183	13	3.1	4.6	1008.8	96	4/10
1b	310	Basic	09/Aug/2010	06h20	UTC-6	71°17.750	097°38.478	Horizontal Net Tow \downarrow	144	200	184	14	2.6	4.5	1009.1	96	4/10
1b	310	Basic	09/Aug/2010	06h37	UTC-6	71°17.520	097°40.980	Horizontal Net Tow 个	134	223	184	14	2.6	4.5	1009.1	96	4/10
1b	310	Basic	09/Aug/2010	06h51	UTC-6	71°17.667	097°40.163	Small Ring Net \downarrow	139	185	184	14	2.6	4.5	1009.1	96	4/10
1b	310	Basic	09/Aug/2010	06h55	UTC-6	71°17.650	097°40.165	Small Ring Net 个	139	187	182	14	2.8	4.6	1009.1	96	4/10
1b	310	Basic	09/Aug/2010	07h15	UTC-6	71°17.712	097°38.730	Agassiz Trawl \downarrow	141	75	180	13	2.6	4.6	1008.9	95	4/10
1b	310	Basic	09/Aug/2010	07h33	UTC-6	71°17.770	097°38.270	Agassiz Trawl 个	152	68	180	13	2.6	4.6	1008.9	95	4/10
1b	310	Basic	09/Aug/2010	15h00	UTC-6	70°21.211	098°57.560	Cage Sampling \downarrow	205	326	320	6	3.1	0.2	1011.9	99	Bergy
1b	312	Nutrient	10/Aug/2010	01h45	UTC-6	69°09.460	100°42.060	Hg Sampling \downarrow	49	45	50	12	3.7	3.8	1012.2	99	Bergy
1b	312	Nutrient	10/Aug/2010	02h04	UTC-6	69°09.630	100°41.780	CTD-Rosette \downarrow	50	38	50	14	3.6	3.6	1012.0	99	Bergy
1b	312	Nutrient	10/Aug/2010	02h30	UTC-6	69°10.000	100°41.070	CTD-Rosette 个	55	47	50	11	3.4	3.5	1012.0	99	Bergy
1b	312	Nutrient	10/Aug/2010	02h37	UTC-6	69°10.080	100°40.920	Water Sampling \downarrow	66	47	50	13	3.4	3.5	1012.0	99	Bergy
1b	312	Nutrient	10/Aug/2010	03h05	UTC-6	69°10.440	100°40.110	Water Sampling 个	53	37	40	13	3.3	3.4	1012.0	99	Bergy
1b	312	Nutrient	10/Aug/2010	03h55	UTC-6	69°09.500	100°42.110	PNF + Secchi Disk $\downarrow \uparrow$	48	51	50	13	3.2	3.6	1011.9	99	Bergy
1b	312	Nutrient	10/Aug/2010	04h25	UTC-6	69°09.736	100°41.682	CTD-Rosette \downarrow (canceled)	52	35	51	12	3.2	3.3	1011.8	99	Bergy
1b	312	Nutrient	10/Aug/2010	04h46	UTC-6	69°09.534	100°42.046	Hg Sampling 个	48	27	59	12	3.1	3.3	1011.7	99	Bergy
1b	312	Nutrient	10/Aug/2010	05h05	UTC-6	69°09.572	100°42.093	Vertical Net Tow \downarrow	49	55	60	12	3.3	3.6	1011.6	99	Bergy
1b	312	Nutrient	10/Aug/2010	05h10	UTC-6	69°09.592	100°42.068	Vertical Net Tow 个	47	68	60	12	3.3	3.6	1011.6	99	Bergy
1b	312	Nutrient	10/Aug/2010	05h31	UTC-6	69°09.450	100°41.559	Horizontal Net Tow \downarrow	47	320	65	13	4.0	3.7	1011.5	99	Bergy
1b	312	Nutrient	10/Aug/2010	05h37	UTC-6	69°09.624	100°41.997	Horizontal Net Tow 个	47	300	65	13	4.0	3.7	1011.5	99	Bergy
1b	312	Nutrient	10/Aug/2010	05h48	UTC-6	69°09.715	100°41.907	Small Ring Net \downarrow	50	68	65	11	4.0	3.8	1011.5	99	Bergy
1b	312	Nutrient	10/Aug/2010	05h53	UTC-6	69°09.754	100°41.843	Small Ring Net 个	52	67	65	11	4.0	3.8	1011.5	99	Bergy
1b	312	Nutrient	10/Aug/2010	06h24	UTC-6	69°10.097	100°41.140	Box Core ↓	58	66	75	11	3.8	3.8	1011.5	99	Bergy
1b	312	Nutrient	10/Aug/2010	06h25	UTC-6	69°10.127	100°41.070	Box Core (bottom)	62	68	73	12	3.8	3.8	1011.5	99	Bergy
1b	312	Nutrient	10/Aug/2010	06h28	UTC-6	69°10.150	100°41.039	Box Core ↑	66	78	73	12	3.8	3.8	1011.5	99	Bergy

Leg	Station ID	Station Type	Local Date	Local	UTC to	Latitude (N)	Longitude	Activity	Depth	Heading	W	ind	Air	Water	Pr Baro	Hum	lce
8		,		Time	local		(W)	······,	(m)	(°)	Dir	Speed	(ºC)	(ºC)		(%)	
1b	312	Nutrient	10/Aug/2010	06h48	UTC-6	69°10.030	100°40.501	Agassiz Trawl 🗸	52	320	73	12	3.8	3.8	1011.5	99	Bergy
1b	312	Nutrient	10/Aug/2010	06h54	UTC-6	69°10.101	100°40.903	Agassiz Trawl 个	57	300	73	12	3.8	3.8	1011.5	99	Bergy
1b	314	Nutrient	10/Aug/2010	18h30	UTC-6	69°00.133	106°36.343	PNF \downarrow	115	280	281	8	17.0	9.1	1006.4	72	0/10
1b	314	Nutrient	10/Aug/2010	18h36	UTC-6	69°00.154	106°36.351	PNF 个	115	267	281	8	17.0	9.1	1006.4	72	0/10
1b	314	Nutrient	10/Aug/2010	18h37	UTC-6	69°00.154	106°36.351	Secchi Disk 🗸	115	264	281	8	17.0	9.1	1006.4	72	0/10
1b	314	Nutrient	10/Aug/2010	18h40	UTC-6	69°00.168	106°36.406	Secchi Disk 个	116	270	281	8	17.0	9.1	1006.4	72	0/10
1b	314	Nutrient	10/Aug/2010	18h42	UTC-6	69°00.168	106°36.406	Small Ring Net \downarrow	116	269	283	8	16.8	9.4	1006.3	69	0/10
1b	314	Nutrient	10/Aug/2010	18h46	UTC-6	69°00.182	106°36.431	Small Ring Net 个	115	284	283	8	16.8	9.4	1006.3	69	0/10
1b	314	Nutrient	10/Aug/2010	20h04	UTC-6	69°00.170	106°35.940	CTD-Rosette \downarrow	114	150	Calm	Calm	15.4	8.9	1006.2	75	0/10
1b	314	Nutrient	10/Aug/2010	20h27	UTC-6	69°00.220	106°35.650	CTD-Rosette 个	116	165	130	5	15.9	9.2	1006.2	74	0/10
Leg 2a																	
2a	BP10-018	Biophysical	15/Aug/2010	00h00	UTC-6	70°46.530	134°23.120	Water Sampling \downarrow	68	111	110	9	7.1	10.7	1027.1	96	0/10
2a	BP10-018	Biophysical	15/Aug/2010	00h45	UTC-6	70°46.510	134°23.250	Water Sampling 个	72	101	109	9	7.1	10.5	1027.3	97	0/10
2a	BP10-018	Biophysical	15/Aug/2010	00h52	UTC-6	70°46.520	134°23.260	CTD-Rosette \downarrow	73	94	109	9	7.1	10.5	1027.3	97	0/10
2a	BP10-018	Biophysical	15/Aug/2010	01h19	UTC-6	70°46.620	134°23.320	CTD-Rosette 个	67	73	110	9	7.1	10.5	1027.3	97	0/10
2a	BP10-018	Biophysical	15/Aug/2010	01h38	UTC-6	70°46.640	134°23.290	Vertical Net Tow \downarrow	71	130	117	9	7.1	10.5	1027.1	96	0/10
2a	BP10-018	Biophysical	15/Aug/2010	01h42	UTC-6	70°46.650	134°23.340	Vertical Net Tow (bottom)	71	127	117	9	7.1	10.5	1027.1	96	0/10
2a	BP10-018	Biophysical	15/Aug/2010	01h45	UTC-6	70°46.660	134°23.390	Vertical Net Tow 个	71	121	117	9	7.1	10.5	1027.1	96	0/10
2a	BP10-018	Biophysical	15/Aug/2010	02h04	UTC-6	70°46.700	134°23.230	Horizontal Net Tow \downarrow	68	11	116	10	7.8	10.5	1027.1	96	0/10
2a	BP10-018	Biophysical	15/Aug/2010	02h17	UTC-6	70°46.930	134°23.460	Horizontal Net Tow 个	67	228	115	10	7.8	10.5	1027.1	96	0/10
2a	BP10-018	Biophysical	15/Aug/2010	02h59	UTC-6	70°46.740	134°23.330	Box Core ↓	69	115	121	9	7.8	10.6	1027.2	95	0/10
2a	BP10-018	Biophysical	15/Aug/2010	03h10	UTC-6	70°46.750	134°23.300	Box Core (bottom)	68	144	122	9	7.8	10.6	1027.2	96	0/10
2a	BP10-018	Biophysical	15/Aug/2010	03h21	UTC-6	70°46.750	134°23.300	Box Core ↑	68	152	122	9	7.8	10.6	1027.2	96	0/10
2a	BP10-018	Biophysical	15/Aug/2010	03h28	UTC-6	70°46.820	134°23.080	Agassiz Trawl \downarrow	69	86	112	9	8.1	10.6	1027.3	94	0/10
2a	BP10-018	Biophysical	15/Aug/2010	03h57	UTC-6	70°46.770	134°23.260	Agassiz Trawl 个	69	100	113	9	8.1	10.6	1027.3	94	0/10
2a	LF-1	Hydrophone	15/Aug/2010	05h20	UTC-6	70°48.294	134°19.749	MARU Buoy Deployed	70	274	117	10	9.0	10.5	1027.4	89	0/10
2a	LF-2	Hydrophone	15/Aug/2010	05h55	UTC-6	70°50.800	134°32.890	MARU Buoy Deployed	78	249	118	9	8.2	10.4	1027.5	96	0/10
2a	HF-2	Hydrophone	15/Aug/2010	06h17	UTC-6	70°52.240	134°28.400	MARU Buoy Deployed	80	5	129	12	8.1	10.4	1027.3	97	0/10
2a	LF-3	Hydrophone	15/Aug/2010	06h55	UTC-6	70°53.310	134°46.060	MARU Buoy Deployed	107	324	118	9	7.1	10.3	1027.4	98	0/10
2a	HF-5	Hydrophone	15/Aug/2010	08h07	UTC-6	70°53.393	135°22.440	MARU Buoy Deployed	525	114	110	12	7.6	10.0	1027.3	98	0/10

Leg	Station ID	Station Type	Local Date	Local	UTC to	Latitude (N)	Longitude	Activity	Depth	Heading	w	ind	Air	Water	Pr Baro	Hum	lce
8				Time	local		(W)	· · · · · · · · · · · · · · · · · · ·	(m)	(°)	Dir	Speed	(ºC)	(ºC)		(%)	
2a	HF-4	Hydrophone	15/Aug/2010	08h51	UTC-6	71°00.311	135°22.549	MARU Buoy Deployed	640	115	114	11	8.1	9.8	1027.2	93	0/10
2a	LF-4	Hydrophone	15/Aug/2010	09h57	UTC-6	70°55.932	134°58.478	MARU Buoy Deployed	345	112	105	12	9.1	9.9	1027.3	89	0/10
2a	HF-3	Hydrophone	15/Aug/2010	10h24	UTC-6	70°55.855	134°46.458	MARU Buoy Deployed	228	95	113	15	9.1	9.8	1027.0	88	0/10
2a	LF-7	Hydrophone	15/Aug/2010	10h48	UTC-6	70°58.338	134°45.986	MARU Buoy Deployed	304	112	105	14	8.8	9.8	1027.4	90	0/10
2a	LF-6	Hydrophone	15/Aug/2010	11h19	UTC-6	70°55.845	134°32.933	MARU Buoy Deployed	101	95	117	14	9.0	9.7	1027.3	88	0/10
2a	LF-5	Hydrophone	15/Aug/2010	11h51	UTC-6	70°53.271	134°17.950	MARU Buoy Deployed	79	103	115	13	8.9	10.2	1027.3	87	0/10
2a	J-09	Mooring	15/Aug/2010	13h00	UTC-6	70°54.030	134°16.550	CTD ↓	89	109	118	15	8.9	10.2	1027.8	87	0/10
2a	J-09	Mooring	15/Aug/2010	13h05	UTC-6	70°54.060	134°16.500	CTD ↑	89	113	118	15	8.9	10.2	1027.8	87	0/10
2a	J-09	Mooring	15/Aug/2010	14h10	UTC-6	70°53.970	134°15.608	Mooring J-09 Recovered	89	74	110	16	9.1	11.5	1027.6	82	0/10
2a	J-09	Mooring	15/Aug/2010	14h25	UTC-6	70°53.990	134°16.020	Mooring J-09 Recovered (end)	89	65	110	16	9.1	11.4	1027.6	82	0/10
2a	LF-8	Hydrophone	15/Aug/2010	14h50	UTC-6	70°50.720	134°06.990	MARU Buoy Deployed	82	110	105	17	9.1	12.3	1027.6	84	0/10
2a	BP10-04	Biophysical	15/Aug/2010	16h14	UTC-6	70°55.380	134°26.620	CTD-Rosette \downarrow	96	359	100	15	9.8	11.1	1027.6	79	0/10
2a	BP10-04	Biophysical	15/Aug/2010	16h38	UTC-6	70°55.490	134°27.060	CTD-Rosette 个	93	340	120	20	10.7	10.9	1023.5	79	0/10
2a	BP10-04	Biophysical	15/Aug/2010	16h59	UTC-6	70°55.440	134°25.920	Vertical Net Tow \downarrow	98	297	111	18	9.3	10.9	1027.0	83	0/10
2a	BP10-04	Biophysical	15/Aug/2010	17h09	UTC-6	70°55.500	134°25.980	Vertical Net Tow 个	98	312	102	18	9.3	10.9	1027.0	83	0/10
2a	BP10-04	Biophysical	15/Aug/2010	17h25	UTC-6	70°55.650	134°26.220	Horizontal Net Tow \downarrow	100	273	124	18	13.0	10.7	1027.0	69	0/10
2a	BP10-04	Biophysical	15/Aug/2010	17h40	UTC-6	70°55.400	134°26.520	Horizontal Net Tow 个	95	138	120	17	10.0	10.6	1026.9	83	0/10
2a	BP10-04	Biophysical	15/Aug/2010	18h12	UTC-6	70°55.460	134°26.240	Box Core \downarrow	96	240	113	17	11.0	10.6	1026.7	81	0/10
2a	BP10-04	Biophysical	15/Aug/2010	18h20	UTC-6	70°55.520	134°26.440	Box Core ↑	103	214	110	20	9.5	10.6	1026.0	83	0/10
2a	BP10-04	Biophysical	15/Aug/2010	18h34	UTC-6	70°55.470	134°25.840	Box Core \downarrow	98	229	110	17	9.6	10.8	1026.3	83	0/10
2a	BP10-04	Biophysical	15/Aug/2010	18h43	UTC-6	70°55.550	134°25.900	Box Core ↑	100	1	110	20	9.6	10.8	1026.4	80	0/10
2a	BP10-04	Biophysical	15/Aug/2010	19h01	UTC-6	70°55.760	134°26.100	Agassiz Trawl 🗸	101	302	90	17	10.9	10.7	1026.3	76	0/10
2a	BP10-04	Biophysical	15/Aug/2010	19h24	UTC-6	70°55.910	134°26.320	Agassiz Trawl 个	112	266	111	19	10.0	10.7	1026.2	77	0/10
2a	BP10-015	Biophysical	15/Aug/2010	21h15	UTC-6	70°58.924	134°22.750	CTD-Rosette \downarrow	259	306	93	18	10.9	10.9	1025.5	71	0/10
2a	BP10-015	Biophysical	15/Aug/2010	21h56	UTC-6	70°58.940	134°23.110	CTD-Rosette 个	255	292	99	22	13.6	11.1	1025.4	65	0/10
2a	BP10-015	Biophysical	15/Aug/2010	22h28	UTC-6	70°59.051	134°23.461	Horizontal Net Tow \downarrow	272	222	107	23	10.2	11.2	1025.3	73	0/10
2a	BP10-015	Biophysical	15/Aug/2010	22h41	UTC-6	70°59.120	134°23.921	Horizontal Net Tow 个	259	125	101	21	8.9	11.9	1025.0	77	0/10
2a	BP10-015	Biophysical	15/Aug/2010	22h58	UTC-6	70°59.262	134°23.017	Vertical Net Tow \downarrow	272	302	96	22	9.0	12.0	1024.9	77	0/10
2a	BP10-015	Biophysical	15/Aug/2010	23h17	UTC-6	70°59.305	134°23.177	Vertical Net Tow 个	273	306	99	24	12.3	11.8	1025.0	68	0/10
2a	BP10-015	Biophysical	15/Aug/2010	23h47	UTC-6	70°59.017	134°22.913	Box Core ↓	260	305	98	21	9.8	11.5	1024.6	78	0/10

Leg	Station ID	Station Type	Local Date	Local	UTC to	Latitude (N)	Longitude	Activity	Depth	Heading	w	ind	Air	Water	Pr Baro	Hum	lce
8				Time	local		(W)		(m)	(°)	Dir	Speed	(ºC)	(ºC)		(%)	
2a	BP10-015	Biophysical	15/Aug/2010	23h54	UTC-6	70°59.040	134°23.000	Box Core (bottom)	260	308	104	11	10.9	11.8	1024.8	73	0/10
2a	BP10-015	Biophysical	15/Aug/2010	23h57	UTC-6	70°59.060	134°23.050	Box Core 个	260	310	104	11	10.9	11.8	1024.8	73	0/10
2a	BP10-015	Biophysical	16/Aug/2010	00h11	UTC-6	70°59.090	134°23.050	Box Core ↓	263	306	104	11	10.9	11.8	1024.8	73	0/10
2a	BP10-015	Biophysical	16/Aug/2010	00h15	UTC-6	70°59.100	134°23.090	Box Core (bottom)	263	310	104	11	10.9	11.8	1024.8	73	0/10
2a	BP10-015	Biophysical	16/Aug/2010	00h27	UTC-6	70°59.120	134°23.170	Box Core 个	263	305	104	11	10.9	11.8	1024.8	73	0/10
2a	BP10-015	Biophysical	16/Aug/2010	00h39	UTC-6	70°59.150	134°23.330	Agassiz Trawl 🗸	263	300	103	13	10.9	11.8	1024.9	73	0/10
2a	BP10-015	Biophysical	16/Aug/2010	01h30	UTC-6	70°58.560	134°28.390	Agassiz Trawl 个	266	180	101	14	13.1	11.5	1024.5	71	0/10
2a	BP10-010	Biophysical	16/Aug/2010	02h15	UTC-6	71°00.580	134°39.820	CTD-Rosette \downarrow	333	308	113	19	10.3	12.0	1024.3	83	0/10
2a	BP10-010	Biophysical	16/Aug/2010	03h10	UTC-6	71°00.640	134°40.420	CTD-Rosette 个	336	299	115	13	10.2	11.7	1024.9	83	0/10
2a	BP10-010	Biophysical	16/Aug/2010	03h20	UTC-6	71°00.810	134°41.330	Horizontal Net Tow \downarrow	342	317	114	13	10.2	11.7	1023.7	83	0/10
2a	BP10-010	Biophysical	16/Aug/2010	03h40	UTC-6	71°00.780	134°41.990	Horizontal Net Tow 个	354	232	115	13	10.2	11.7	1023.4	83	0/10
2a	BP10-010	Biophysical	16/Aug/2010	03h55	UTC-6	71°00.530	134°40.220	Vertical Net Tow \downarrow	335	302	116	19	10.5	11.9	1022.8	83	0/10
2a	BP10-010	Biophysical	16/Aug/2010	04h26	UTC-6	71°06.630	134°40.830	Vertical Net Tow 个	343	174	105	25	10.1	11.8	1022.9	86	0/10
2a	BP10-010	Biophysical	16/Aug/2010	04h58	UTC-6	71°00.540	134°40.080	Box Core \downarrow	334	317	103	25	11.0	11.7	1022.7	82	0/10
2a	BP10-010	Biophysical	16/Aug/2010	05h20	UTC-6	71°00.670	134°40.720	Box Core ↑	345	295	113	24	10.0	11.8	1022.6	85	0/10
2a	BP10-010	Biophysical	16/Aug/2010	05h37	UTC-6	71°00.740	134°41.070	Agassiz Trawl 🗸	347	329	110	24	10.2	11.8	1022.6	89	0/10
2a	BP10-010	Biophysical	16/Aug/2010	06h47	UTC-6	71°02.000	134°42.640	Agassiz Trawl 个	400	351	120	25	9.6	11.9	1021.9	89	0/10
2a	BP10-012	Biophysical	16/Aug/2010	08h57	UTC-6	70°53.740	134°14.900	CTD-Rosette \downarrow	80	337	111	27	10.6	10.7	1021.7	82	0/10
2a	BP10-012	Biophysical	16/Aug/2010	09h25	UTC-6	70°53.810	134°15.640	CTD-Rosette 个	81	332	109	24	10.9	10.3	1021.4	85	0/10
2a	BP10-012	Biophysical	16/Aug/2010	09h37	UTC-6	70°53.701	134°14.716	Horizontal Net Tow \downarrow	80	302	117	19	10.8	10.5	1021.3	84	0/10
2a	BP10-012	Biophysical	16/Aug/2010	09h47	UTC-6	70°53.767	134°15.684	Horizontal Net Tow 个	81	269	125	22	10.6	10.6	1021.1	83	0/10
2a	BP10-012	Biophysical	16/Aug/2010	09h59	UTC-6	70°53.785	134°15.129	Vertical Net Tow \downarrow	81	303	116	21	10.6	10.5	1021.1	84	0/10
2a	BP10-012	Biophysical	16/Aug/2010	10h05	UTC-6	70°53.813	134°15.184	Vertical Net Tow 个	81	308	112	23	10.6	10.5	1021.1	84	0/10
2a	BP10-012	Biophysical	16/Aug/2010	10h34	UTC-6	70°53.704	134°15.080	Box Core \downarrow	80	302	114	25	13.8	10.2	1021.1	73	0/10
2a	BP10-012	Biophysical	16/Aug/2010	10h36	UTC-6	70°53.699	134°15.095	Box Core (bottom)	80	306	108	23	13.8	10.2	1021.1	73	0/10
2a	BP10-012	Biophysical	16/Aug/2010	10h39	UTC-6	70°53.686	134°15.093	Box Core ↑	79	309	112	21	13.8	10.2	1020.9	77	0/10
2a	BP10-012	Biophysical	16/Aug/2010	10h55	UTC-6	70°53.671	134°15.298	Box Core ↓	80	302	115	25	12.0	10.3	1020.8	79	0/10
2a	BP10-012	Biophysical	16/Aug/2010	10h57	UTC-6	70°53.667	134°15.321	Box Core (bottom)	79	302	111	25	12.0	10.3	1020.8	79	0/10
2a	BP10-012	Biophysical	16/Aug/2010	11h00	UTC-6	70°53.667	134°15.350	Box Core ↑	79	291	111	22	13.6	10.2	1020.8	74	0/10
2a	BP10-012	Biophysical	16/Aug/2010	11h17	UTC-6	70°53.635	134°15.149	Agassiz Trawl 🗸	80	315	103	24	10.9	10.2	1020.7	84	0/10

Leg	Station ID	Station Type	Local Date	Local	UTC to	Latitude (N)	Longitude	Activity	Depth	Heading	w	ind	Air	Water	Pr Baro	Hum	lce
		oution type		Time	local		(W)	· · · · · · · · · · · · · · · · · · ·	(m)	(°)	Dir	Speed	(ºC)	(ºC)		(%)	
2a	BP10-012	Biophysical	16/Aug/2010	11h19	UTC-6	70°53.653	134°15.230	Agassiz Trawl 个	80	349	114	24	10.9	10.2	1020.7	84	0/10
2a	BP10-012	Biophysical	16/Aug/2010	11h22	UTC-6	70°53.699	134°15.444	Agassiz Trawl 🗸	80	284	116	20	12.7	10.2	1020.7	76	0/10
2a	BP10-012	Biophysical	16/Aug/2010	11h35	UTC-6	70°53.752	134°16.853	Agassiz Trawl 个	81	242	116	23	11.1	10.3	1020.6	84	0/10
2a	J-10	Mooring	16/Aug/2010	14h34	UTC-6	70°53.850	134°15.650	Mooring J-10 Deployed	82	290	110	21	12.9	13.0	1017.5	73	0/10
2a	J-10	Mooring	16/Aug/2010	20h15	UTC-6	70°54.020	134°16.329	CTD ↓	81	303	102	24	13.7	13.1	1017.0	76	0/10
2a	J-10	Mooring	16/Aug/2010	20h23	UTC-6	70°53.997	134°16.387	CTD ↑	82	291	109	24	14.4	13.2	1016.9	71	0/10
2a	BP10-09	Biophysical	16/Aug/2010	23h09	UTC-6	71°09.143	135°38.359	Water Sampling \downarrow	962	301	106	26	11.1	5.8	1015.0	81	0/10
2a	BP10-09	Biophysical	16/Aug/2010	23h55	UTC-6	71°09.040	135°38.550	Water Sampling 个	925	283	108	24	9.2	4.7	1014.7	86	0/10
2a	BP10-09	Biophysical	17/Aug/2010	00h05	UTC-6	71°09.040	135°38.630	CTD-Rosette ↓	925	247	109	24	9.2	4.7	1014.7	86	0/10
2a	BP10-09	Biophysical	17/Aug/2010	00h49	UTC-6	71°08.820	135°39.100	CTD-Rosette 个	906	281	106	26	9.1	4.7	1014.7	85	0/10
2a	BP10-09	Biophysical	17/Aug/2010	01h09	UTC-6	71°09.460	135°39.270	Horizontal Net Tow \downarrow	967	302	112	19	9.4	4.1	1014.2	88	0/10
2a	BP10-09	Biophysical	17/Aug/2010	01h21	UTC-6	71°09.350	135°40.950	Horizontal Net Tow 个	953	253	105	23	9.7	3.7	1014.1	85	0/10
2a	BP10-09	Biophysical	17/Aug/2010	01h37	UTC-6	71°09.200	135°40.830	Vertical Net Tow \downarrow	943	264	104	23	9.0	3.6	1013.9	87	0/10
2a	BP10-09	Biophysical	17/Aug/2010	02h55	UTC-6	71°08.850	135°41.540	Vertical Net Tow 个	944	292	105	22	8.7	3.5	1013.9	86	0/10
2a	BP10-09	Biophysical	17/Aug/2010	03h05	UTC-6	71°08.320	135°39.230	CTD-Rosette \downarrow	923	244	103	26	9.5	3.4	1013.1	86	0/10
2a	BP10-09	Biophysical	17/Aug/2010	04h41	UTC-6	71°09.130	135°40.330	CTD-Rosette 个	932	285	117	22	9.4	3.2	1013.0	86	0/10
2a	BP10-09	Biophysical	17/Aug/2010	05h09	UTC-6	71°09.390	135°39.300	Box Core 🗸	932	280	119	26	9.8	3.1	1012.7	84	0/10
2a	BP10-09	Biophysical	17/Aug/2010	N/A	UTC-6	71°09.350	135°39.080	Box Core (bottom)	945	268	119	26	9.2	2.3	1012.6	86	0/10
2a	BP10-09	Biophysical	17/Aug/2010	06h02	UTC-6	71°09.370	135°40.220	Box Core 个	950	296	121	23	9.5	2.8	1012.0	83	0/10
2a	BP10-09	Biophysical	17/Aug/2010	06h24	UTC-6	71°09.350	135°33.770	Agassiz Trawl 🗸	945	307	108	27	12.2	3.3	1012.0	79	0/10
2a	BP10-09	Biophysical	17/Aug/2010	07h45	UTC-6	71°08.670	135°44.650	Agassiz Trawl 个	981	232	114	26	8.9	6.2	1011.3	85	0/10
2a	BP10-09	Biophysical	17/Aug/2010	08h01	UTC-6	71°08.862	135°44.664	Surface Temperature Buoy Deployed	982	116	108	24	9.0	5.7	1011.2	85	0/10
2a	BP10-04	Biophysical	17/Aug/2010	10h19	UTC-6	70°55.178	134°51.188	Water Sampling \downarrow	248	298	107	25	11.2	10.2	1010.2	81	0/10
2a	BP10-04	Biophysical	17/Aug/2010	11h00	UTC-6	70°55.285	134°51.765	Water Sampling 个	256	305	100	29	10.8	10.4	1009.4	82	0/10
2a	BP10-04	Biophysical	17/Aug/2010	11h06	UTC-6	70°55.313	134°52.050	CTD-Rosette \downarrow	258	309	94	28	10.8	10.4	1009.4	82	0/10
2a	BP10-04	Biophysical	17/Aug/2010	11h33	UTC-6	70°55.262	134°52.779	CTD-Rosette 个	262	312	98	28	12.7	10.7	1009.3	77	0/10
2a	BP10-04	Biophysical	17/Aug/2010	12h25	UTC-6	70°55.080	134°51.220	Horizontal Net Tow \downarrow	242	290	112	23	11.0	11.0	1008.9	82	0/10
2a	BP10-04	Biophysical	17/Aug/2010	12h45	UTC-6	70°55.110	134°52.830	Horizontal Net Tow 个	261	290	110	26	11.0	11.1	1008.9	83	0/10
2a	BP10-04	Biophysical	17/Aug/2010	12h52	UTC-6	70°55.150	134°53.040	Vertical Net Tow \downarrow	261	293	110	25	11.1	10.9	1006.3	82	0/10
2a	BP10-04	Biophysical	17/Aug/2010	13h15	UTC-6	70°55.160	134°53.110	Vertical Net Tow ↑	262	300	105	25	14.0	10.0	1008.4	71	0/10
2a	BP10-04	Biophysical	17/Aug/2010	13h36	UTC-6	70°55.120	134°51.480	CTD-Rosette \downarrow	248	302	107	27	14.0	10.1	1008.4	71	0/10

Leg	Station ID	Station Type	Local Date	Local	UTC to	Latitude (N)	Longitude	Activity	Depth	Heading	w	ind	Air	Water	Pr Baro	Hum	lce
8	••••••			Time	local		(W)		(m)	(°)	Dir	Speed	(ºC)	(ºC)		(%)	
2a	BP10-04	Biophysical	17/Aug/2010	14h09	UTC-6	70°55.110	134°51.630	CTD-Rosette 个	247	296	105	33	14.0	10.6	1008.0	72	0/10
2a	BP10-04	Biophysical	17/Aug/2010	14h32	UTC-6	70°55.090	134°51.590	Box Core ↓	246	299	105	30	13.4	10.6	1007.7	75	0/10
2a	BP10-04	Biophysical	17/Aug/2010	14h36	UTC-6	70°55.100	134°51.590	Box Core (bottom)	246	298	105	30	13.4	10.6	1007.7	75	0/10
2a	BP10-04	Biophysical	17/Aug/2010	14h40	UTC-6	70°55.110	134°51.530	Box Core 个	247	295	105	30	13.4	10.6	1007.7	75	0/10
2a	BP10-04	Biophysical	17/Aug/2010	15h06	UTC-6	70°55.030	134°51.670	Agassiz Trawl 🗸	246	225	127	25	13.9	10.6	1006.9	76	0/10
2a	BP10-04	Biophysical	17/Aug/2010	15h31	UTC-6	70°55.050	134°54.800	Agassiz Trawl 个	357	244	180	22	11.4	10.8	1007.0	82	0/10
2a	BP10-04	Biophysical	18/Aug/2010	10h40	UTC-6	71°47.650	136°43.430	EM Sampling	2102	9	100	20	3.2	1.1	1008.7	95	8/10
2a	G-09	Mooring	18/Aug/2010	17h28	UTC-6	71°00.160	135°31.740	CTD \downarrow	734	275	81	16	10.3	9.0	1010.6	85	0/10
2a	G-09	Mooring	18/Aug/2010	18h00	UTC-6	71°00.170	135°32.240	CTD ↑	738	270	81	16	10.3	9.0	1010.6	85	0/10
2a	G-09	Mooring	18/Aug/2010	19h10	UTC-6	71°00.152	135°28.758	Mooring G-09 Recovered	701	270	88	19	12.0	11.1	1011.3	77	0/10
2a	G-09	Mooring	18/Aug/2010	19h45	UTC-6	71°00.280	135°28.969	Mooring G-09 Recovered (end)	701	287	88	19	12.6	11.5	1011.5	77	0/10
2a	BP10-07	Biophysical	18/Aug/2010	21h19	UTC-6	71°04.900	135°33.650	Water Sampling \downarrow	843	267	86	15	9.5	10.4	1012.2	88	0/10
2a	BP10-07	Biophysical	18/Aug/2010	22h05	UTC-6	71°05.065	135°33.587	Water Sampling 个	844	260	90	18	9.7	10.3	1012.3	88	0/10
2a	BP10-07	Biophysical	18/Aug/2010	22h13	UTC-6	71°05.112	135°33.581	CTD-Rosette \downarrow	843	256	90	20	10.1	10.3	1012.4	87	0/10
2a	BP10-07	Biophysical	18/Aug/2010	22h55	UTC-6	71°05.291	135°33.329	CTD-Rosette 个	842	281	77	21	12.1	10.2	1012.7	79	0/10
2a	BP10-07	Biophysical	18/Aug/2010	23h14	UTC-6	71°05.310	135°33.699	Horizontal Net Tow \downarrow	845	294	80	21	10.9	10.2	1012.9	85	0/10
2a	BP10-07	Biophysical	18/Aug/2010	23h28	UTC-6	71°05.334	135°35.262	Horizontal Net Tow 个	860	247	96	22	11.7	10.3	1013.1	88	0/10
2a	BP10-07	Biophysical	18/Aug/2010	23h48	UTC-6	71°04.998	135°33.556	Vertical Net Tow \downarrow	841	264	88	15	10.7	10.3	1013.2	83	0/10
2a	BP10-07	Biophysical	19/Aug/2010	00h40	UTC-6	71°05.330	135°33.420	Vertical Net Tow 个	842	277	180	21	11.3	9.9	1013.7	81	0/10
2a	BP10-07	Biophysical	19/Aug/2010	01h43	UTC-6	71°05.200	135°33.330	CTD-Rosette \downarrow	839	285	97	22	9.2	10.2	1013.4	89	0/10
2a	BP10-07	Biophysical	19/Aug/2010	03h21	UTC-6	71°05.330	135°33.250	CTD-Rosette 个	843	298	80	13	11.5	10.0	1014.9	80	0/10
2a	BP10-07	Biophysical	19/Aug/2010	03h41	UTC-6	71°05.120	135°34.950	Agassiz Trawl 🗸	856	331	97	15	8.9	10.0	1014.9	86	0/10
2a	BP10-07	Biophysical	19/Aug/2010	05h30	UTC-6	71°04.170	135°42.880	Agassiz Trawl 个	886	225	92	21	8.8	10.0	1015.4	86	0/10
2a	BP10-07	Biophysical	19/Aug/2010	06h13	UTC-6	71°05.160	135°33.670	Box Core ↓	846	258	99	20	9.0	10.3	1015.4	86	0/10
2a	BP10-07	Biophysical	19/Aug/2010	06h30	UTC-6	71°05.260	135°34.040	Box Core (bottom)	848	262	96	21	8.6	10.0	1015.7	86	0/10
2a	BP10-07	Biophysical	19/Aug/2010	06h45	UTC-6	71°05.330	135°34.270	Box Core 个	851	282	86	19	8.6	10.0	1015.8	86	0/10
2a	BP10-05	Biophysical	19/Aug/2010	08h31	UTC-6	71°01.789	134°48.485	CTD-Rosette \downarrow	442	290	77	19	8.7	10.4	1016.4	85	0/10
2a	BP10-05	Biophysical	19/Aug/2010	09h24	UTC-6	71°01.768	134°48.237	CTD-Rosette 个	432	285	80	16	10.3	10.2	1016.6	75	0/10
2a	BP10-05	Biophysical	19/Aug/2010	09h35	UTC-6	71°01.759	134°48.871	Horizontal Net Tow \downarrow	442	265	83	17	11.7	10.2	1016.6	71	0/10
2a	BP10-05	Biophysical	19/Aug/2010	09h48	UTC-6	71°01.592	134°50.112	Horizontal Net Tow 个	448	220	91	17	12.2	10.3	1016.6	70	0/10

Leg	Station ID	Station Type	Local Date	Local	UTC to	Latitude (N)	Longitude	Activity	Depth	Heading	w	ind	Air	Water	Pr Baro	Hum	lce
8				Time	local		(W)		(m)	(°)	Dir	Speed	(ºC)	(ºC)		(%)	
2a	BP10-05	Biophysical	19/Aug/2010	10h05	UTC-6	71°01.767	134°48.567	Vertical Net Tow \downarrow	442	255	85	16	9.9	10.4	1016.7	78	0/10
2a	BP10-05	Biophysical	19/Aug/2010	10h34	UTC-6	71°01.855	134°48.686	Vertical Net Tow 个	442	261	77	17	8.8	10.3	1016.8	84	0/10
2a	BP10-05	Biophysical	19/Aug/2010	12h58	UTC-6	71°01.770	134°48.060	Box Core \downarrow	442	285	70	12	9.3	10.5	1017.2	81	0/10
2a	BP10-05	Biophysical	19/Aug/2010	13h41	UTC-6	71°01.740	134°48.010	Box Core (bottom)	432	268	71	10	11.4	10.6	1017.7	75	0/10
2a	BP10-05	Biophysical	19/Aug/2010	13h49	UTC-6	71°01.770	134°48.010	Box Core 个	430	292	71	10	11.4	10.6	1017.7	74	0/10
2a	BP10-05	Biophysical	19/Aug/2010	14h07	UTC-6	71°01.750	134°48.020	Box Core ↓	432	292	72	8	10.3	11.0	1017.8	79	0/10
2a	BP10-05	Biophysical	19/Aug/2010	14h17	UTC-6	71°01.740	134°48.010	Box Core (bottom)	430	298	72	8	10.3	11.0	1017.8	79	0/10
2a	BP10-05	Biophysical	19/Aug/2010	14h25	UTC-6	71°01.750	134°48.060	Box Core 个	433	296	76	9	11.2	11.3	1017.9	77	0/10
2a	BP10-05	Biophysical	19/Aug/2010	14h35	UTC-6	71°01.860	134°49.300	Agassiz Trawl \downarrow	449	208	79	8	10.4	11.4	1018.0	78	0/10
2a	BP10-05	Biophysical	19/Aug/2010	15h15	UTC-6	71°01.740	134°49.610	Agassiz Trawl 个	437	201	78	8	9.0	10.9	1017.8	77	0/10
2a	BP10-05	Biophysical	19/Aug/2010	N/A	UTC-6	N/A	N/A	MOB ↓	N/A	N/A	66	15	9.1	11.0	1018.1	87	0/10
2a	BP10-05	Biophysical	19/Aug/2010	N/A	UTC-6	N/A	N/A	MOB 个 (canceled)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0/10
2a	BP10-011	Biophysical	20/Aug/2010	20h58	UTC-6	70°51.830	134°45.864	Water Sampling \downarrow	90	181	10	16	7.6	11.0	1015.5	84	0/10
2a	BP10-011	Biophysical	20/Aug/2010	21h38	UTC-6	70°51.714	134°46.053	Water Sampling 个	87	192	12	17	8.5	11.1	1015.5	83	0/10
2a	BP10-011	Biophysical	20/Aug/2010	21h44	UTC-6	70°51.723	134°46.141	CTD-Rosette \downarrow	88	207	350	22	9.4	11.2	1015.5	83	0/10
2a	BP10-011	Biophysical	20/Aug/2010	22h14	UTC-6	70°51.697	134°46.214	CTD-Rosette 个	88	194	359	21	10.3	11.2	1015.3	78	0/10
2a	BP10-011	Biophysical	20/Aug/2010	22h28	UTC-6	70°51.687	134°46.350	Horizontal Net Tow \downarrow	88	196	355	20	9.7	11.2	1015.3	82	0/10
2a	BP10-011	Biophysical	20/Aug/2010	22h42	UTC-6	70°51.169	134°46.238	Horizontal Net Tow 个	87	121	2	24	7.9	11.2	1015.0	89	0/10
2a	BP10-011	Biophysical	20/Aug/2010	23h02	UTC-6	70°51.729	134°45.943	Vertical Net Tow \downarrow	89	199	3	21	7.3	11.2	1014.6	94	0/10
2a	BP10-011	Biophysical	20/Aug/2010	23h09	UTC-6	70°51.723	134°45.999	Vertical Net Tow 个	89	189	5	22	9.0	11.2	1014.9	88	0/10
2a	BP10-011	Biophysical	21/Aug/2010	00h22	UTC-6	70°51.910	134°45.920	Box Core ↓	89	210	360	15	8.8	11.1	1014.6	89	0/10
2a	BP10-011	Biophysical	21/Aug/2010	00h27	UTC-6	70°51.880	134°45.940	Box Core (bottom)	88	232	360	15	8.8	11.1	1014.6	89	0/10
2a	BP10-011	Biophysical	21/Aug/2010	00h33	UTC-6	70°51.840	134°45.920	Box Core 个	88	241	360	15	8.8	11.1	1014.6	89	0/10
2a	BP10-011	Biophysical	21/Aug/2010	00h45	UTC-6	70°51.760	134°46.050	Agassiz Trawl 🗸	88	179	355	16	8.8	11.1	1014.6	88	0/10
2a	BP10-011	Biophysical	21/Aug/2010	01h01	UTC-6	70°51.170	134°45.840	Agassiz Trawl 个	89	173	355	16	8.7	11.1	1014.4	92	0/10
2a	BP10-01	Biophysical	21/Aug/2010	02h26	UTC-6	70°45.390	135°03.740	CTD-Rosette \downarrow	75	195	357	16	9.6	11.2	1013.9	90	0/10
2a	BP10-01	Biophysical	21/Aug/2010	02h57	UTC-6	70°45.330	135°03.740	CTD-Rosette 个	74	207	355	16	9.6	11.2	1013.8	91	0/10
2a	BP10-01	Biophysical	21/Aug/2010	03h10	UTC-6	70°45.340	135°03.770	Horizontal Net Tow \downarrow	75	196	4	15	10.2	11.2	1013.7	92	0/10
2a	BP10-01	Biophysical	21/Aug/2010	03h27	UTC-6	70°45.370	135°04.120	Horizontal Net Tow 个	75	183	10	15	10.2	11.2	1013.2	98	0/10
2a	BP10-01	Biophysical	21/Aug/2010	03h41	UTC-6	70°45.440	135°04.230	Vertical Net Tow \downarrow	75	178	10	18	10.2	11.1	1013.2	98	0/10

Leg	Station ID	Station Type	Local Date	Local	UTC to	Latitude (N)	Longitude	Activity	Depth	Heading	w	ind	Air	Water	Pr Baro	Hum	lce
8	••••••			Time	local		(W)		(m)	(°)	Dir	Speed	(ºC)	(ºC)		(%)	
2a	BP10-01	Biophysical	21/Aug/2010	03h50	UTC-6	70°45.360	135°04.180	Vertical Net Tow \uparrow	75	203	8	17	8.1	11.2	1013.7	96	0/10
2a	BP10-01	Biophysical	21/Aug/2010	04h35	UTC-6	70°45.230	135°04.610	Box Core \downarrow	74	216	0	22	7.7	11.1	1013.4	96	0/10
2a	BP10-01	Biophysical	21/Aug/2010	04h28	UTC-6	70°44.220	135°04.590	Box Core (bottom)	74	216	0	22	7.7	11.1	1013.4	96	0/10
2a	BP10-01	Biophysical	21/Aug/2010	04h31	UTC-6	70°45.060	135°04.610	Box Core 个	73	208	0	22	7.7	11.1	1013.4	96	0/10
2a	BP10-01	Biophysical	21/Aug/2010	04h45	UTC-6	70°45.060	135°04.770	Agassiz Trawl 🗸	73	150	25	21	8.9	11.1	1013.4	91	0/10
2a	BP10-01	Biophysical	21/Aug/2010	05h05	UTC-6	70°45.850	135°04.840	Agassiz Trawl 个	74	220	7	22	6.5	11.1	1013.2	98	0/10
2a	BP10-02	Biophysical	21/Aug/2010	06h10	UTC-6	70°51.100	135°00.200	CTD-Rosette ↓	127	205	33	17	5.5	11.1	1013.1	99	0/10
2a	BP10-02	Biophysical	21/Aug/2010	06h42	UTC-6	70°50.910	135°00.170	CTD-Rosette 个	118	218	19	18	8.8	11.1	1013.3	90	0/10
2a	BP10-02	Biophysical	21/Aug/2010	06h55	UTC-6	70°51.400	135°59.730	Horizontal Net Tow 🗸	123	192	32	19	7.5	11.0	1013.1	94	0/10
2a	BP10-02	Biophysical	21/Aug/2010	07h12	UTC-6	70°50.980	135°58.970	Horizontal Net Tow 个	113	96	21	18	5.7	11.0	1013.2	99	0/10
2a	BP10-02	Biophysical	21/Aug/2010	07h32	UTC-6	70°51.370	135°00.070	Vertical Net Tow \downarrow	129	216	22	18	5.7	11.0	1012.9	99	0/10
2a	BP10-02	Biophysical	21/Aug/2010	07h44	UTC-6	70°51.340	135°00.170	Vertical Net Tow \uparrow (problem winch)	128	216	12	18	6.3	11.0	1013.1	99	0/10
2a	BP10-02	Biophysical	21/Aug/2010	07h53	UTC-6	70°51.285	135°00.216	Vertical Net Tow \downarrow	130	206	25	16	8.1	11.0	1013.1	95	0/10
2a	BP10-02	Biophysical	21/Aug/2010	08h03	UTC-6	70°51.279	135°00.185	Vertical Net Tow 个	126	206	33	14	6.4	11.0	1013.0	97	0/10
2a	BP10-02	Biophysical	21/Aug/2010	09h06	UTC-6	70°51.135	135°00.030	Box Core \downarrow	130	200	16	36	6.8	11.0	1012.9	95	0/10
2a	BP10-02	Biophysical	21/Aug/2010	09h07	UTC-6	70°51.522	135°00.080	Box Core (bottom)	125	202	15	21	6.8	11.0	1012.9	95	0/10
2a	BP10-02	Biophysical	21/Aug/2010	09h11	UTC-6	70°51.510	135°00.030	Box Core 个	127	200	15	21	6.8	11.0	1012.8	98	0/10
2a	BP10-02	Biophysical	21/Aug/2010	09h32	UTC-6	70°51.435	135°00.357	Box Core \downarrow	133	208	25	18	6.2	11.0	1012.6	96	0/10
2a	BP10-02	Biophysical	21/Aug/2010	09h35	UTC-6	70°51.437	135°00.379	Box Core (bottom)	133	204	28	15	6.2	11.0	1012.6	96	0/10
2a	BP10-02	Biophysical	21/Aug/2010	09h38	UTC-6	70°51.446	135°00.397	Box Core 个	134	205	23	17	6.2	11.0	1012.6	96	0/10
2a	BP10-02	Biophysical	21/Aug/2010	09h56	UTC-6	70°51.524	135°00.355	Box Core \downarrow	131	202	39	19	6.5	10.9	1012.6	95	0/10
2a	BP10-02	Biophysical	21/Aug/2010	09h58	UTC-6	70°51.527	135°00.385	Box Core (bottom)	132	209	26	17	6.5	10.9	1012.6	95	0/10
2a	BP10-02	Biophysical	21/Aug/2010	10h01	UTC-6	70°51.529	135°00.399	Box Core 个	131	214	26	20	6.4	10.9	1012.6	95	0/10
2a	BP10-02	Biophysical	21/Aug/2010	10h41	UTC-6	70°51.360	135°00.795	Agassiz Trawl 🗸	132	215	15	40	6.2	10.9	1012.5	97	0/10
2a	BP10-02	Biophysical	21/Aug/2010	11h06	UTC-6	70°50.743	135°01.564	Agassiz Trawl ↑	128	176	15	40	5.3	11.0	1012.4	96	0/10
2a	G-10	Mooring	21/Aug/2010	16h10	UTC-6	71°00.230	135°28.460	Mooring G-10 Deployed	693	226	30	16	5.1	10.8	1012.3	99	0/10
2a	G-10	Mooring	21/Aug/2010	17h15	UTC-6	71°00.360	135°29.530	Mooring G-10 Deployed (end)	706	143	19	13	5.2	11.2	1012.2	99	0/10
2a	G-10	Mooring	21/Aug/2010	18h53	UTC-6	71°00.320	135°27.560	CTD \downarrow	689	217	12	17	5.2	11.1	1012.2	99	0/10
2a	G-10	Mooring	21/Aug/2010	19h22	UTC-6	71°00.210	135°27.820	CTD ↑	693	232	4	19	6.5	11.0	1012.2	98	0/10
2a	BP10-08	Biophysical	21/Aug/2010	20h22	UTC-6	71°08.003	135°29.581	CTD-Rosette \downarrow	897	204	351	19	6.2	10.0	1012.0	99	0/10

Leg	Station ID	Station Type	Local Date	Local	UTC to	Latitude (N)	Longitude	Activity	Depth	Heading	w	ind	Air	Water	Pr Baro	Hum	lce
8	••••••	otation type		Time	local		(W)		(m)	(°)	Dir	Speed	(ºC)	(ºC)		(%)	
2a	BP10-08	Biophysical	21/Aug/2010	21h50	UTC-6	71°08.059	135°29.935	CTD-Rosette 个	904	230	15	19	10.2	10.1	1011.7	83	0/10
2a	BP10-08	Biophysical	21/Aug/2010	22h00	UTC-6	71°08.012	135°30.119	Horizontal Net Tow \downarrow	903	226	14	20	9.0	10.1	1011.7	89	0/10
2a	BP10-08	Biophysical	21/Aug/2010	22h16	UTC-6	71°07.486	135°30.618	Horizontal Net Tow 个	884	142	25	21	7.9	10.1	1011.6	91	0/10
2a	BP10-08	Biophysical	21/Aug/2010	22h38	UTC-6	71°08.121	135°29.848	Vertical Net Tow \downarrow	898	220	8	17	7.0	10.1	1011.6	97	0/10
2a	BP10-08	Biophysical	21/Aug/2010	23h40	UTC-6	71°08.286	135°30.619	Vertical Net Tow \uparrow	908	203	23	15	8.6	9.5	1011.8	89	0/10
2a	BP10-08	Biophysical	22/Aug/2010	00h53	UTC-6	71°08.040	135°29.740	Box Core ↓	902	226	14	15	6.2	9.7	1011.7	97	0/10
2a	BP10-08	Biophysical	22/Aug/2010	01h14	UTC-6	71°08.080	135°30.320	Box Core (bottom)	899	134	20	15	6.2	9.6	1011.6	96	0/10
2a	BP10-08	Biophysical	22/Aug/2010	01h40	UTC-6	71°08.060	135°30.700	Box Core ↑	895	226	13	10	7.7	9.9	1011.7	93	0/10
2a	BP10-08	Biophysical	22/Aug/2010	01h46	UTC-6	71°08.090	135°30.960	Agassiz Trawl 🗸	907	225	15	12	77	9.9	1011.7	93	0/10
2a	BP10-08	Biophysical	22/Aug/2010	03h37	UTC-6	71°06.880	135°29.120	Agassiz Trawl 个	892	84	15	14	6.8	10.2	1012.0	99	0/10
2a	H-09	Mooring	22/Aug/2010	07h11	UTC-6	71°01.380	134°43.720	CTD \downarrow	393	270	40	17	7.0	10.3	1011.9	99	0/10
2a	H-09	Mooring	22/Aug/2010	07h32	UTC-6	71°01.290	134°43.870	CTD ↑	392	262	44	17	7.9	10.3	1012.1	97	0/10
2a	H-09	Mooring	22/Aug/2010	09h33	UTC-6	71°01.142	134°41.667	Mooring H-09 Recovered	368	17	54	15	7.7	12.5	1012.6	98	0/10
2a	H-09	Mooring	22/Aug/2010	09h49	UTC-6	71°01.139	134°41.803	Mooring H-09 Recovered (end)	370	31	47	16	7.5	12.6	1012.6	99	0/10
2a	BP10-06	Biophysical	22/Aug/2010	12h48	UTC-6	70°59.880	135°36.630	CTD-Rosette \downarrow	709	238	26	14	7.5	11.0	1013.7	99	0/10
2a	BP10-06	Biophysical	22/Aug/2010	13h58	UTC-6	70°59.640	135°36.920	CTD-Rosette 个	710	247	26	14	7.5	11.0	1014.0	94	0/10
2a	BP10-06	Biophysical	22/Aug/2010	13h24	UTC-6	70°59.770	135°36.850	Weather Balloon	712	267	34	11	9.1	10.9	1014.0	92	0/10
2a	BP10-06	Biophysical	22/Aug/2010	13h48	UTC-6	70°59.690	135°36.900	Weather Balloon (end)	714	222	34	11	9.2	11.0	1014.0	93	0/10
2a	BP10-06	Biophysical	22/Aug/2010	14h31	UTC-6	70°59.940	135°36.600	Horizontal Net Tow \downarrow	716	235	37	14	7.3	11.0	1014.0	99	0/10
2a	BP10-06	Biophysical	22/Aug/2010	14h43	UTC-6	70°59.610	135°37.080	Horizontal Net Tow 个	715	199	37	14	7.3	11.0	1014.0	98	0/10
2a	BP10-06	Biophysical	22/Aug/2010	14h51	UTC-6	70°59.960	135°36.540	Vertical Net Tow \downarrow	714	62	40	15	7.3	11.0	1014.1	98	0/10
2a	BP10-06	Biophysical	22/Aug/2010	15h42	UTC-6	70°59.840	135°36.720	Vertical Net Tow 个	716	98	30	14	8.3	11.0	1014.5	94	0/10
2a	BP10-06	Biophysical	22/Aug/2010	15h52	UTC-6	70°59.950	135°36.520	CTD-Rosette \downarrow	723	239	30	14	8.1	11.0	1014.6	95	0/10
2a	BP10-06	Biophysical	22/Aug/2010	17h06	UTC-6	70°59.680	135°37.170	CTD-Rosette 个	714	249	267	16	8.1	11.0	1014.9	97	0/10
2a	BP10-06	Biophysical	22/Aug/2010	20h23	UTC-6	71°00.047	135°36.777	Box Core \downarrow	726	231	19	12	8.0	11.0	1015.7	95	0/10
2a	BP10-06	Biophysical	22/Aug/2010	20h38	UTC-6	71°00.000	135°36.854	Box Core (bottom)	722	129	27	13	8.6	11.0	1015.7	94	0/10
2a	BP10-06	Biophysical	22/Aug/2010	20h58	UTC-6	70°59.967	135°37.091	Box Core ↑	713	230	11	14	7.4	11.0	1015.7	96	0/10
2a	BP10-06	Biophysical	22/Aug/2010	21h09	UTC-6	70°59.929	135°37.165	Agassiz Trawl \downarrow	715	197	30	12	8.9	11.0	1015.7	90	0/10
2a	BP10-06	Biophysical	22/Aug/2010	22h40	UTC-6	70°57.704	135°37.909	Agassiz Trawl 个	660	62	7	14	6.4	11.0	1015.9	99	0/10
2a	BP10-16	Biophysical	22/Aug/2010	23h28	UTC-6	70°59.261	135°22.525	Water Pumping \downarrow	629	200	17	13	8.2	11.0	1015.9	94	0/10

Leg	Station ID	Station Type	Local Date	Local	UTC to	Latitude (N)	Longitude	Activity	Depth	Heading	w	ind	Air	Water	Pr Baro	Hum	lce
8	00000012	otation type		Time	local		(W)		(m)	(°)	Dir	Speed	(ºC)	(ºC)		(%)	
2a	BP10-16	Biophysical	23/Aug/2010	00h12	UTC-6	70°59.160	135°22.790	Water Pumping 个	632	210	8	7	7.5	11.0	1016.2	97	0/10
2a	BP10-16	Biophysical	23/Aug/2010	00h32	UTC-6	70°59.280	135°22.770	CTD-Rosette \downarrow	366	202	9	7	7.5	11.0	1016.2	97	0/10
2a	BP10-16	Biophysical	23/Aug/2010	00h55	UTC-6	70°59.180	135°22.840	CTD-Rosette 个	627	210	9	7	7.5	11.0	1016.1	97	0/10
2a	BP10-16	Biophysical	23/Aug/2010	01h13	UTC-6	70°59.110	135°22.690	Horizontal Net Tow \downarrow	628	245	10	7	7.5	10.8	1016.2	92	0/10
2a	BP10-16	Biophysical	23/Aug/2010	01h26	UTC-6	70°58.810	135°22.400	Horizontal Net Tow 个	627	231	10	7	7.5	10.7	1016.2	91	0/10
2a	BP10-16	Biophysical	23/Aug/2010	01h35	UTC-6	70°58.880	135°21.940	Vertical Net Tow \downarrow	620	181	1	12	6.4	11.0	1016.3	99	0/10
2a	BP10-16	Biophysical	23/Aug/2010	02h29	UTC-6	70°58.800	135°21.810	Vertical Net Tow 个	621	207	10	13	6.3	11.0	1016.3	98	0/10
2a	BP10-16	Biophysical	23/Aug/2010	02h52	UTC-6	70°59.190	135°22.270	Box Core ↓	633	207	4	14	6.4	11.0	1016.5	98	0/10
2a	BP10-16	Biophysical	23/Aug/2010	03h11	UTC-6	70°59.180	135°22.360	Box Core (bottom)	628	204	4	14	6.4	10.9	1016.5	98	0/10
2a	BP10-16	Biophysical	23/Aug/2010	03h22	UTC-6	70°59.190	135°22.390	Box Core ↑	627	191	5	14	6.4	10.9	1016.5	99	0/10
2a	BP10-16	Biophysical	23/Aug/2010	03h39	UTC-6	70°59.150	135°22.470	Agassiz Trawl \downarrow	622	158	8	13	7.0	10.9	1016.8	97	0/10
2a	BP10-16	Biophysical	23/Aug/2010	04h45	UTC-6	70°57.580	135°18.300	Agassiz Trawl 个	615	114	10	13	6.4	10.9	1016.9	99	0/10
2a	H-10	Mooring	23/Aug/2010	16h06	UTC-6	71°01.260	134°41.230	Mooring H-10 Deployed	366	135	33	11	5.5	11.2	1018.9	99	0/10
2a	I-09	Mooring	23/Aug/2010	18h10	UTC-6	70°48.740	134°31.700	CTD \downarrow	72	205	21	6	6.5	10.8	1019.2	99	0/10
2a	I-09	Mooring	23/Aug/2010	18h17	UTC-6	70°48.730	134°31.740	CTD ↑	76	221	21	6	6.4	10.8	1019.2	99	0/10
2a	I-09	Mooring	23/Aug/2010	18h49	UTC-6	70°48.870	134°32.790	Mooring I-09 Recovered	72	15	38	6	7.2	10.8	1019.4	96	0/10
2a	I-09	Mooring	23/Aug/2010	18h51	UTC-6	70°48.880	134°32.800	Mooring I-09 Recovered (end)	73	9	34	7	6.7	10.9	1019.4	97	0/10
2a	BP10-13	Biophysical	23/Aug/2010	19h27	UTC-6	70°49.560	134°34.410	CTD-Rosette \downarrow	72	260	36	8	6.7	11.2	1019.6	99	0/10
2a	BP10-13	Biophysical	23/Aug/2010	19h39	UTC-6	70°49.520	134°34.500	Water Sampling \downarrow	72	255	36	7	6.8	11.0	1019.8	99	0/10
2a	BP10-13	Biophysical	23/Aug/2010	19h44	UTC-6	70°49.500	134°34.500	CTD-Rosette 个	74	266	36	7	6.7	11.0	1019.8	99	0/10
2a	BP10-13	Biophysical	23/Aug/2010	20h26	UTC-6	70°49.363	134°34.530	Water Sampling 个	72	232	22	6	6.9	10.9	1019.9	98	0/10
2a	BP10-13	Biophysical	23/Aug/2010	20h44	UTC-6	70°49.279	134°34.703	Horizontal Net Tow \downarrow	72	229	43	6	6.0	10.9	1020.0	99	0/10
2a	BP10-13	Biophysical	23/Aug/2010	20h55	UTC-6	70°48.983	134°34.606	Horizontal Net Tow 个	71	109	22	6	6.3	10.9	1020.0	99	0/10
2a	BP10-13	Biophysical	23/Aug/2010	21h07	UTC-6	70°49.282	134°34.606	Vertical Net Tow \downarrow	72	36	10	5	6.0	10.9	1020.0	99	0/10
2a	BP10-13	Biophysical	23/Aug/2010	21h14	UTC-6	70°49.286	134°34.552	Vertical Net Tow 个	72	57	8	4	6.0	10.9	1020.0	99	0/10
2a	BP10-13	Biophysical	23/Aug/2010	21h36	UTC-6	70°49.280	134°34.629	Box Core ↓	72	57	36	4	5.9	10.8	1020.2	99	0/10
2a	BP10-13	Biophysical	23/Aug/2010	21h37	UTC-6	70°49.283	134°34.632	Box Core (bottom)	72	52	43	5	5.9	10.8	1020.2	99	0/10
2a	BP10-13	Biophysical	23/Aug/2010	21h40	UTC-6	70°49.285	134°34.633	Box Core ↑	72	57	20	5	5.8	10.8	1020.2	99	0/10
2a	BP10-13	Biophysical	23/Aug/2010	21h55	UTC-6	70°49.268	134°34.634	Box Core ↓	72	73	51	5	5.9	10.8	1020.2	99	0/10
2a	BP10-13	Biophysical	23/Aug/2010	21h57	UTC-6	70°49.266	134°34.638	Box Core (bottom)	72	73	41	5	5.9	10.8	1020.2	99	0/10

Leg	Station ID	Station Type	Local Date	Local	UTC to	Latitude (N)	Longitude	Activity	Depth	Heading	w	ind	Air	Water	Pr Baro	Hum	lce
8				Time	local		(W)		(m)	(°)	Dir	Speed	(ºC)	(ºC)		(%)	
2a	BP10-13	Biophysical	23/Aug/2010	22h00	UTC-6	70°49.265	134°34.639	Box Core 个	71	70	29	3	6.0	10.8	1020.2	99	0/10
2a	BP10-13	Biophysical	23/Aug/2010	22h11	UTC-6	70°49.274	134°34.545	Agassiz Trawl 🗸	72	38	38	4	6.0	10.9	1020.3	99	0/10
2a	BP10-13	Biophysical	23/Aug/2010	22h28	UTC-6	70°49.265	134°35.475	Agassiz Trawl 个	72	157	36	4	6.2	10.9	1020.3	99	0/10
2a	BP10-13	Biophysical	23/Aug/2010	22h30	UTC-6	70°49.202	134°35.380	Agassiz Trawl 🗸	71	144	52	5	6.2	10.8	1020.3	99	0/10
2a	BP10-13	Biophysical	23/Aug/2010	22h48	UTC-6	70°49.221	134°33.833	Agassiz Trawl 个	71	342	69	4	6.1	10.8	1020.4	99	0/10
2a	BP10-03	Biophysical	24/Aug/2010	00h15	UTC-6	70°57.090	134°57.720	Water Sampling \downarrow	379	225	50	8	6.0	10.7	1020.8	99	0/10
2a	BP10-03	Biophysical	24/Aug/2010	01h01	UTC-6	70°57.070	134°57.070	Water Sampling 个	379	235	60	8	6.0	10.7	1020.8	99	0/10
2a	BP10-03	Biophysical	24/Aug/2010	01h07	UTC-6	70°57.070	134°57.080	CTD-Rosette \downarrow	381	220	60	8	6.0	10.7	1020.8	99	0/10
2a	BP10-03	Biophysical	24/Aug/2010	01h32	UTC-6	70°57.030	134°58.110	CTD-Rosette 个	382	212	56	7	6.2	10.7	1021.2	99	0/10
2a	BP10-03	Biophysical	24/Aug/2010	01h48	UTC-6	70°57.070	134°57.860	Horizontal Net Tow \downarrow	381	227	55	7	6.2	10.7	1021.3	99	0/10
2a	BP10-03	Biophysical	24/Aug/2010	02h05	UTC-6	70°56.770	134°57.460	Horizontal Net Tow 个	367	22	61	6	6.4	10.7	1021.4	99	0/10
2a	BP10-03	Biophysical	24/Aug/2010	02h21	UTC-6	70°57.130	134°57.250	Vertical Net Tow \downarrow	375	45	60	6	6.4	10.7	1021.4	99	0/10
2a	BP10-03	Biophysical	24/Aug/2010	02h53	UTC-6	70°57.140	134°57.470	Vertical Net Tow 个	379	244	58	6	6.4	10.7	1021.5	99	0/10
2a	BP10-03	Biophysical	24/Aug/2010	03h24	UTC-6	70°57.130	134°57.450	CTD-Rosette \downarrow	378	235	60	6	6.4	10.7	1021.4	99	0/10
2a	BP10-03	Biophysical	24/Aug/2010	04h20	UTC-6	70°57.080	134°57.820	CTD-Rosette 个	380	244	66	5	6.3	10.7	1022.0	99	0/10
2a	BP10-03	Biophysical	24/Aug/2010	04h41	UTC-6	70°57.130	134°57.580	Box Core ↓	379	231	84	7	6.2	10.7	1022.0	99	0/10
2a	BP10-03	Biophysical	24/Aug/2010	04h51	UTC-6	70°57.130	134°57.680	Box Core (bottom)	380	202	80	7	6.2	10.7	1022.0	99	0/10
2a	BP10-03	Biophysical	24/Aug/2010	05h12	UTC-6	70°57.170	134°57.900	Box Core ↑	380	220	87	8	6.1	10.6	1022.3	99	0/10
2a	BP10-03	Biophysical	24/Aug/2010	05h30	UTC-6	70°57.180	134°57.600	Agassiz Trawl \downarrow	383	264	77	5	7.4	10.6	1022.3	99	0/10
2a	BP10-03	Biophysical	24/Aug/2010	06h34	UTC-6	70°57.270	134°57.470	Agassiz Trawl 个	382	266	75	5	6.7	10.7	1022.7	99	0/10
2a	I-10	Mooring	24/Aug/2010	11h43	UTC-6	70°48.949	134°32.604	Mooring I-10 Deployed	72	137	32	13	6.2	10.9	1023.4	99	0/10
2a	I-10	Mooring	24/Aug/2010	12h38	UTC-6	70°48.670	134°31.910	CTD \downarrow	72	36	35	10	7.6	11.7	1023.5	98	0/10
2a	I-10	Mooring	24/Aug/2010	12h48	UTC-6	70°48.640	134°32.020	CTD ↑	71	121	35	10	7.6	11.7	1023.5	98	0/10
2a	N/A	N/A	24/Aug/2010	17h10	UTC-6	70°56.900	134°44.880	MOB ↓	250	140	34	11	6.8	12.2	1024.3	99	0/10
2a	N/A	N/A	24/Aug/2010	18h05	UTC-6	70°56.948	134°44.593	мов 个	250	125	21	11	6.9	12.5	1024.3	99	0/10
2a	BP10-16	Biophysical	24/Aug/2010	19h25	UTC-6	70°59.230	135°22.290	CTD-Rosette ↓	630	211	1	11	7.3	11.4	1024.5	98	0/10
2a	BP10-16	Biophysical	24/Aug/2010	20h00	UTC-6	70°59.158	135°22.783	CTD-Rosette 个	627	249	15	13	8.2	11.2	1024.5	94	0/10
2a	BP10-16	Biophysical	24/Aug/2010	20h33	UTC-6	70°59.123	135°22.536	CTD-Rosette \downarrow	623	174	24	14	6.6	11.1	1024.8	98	0/10
2a	BP10-16	Biophysical	24/Aug/2010	21h41	UTC-6	70°59.231	135°22.484	CTD-Rosette 个	622	165	0	12	6.2	11.2	1024.3	98	0/10
2a	BP10-17	Biophysical	24/Aug/2010	23h07	UTC-6	71°07.072	135°11.577	CTD-Rosette \downarrow	722	N/A	5	13	6.1	10.4	1024.1	98	0/10

Leg	Station ID	Station Type	Local Date	Local	UTC to	Latitude (N)	Longitude	Activity	Depth	Heading	w	ind	Air	Water	Pr Baro	Hum	lce
8	••••••	otation type		Time	local		(W)		(m)	(°)	Dir	Speed	(ºC)	(ºC)		(%)	
2a	BP10-17	Biophysical	25/Aug/2010	00h13	UTC-6	71°07.080	135°11.840	CTD-Rosette 个	727	78	358	12	5.4	10.3	1024.1	99	0/10
2a	BP10-17	Biophysical	25/Aug/2010	00h26	UTC-6	71°07.050	135°12.140	Horizontal Net Tow \downarrow	728	180	357	12	5.4	10.3	1024.1	99	0/10
2a	BP10-17	Biophysical	25/Aug/2010	01h01	UTC-6	71°07.080	135°12.830	Horizontal Net Tow 个	723	178	356	12	5.4	10.3	1024.1	99	0/10
2a	BP10-17	Biophysical	25/Aug/2010	01h12	UTC-6	71°07.150	135°11.580	Box Core \downarrow	731	254	7	11	7.2	9.8	1024.1	94	0/10
2a	BP10-17	Biophysical	25/Aug/2010	01h35	UTC-6	71°07.170	135°11.720	Box Core (bottom)	735	263	10	5	6.7	9.9	1024.1	99	0/10
2a	BP10-17	Biophysical	25/Aug/2010	01h48	UTC-6	71°07.190	135°11.910	Box Core 个	734	218	10	5	6.7	9.9	1024.1	99	0/10
2a	BP10-17	Biophysical	25/Aug/2010	01h57	UTC-6	71°07.210	135°11.990	Agassiz Trawl 🗸	732	235	10	5	6.7	9.9	1024.1	99	0/10
2a	BP10-17	Biophysical	25/Aug/2010	03h31	UTC-6	71°05.660	135°05.970	Agassiz Trawl 个	651	117	356	11	5.7	9.7	1023.8	99	0/10
2a	H-10	CTD	25/Aug/2010	04h27	UTC-6	71°00.930	134°40.690	CTD \downarrow	351	238	12	9	5.7	9.9	1023.4	99	0/10
2a	H-10	CTD	25/Aug/2010	04h46	UTC-6	71°00.870	134°41.060	CTD ↑	350	239	11	9	6.5	9.4	1023.4	99	0/10
2a	CA04-08	Mooring	25/Aug/2010	08h45	UTC-6	71°04.862	133°38.594	Mooring CA04-08 Lost	294	287	34	14	4.7	10.0	1022.4	99	0/10
2a	N/A	MVP	25/Aug/2010	14h35	UTC-6	71°20.840	131°03.600	MVP \downarrow (test)	219	67	50	10	4.7	6.4	1021.6	99	0/10
2a	N/A	MVP	25/Aug/2010	17h47	UTC-6	71°25.940	130°10.810	MVP 个 (test)	72	63	35	11	4.6	7.0	1021.4	99	0/10
Leg 2b																	
2b	N/A	MVP	27/Aug/2010	07h29	UTC-6	71°24.960	129°55.400	MVP \downarrow (test)	90	264	98	13	5.6	9.1	1018.0	99	0/10
2b	N/A	MVP	27/Aug/2010	08h42	UTC-6	71°25.130	130°21.040	MVP 个 (test)	89	253	90	15	5.3	7.0	1017.0	99	0/10
2b	N/A	MVP	27/Aug/2010	18h18	UTC-6	70°52.230	133°53.830	MVP \downarrow	79	237	89	17	9.5	7.3	1014.8	99	0/10
2b	N/A	MVP	27/Aug/2010	19h44	UTC-6	70°53.160	134°13.300	MVP 个	73	330	93	15	10.9	9.0	1013.0	99	0/10
2b	USBL Beacon	N/A	02/Sep/2010	06h09	UTC-6	71°04.440	135°42.810	CTD \downarrow	886	284	44	10	4.8	8.9	1013.0	96	0/10
2b	USBL Beacon	N/A	02/Sep/2010	06h46	UTC-6	71°04.180	135°43.140	CTD ↑	885	239	46	12	5.6	8.3	1013.0	93	0/10
2b	USBL Beacon	N/A	02/Sep/2010	07h15	UTC-6	71°04.390	135°43.020	USBL Beacon Calibration	891	203	58	13	4.6	8.6	1013.0	97	0/10
2b	B-09	Mooring	02/Sep/2010	17h26	UTC-6	70°39.960	135°35.980	CTD \downarrow	153	306	65	17	5.0	10.8	1014.5	93	0/10
2b	B-09	Mooring	02/Sep/2010	17h36	UTC-6	70°39.930	135°36.110	CTD ↑	155	291	57	14	6.0	10.8	1014.5	91	0/10
2b	B-09	Mooring	02/Sep/2010	18h10	UTC-6	N/A	N/A	Mooring B-09 Recovered	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0/10
2b	N/A	MVP	02/Sep/2010	20h55	UTC-6	70°54.580	135°32.450	$MVP \downarrow$	606	50	35	16	3.3	10.6	1015.7	93	0/10
2b	N/A	MVP	03/Sep/2010	09h27	UTC-6	71°10.886	135°13.962	MVP 个	660	326	50	11	0.9	7.9	1019.1	98	0/10
2b	BP10-PC31	Piston Core	03/Sep/2010	11h15	UTC-6	N/A	N/A	Piston Core (problem with winch)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0/10
2b	N/A	MVP	03/Sep/2010	13h50	UTC-6	71°06.530	134°32.960	$MVP \downarrow$	469	248	30	10	1.1	8.6	1020.3	94	0/10
2b	N/A	MVP	03/Sep/2010	20h48	UTC-6	71°11.883	135°24.863	MVP \downarrow	1013	138	30	15	1.3	8.1	1020.4	99	0/10
2b	N/A	MVP	04/Sep/2010	01h00	UTC-6	70°45.000	134°27.900	MVP 个	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

Leg	Station ID	Station Type	Local Date	Local	UTC to	Latitude (N)	Longitude	Activity	Depth	Heading	w	ind	Air	Water	Pr Baro	Hum	lce
	0.000.00	otation type		Time	local		(W)		(m)	(°)	Dir	Speed	(ºC)	(ºC)		(%)	
2b	N/A	MVP	04/Sep/2010	01h20	UTC-6	70°45.000	134°28.600	MVP \downarrow	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
2b	N/A	MVP	04/Sep/2010	03h25	UTC-6	70°56.800	134°10.100	MVP 个	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
2b	N/A	MVP	04/Sep/2010	04h15	UTC-6	71°02.300	134°20.000	$MVP \downarrow$	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
2b	N/A	MVP	04/Sep/2010	06h48	UTC-6	70°44.900	134°52.200	MVP 个	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
2b	B-10	Mooring	04/Sep/2010	09h25	UTC-6	70°40.121	135°35.201	Mooring B-10 Deployed	150	194	65	19	6.7	11.4	1018.9	78	0/10
2b	B-10	Mooring	04/Sep/2010	10h20	UTC-6	70°39.900	135°35.414	CTD ↓	142	67	73	14	5.6	11.2	1018.9	77	0/10
2b	B-10	Mooring	04/Sep/2010	10h31	UTC-6	70°39°892	135°35.505	CTD ↑	144	84	65	16	5.6	11.0	1018.9	77	0/10
2b	BP10-PC12	Piston Core	04/Sep/2010	12h04	UTC-6	70°47.590	135°33.740	Piston Core 🗸	425	225	82	14	7.0	11.8	1019.0	78	0/10
2b	BP10-PC12	Piston Core	04/Sep/2010	12h39	UTC-6	70°47.590	135°33.740	Piston Core 个	425	225	82	14	7.0	11.8	1019.0	78	0/10
2b	BP10-PC39	Piston Core	04/Sep/2010	15h15	UTC-6	70°59.480	135°31.550	Piston Core ↓	677	N/A	73	19	3.9	11.0	1019.0	87	0/10
2b	BP10-PC39	Piston Core	04/Sep/2010	16h04	UTC-6	70°59.480	135°31.550	Piston Core 个	677	N/A	73	19	3.9	11.0	1019.0	87	0/10
2b	BP10-PC34	Piston Core	04/Sep/2010	18h15	UTC-6	70°59.170	135°22.210	Piston Core \downarrow	630	N/A	69	15	4.5	11.7	1018.0	84	0/10
2b	BP10-PC34	Piston Core	04/Sep/2010	19h12	UTC-6	70°59.170	135°22.210	Piston Core 个	630	N/A	69	15	4.5	11.7	1018.0	84	0/10
2b	N/A	MVP	04/Sep/2010	20h45	UTC-6	71°02.688	135°32.053	MVP \downarrow	778	141	60	15	3.4	10.9	1017.6	86	0/10
2b	N/A	MVP	04/Sep/2010	23h32	UTC-6	70°45.160	134°56.187	MVP 个	66	140	40	17	3.6	10.5	1016.5	92	0/10
2b	N/A	MVP	05/Sep/2010	00h05	UTC-6	70°45.180	135°06.600	$MVP \downarrow$	431	322	76	17	4.2	10.3	1016.2	89	0/10
2b	N/A	MVP	05/Sep/2010	03h44	UTC-6	71°08.940	136°01.910	MVP 个	1051	322	80	17	3.9	10.2	1013.2	78	0/10
2b	N/A	MVP	05/Sep/2010	04h45	UTC-6	71°03.540	135°50.690	$MVP \downarrow$	1013	139	85	23	3.7	9.8	1015.2	94	0/10
2b	N/A	MVP	05/Sep/2010	06h15	UTC-6	70°54.410	135°30.820	MVP 个	597	144	88	20	3.5	10.2	1023.0	95	0/10
2b	F-09	Mooring	05/Sep/2010	08h10	UTC-6	70°55.720	136°23.696	CTD \downarrow	999	266	85	13	4.6	10.1	1014.6	94	0/10
2b	F-09	Mooring	05/Sep/2010	08h54	UTC-6	70°55.638	136°23.648	CTD ↑	1000	286	80	18	4.4	10.1	1014.6	96	0/10
2b	F-09	Mooring	05/Sep/2010	09h50	UTC-6	70°55.600	136°26.186	Mooring F-09 Recovered	998	100	86	16	4.5	10.7	1014.6	97	0/10
2b	F-09	Mooring	05/Sep/2010	10h56	UTC-6	70°55.127	136°27.885	Mooring F-09 Recovered (end)	1009	66	97	17	4.8	10.6	1014.6	97	0/10
2b	BP10-PC06	Piston Core	05/Sep/2010	13h57	UTC-6	71°00.370	135°27.250	Piston Core \downarrow	683	N/A	90	13	5.7	11.3	1014.9	89	0/10
2b	BP10-PC06	Piston Core	05/Sep/2010	14h39	UTC-6	71°00.370	135°27.250	Piston Core 个	683	N/A	90	13	5.7	11.3	1014.9	89	0/10
2b	BP10-BX14	Box Core	05/Sep/2010	16h13	UTC-6	70°59.450	135°15.240	Box Core ↓	595	282	69	18	5.2	11.8	1015.0	96	0/10
2b	BP10-BX14	Box Core	05/Sep/2010	16h28	UTC-6	70°59.430	135°15.190	Box Core (bottom)	595	226	94	17	7.9	11.8	1014.7	85	0/10
2b	BP10-BX14	Box Core	05/Sep/2010	16h44	UTC-6	70°54.430	135°15.440	Box Core ↑	595	250	71	18	4.7	11.8	1014.6	99	0/10
2b	N/A	Mapping	05/Sep/2010	17h48	UTC-6	71°00.370	135°27.370	Bottom Mapping \downarrow	641	277	77	18	6.4	11.3	1015.0	94	0/10
2b	N/A	Mapping	05/Sep/2010	19h30	UTC-6	71°11.500	135°50.800	Bottom Mapping 个	1127	330	104	17	4.6	9.6	1015.0	98	0/10

Leg	Station ID	Station Type	Local Date	Local	UTC to	Latitude (N)	Longitude	Activity	Depth	Heading	w	ind	Air	Water	Pr Baro	Hum	lce
8				Time	local		(W)	·····,	(m)	(°)	Dir	Speed	(ºC)	(ºC)		(%)	
2b	N/A	Mapping	05/Sep/2010	20h00	UTC-6	71°11.741	135°44.370	Bottom Mapping \downarrow	N/A	139	115	20	3.9	9.1	1015.1	97	0/10
2b	N/A	Mapping	06/Sep/2010	00h10	UTC-6	70°45.180	134°46.080	Bottom Mapping 个	436	139	85	15/20	4.9	10.3	1015.7	99	0/10
2b	N/A	Mapping	06/Sep/2010	00h25	UTC-6	70°45.240	134°38.820	Bottom Mapping \downarrow	840	322	90	15	4.6	10.1	1015.1	99	0/10
2b	N/A	Mapping	06/Sep/2010	04h35	UTC-6	71°12.130	135°39.200	Bottom Mapping 个	1090	327	95	20	4.5	10.3	1018.0	99	0/10
2b	N/A	Mapping	06/Sep/2010	05h55	UTC-6	71°12.010	135°16.160	Bottom Mapping \downarrow	N/A	237	98	20	4.4	10.5	1018.3	97	0/10
2b	N/A	Mapping	06/Sep/2010	06h25	UTC-6	71°08.500	135°32.900	Bottom Mapping 个	N/A	237	98	19	4.4	11.0	1019.2	97	0/10
2b	BP10-PC22	Piston Core	06/Sep/2010	07h08	UTC-6	71°08.709	135°34.807	Piston Core ↓	952	294	91	20	4.6	11.3	1019.0	97	0/10
2b	BP10-PC22	Piston Core	06/Sep/2010	08h02	UTC-6	71°08.709	135°34.807	Piston Core 个	952	294	91	20	4.6	11.3	1019.0	97	0/10
2b	BP10-PC29	Piston Core	06/Sep/2010	10h51	UTC-6	70°57.083	134°53.056	Piston Core \downarrow	330	307	111	22	6.3	11.3	1021.2	88	0/10
2b	BP10-PC29	Piston Core	06/Sep/2010	11h17	UTC-6	70°57.083	134°53.056	Piston Core 个	330	307	111	22	6.3	11.3	1021.2	88	0/10
2b	BP10-PC31	Piston Core	06/Sep/2010	13h09	UTC-6	71°01.640	134°48.320	Piston Core ↓	433	N/A	95	17	4.2	10.1	1022.0	94	0/10
2b	BP10-PC31	Piston Core	06/Sep/2010	13h45	UTC-6	71°01.640	134°48.320	Piston Core ↑	433	N/A	95	17	4.2	10.1	1022.0	94	0/10
2b	BP10-PC40	Piston Core	06/Sep/2010	15h09	UTC-6	70°59.480	134°45.490	Piston Core \downarrow	349	N/A	100	13	5.0	9.2	1023.0	90	0/10
2b	BP10-PC40	Piston Core	06/Sep/2010	16h15	UTC-6	70°59.480	134°45.490	Piston Core 个	349	N/A	100	13	5.0	9.2	1023.0	90	0/10
2b	BP10-BX12	Box Core	06/Sep/2010	18h42	UTC-6	71°01.280	135°01.990	Box Core \downarrow	557	301	105	17	4.2	10.4	1024.0	94	0/10
2b	BP10-BX12	Box Core	06/Sep/2010	19h00	UTC-6	71°01.370	135°02.690	Box Core 个	N/A	N/A	100	19	6.4	10.4	1024.6	85	0/10
2b	N/A	Mapping	06/Sep/2010	19h40	UTC-6	70°58.980	135°16.560	Bottom Mapping \downarrow	618	311	100	17	4.1	10.5	1024.6	94	0/10
2b	N/A	Mapping	06/Sep/2010	20h24	UTC-6	71°02.708	135°28.882	Bottom Mapping 个	765	312	108	18	5.2	10.3	1024.9	92	0/10
2b	N/A	Mapping	06/Sep/2010	20h34	UTC-6	71°02.305	135°29.907	Bottom Mapping \downarrow	747	137	110	19	5.0	10.4	1022.5	91	0/10
2b	N/A	Mapping	06/Sep/2010	21h20	UTC-6	70°58.551	135°17.600	Bottom Mapping 个	591	131	100	19	4.4	10.2	1024.5	91	0/10
2b	N/A	Mapping	06/Sep/2010	21h29	UTC-6	70°58.276	135°19.157	Bottom Mapping \downarrow	593	313	110	18	4.5	10.0	1024.9	92	0/10
2b	N/A	Mapping	06/Sep/2010	22h11	UTC-6	71°01.908	135°31.097	Bottom Mapping 个	752	313	100	15/20	5.2	10.1	1025.0	91	0/10
2b	N/A	Mapping	06/Sep/2010	21h21	UTC-6	71°01.537	135°32.190	Bottom Mapping \downarrow	758	135	90	22	4.8	10.2	1024.8	91	0/10
2b	N/A	Mapping	06/Sep/2010	23h04	UTC-6	70°57.804	135°19.960	Bottom Mapping 个	595	130	105	24	4.6	10.2	1024.6	91	0/10
2b	N/A	Mapping	06/Sep/2010	23h12	UTC-6	70°57.412	135°21.094	Bottom Mapping \downarrow	597	305	100	16	4.6	10.0	1024.7	90	0/10
2b	N/A	Mapping	06/Sep/2010	23h52	UTC-6	71°01.139	135°33.451	Bottom Mapping 个	781	313	90	22	5.4	10.1	1025.3	90	0/10
2b	N/A	Mapping	07/Sep/2010	00h01	UTC-6	71°00.780	135°34.620	Bottom Mapping \downarrow	706	130	105	19	4.6	10.2	1024.0	91	0/10
2b	N/A	Mapping	07/Sep/2010	00h49	UTC-6	70°56.780	135°21.360	Bottom Mapping 个	597	130	115	19	4.9	10.2	1024.0	92	0/10
2b	N/A	Mapping	07/Sep/2010	01h25	UTC-6	70°51.960	135°04.680	Bottom Mapping \downarrow	269	138	110	20	5.0	9.8	1024.0	94	0/10
2b	N/A	Mapping	07/Sep/2010	01h50	UTC-6	70°49.800	134°59.880	Bottom Mapping 个	90	138	110	20	5.2	10.0	1024.5	94	0/10

Leg	Station ID	Station Type	Local Date	Local	UTC to	Latitude (N)	Longitude	Activity	Depth	Heading	W	ind	Air	Water	Pr Baro	Hum	lce
8	00000012	otation type		Time	local		(W)		(m)	(°)	Dir	Speed	(ºC)	(ºC)		(%)	
2b	N/A	Mapping	07/Sep/2010	02h00	UTC-6	70°50.100	134°58.560	Bottom Mapping \downarrow	92	323	110	20	5.2	10.0	1024.6	94	0/10
2b	N/A	Mapping	07/Sep/2010	02h20	UTC-6	70°52.320	135°03.360	Bottom Mapping 个	260	323	120	18	5.9	10.3	1025.2	94	0/10
2b	N/A	Mapping	07/Sep/2010	02h30	UTC-6	70°52.620	135°02.040	Bottom Mapping \downarrow	251	133	96	21	5.9	10.3	1025.2	94	0/10
2b	N/A	Mapping	07/Sep/2010	02h50	UTC-6	70°50.400	134°57.240	Bottom Mapping 个	91	133	98	20	5.2	10.3	1024.6	96	0/10
2b	N/A	Mapping	07/Sep/2010	03h00	UTC-6	70°50.700	134°55.920	Bottom Mapping \downarrow	94	323	111	18	5.3	10.3	1024.7	96	0/10
2b	N/A	Mapping	07/Sep/2010	03h20	UTC-6	70°52.920	135°00.660	Bottom Mapping 个	233	323	107	20	6.0	10.4	1025.1	95	0/10
2b	N/A	Mapping	07/Sep/2010	03h30	UTC-6	70°53.220	134°59.340	Bottom Mapping \downarrow	243	140	93	20	5.6	10.4	1024.8	95	0/10
2b	N/A	Mapping	07/Sep/2010	03h52	UTC-6	70°51.060	134°54.540	Bottom Mapping 个	88	142	106	21	5.1	10.3	1022.0	97	0/10
2b	N/A	Mapping	07/Sep/2010	04h25	UTC-6	70°55.100	135°04.300	Bottom Mapping \downarrow	379	57	120	20	5.5	10.3	1024.5	97	0/10
2b	N/A	Mapping	07/Sep/2010	05h40	UTC-6	71°00.400	135°21.400	Bottom Mapping 个	360	57	103	27	4.5	8.5	1024.2	99	0/10
2b	BP10-PC32	Piston Core	07/Sep/2010	06h35	UTC-6	71°00.950	134°22.660	Piston Core \downarrow	339	285	105	25	4.1	9.5	1025.0	99	0/10
2b	BP10-PC32	Piston Core	07/Sep/2010	07h07	UTC-6	71°00.950	134°22.660	Piston Core 个	339	285	105	25	4.1	9.5	1025.0	99	0/10
2b	BP10-PC14	Piston Core	07/Sep/2010	09h10	UTC-6	70°55.388	134°12.301	Piston Core \downarrow	101	291	112	23	5.1	10.6	1023.8	98	0/10
2b	BP10-PC14	Piston Core	07/Sep/2010	09h27	UTC-6	70°55.388	134°12.301	Piston Core 个	101	291	112	23	5.1	10.6	1023.8	98	0/10
2b	BP10-PC28	Piston Core	07/Sep/2010	11h03	UTC-6	70°53.879	134°14.681	Piston Core \downarrow	83	295	114	21	5.7	10.8	1023.0	96	0/10
2b	BP10-PC28	Piston Core	07/Sep/2010	11h15	UTC-6	70°53.879	134°14.681	Piston Core 个	83	295	114	21	5.7	10.8	1023.0	96	0/10
2b	GSC10-BX01	Box Core	07/Sep/2010	N/A	UTC-6	N/A	N/A	Box Core (canceled)	80	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0/10
2b	N/A	Mapping	07/Sep/2010	18h48	UTC-6	71°05.000	134°23.200	Bottom Mapping \downarrow	484	N/A	115	27	6.3	8.9	1018.0	91	0/10
2b	N/A	Mapping	07/Sep/2010	22h47	UTC-6	70°50.370	135°32.660	Bottom Mapping 个	512	233	115	28	8.4	10.6	1014.1	88	0/10
2b	N/A	Mapping	07/Sep/2010	23h00	UTC-6	70°50.795	135°33.513	Bottom Mapping \downarrow	546	66	118	28	8.8	10.7	1013.7	88	0/10
2b	N/A	Mapping	08/Sep/2010	03h28	UTC-6	71°05.650	134°23.610	Bottom Mapping 个	523	66	114	26	7.1	9.0	1013.9	92	0/10
2b	N/A	Mapping	08/Sep/2010	03h37	UTC-6	71°05.810	134°25.330	Bottom Mapping \downarrow	518	237	115	25	7.1	9.0	1013.9	92	0/10
2b	N/A	Mapping	08/Sep/2010	05h25	UTC-6	70°58.010	135°01.000	Bottom Mapping 个	N/A	237	115	25	7.0	10.0	1012.0	91	0/10
2b	GSC10-BX01	Box Core	08/Sep/2010	07h15	UTC-6	70°51.350	134°40.990	Box Core ↓	80	N/A	130	17	8.2	10.8	1012.0	91	0/10
2b	GSC10-BX01	Box Core	08/Sep/2010	07h30	UTC-6	70°51.340	134°41.020	Box Core (bottom)	80	304	120	17	8.0	11.8	1012.5	90	0/10
2b	GSC10-BX01	Box Core	08/Sep/2010	07h35	UTC-6	N/A	N/A	Box Core 个	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0/10
2b	N/A	Mapping	08/Sep/2010	08h54	UTC-6	70°58.379	135°20.105	Bottom Mapping 个	460	231	120	14	8.5	10.9	1011.9	89	0/10
2b	N/A	Mapping	08/Sep/2010	09h50	UTC-6	70°55.377	135°18.167	Bottom Mapping \downarrow	536	63	120	20/25	8.8	10.7	1011.2	86	0/10
2b	N/A	Mapping	08/Sep/2010	12h44	UTC-6	71°06.300	134°25.890	Bottom Mapping 个	559	62	120	21	6.5	7.8	1011.0	92	0/10
2b	N/A	Mapping	08/Sep/2010	13h10	UTC-6	71°06.600	134°27.530	Bottom Mapping \downarrow	532	244	125	18	6.2	7.4	1011.7	91	0/10

Leg	Station ID	Station Type	Local Date	Local	UTC to	Latitude (N)	Longitude	Activity	Depth	Heading	w	ind	Air	Water	Pr Baro	Hum	lce
		otation Type		Time	local		(W)		(m)	(°)	Dir	Speed	(ºC)	(ºC)		(%)	
2b	N/A	Mapping	08/Sep/2010	15h10	UTC-6	70°58.500	135°05.600	Bottom Mapping 个	551	237	130	20	8.2	10.4	1009.7	91	0/10
2b	BP10-BX06	Box Core	08/Sep/2010	16h15	UTC-6	70°51.980	134°53.560	Box Core ↓	112	300	124	15	11.9	11.0	1010.4	77	0/10
2b	BP10-BX06	Box Core	08/Sep/2010	16h21	UTC-6	70°51.970	134°53.560	Box Core (bottom)	112	290	124	15	11.9	11.0	1010.4	77	0/10
2b	BP10-BX06	Box Core	08/Sep/2010	16h26	UTC-6	70°51.990	134°53.520	Box Core 个	112	272	132	16	11.1	11.4	1010.4	80	0/10
2b	BP10-BX07	Box Core	08/Sep/2010	17h44	UTC-6	70°46.590	134°49.180	Box Core ↓	73	320	114	18	9.0	11.8	1010.2	87	0/10
2b	BP10-BX07	Box Core	08/Sep/2010	17h48	UTC-6	70°46.590	134°49.140	Box Core (bottom)	73	294	124	14	12.0	11.9	1010.2	76	0/10
2b	BP10-BX07	Box Core	08/Sep/2010	17h52	UTC-6	70°46.590	134°49.130	Box Core 个	73	301	122	16	12.0	11.9	1010.2	76	0/10
2b	BP10-BX08	Box Core	08/Sep/2010	19h00	UTC-6	70°48.940	135°10.680	Box Core ↓	159	270	134	10	9.0	11.9	1009.9	88	0/10
2b	BP10-BX08	Box Core	08/Sep/2010	19h08	UTC-6	70°48.940	135°10.680	Box Core (bottom)	159	270	134	10	9.0	11.9	1009.9	88	0/10
2b	BP10-BX08	Box Core	08/Sep/2010	19h13	UTC-6	70°48.930	135°10.770	Box Core ↑	159	299	133	13	8.5	11.9	1009.9	90	0/10
2b	N/A	Mapping	08/Sep/2010	20h42	UTC-6	70°58.885	135°04.824	Bottom Mapping \downarrow	507	236	17	128	8.8	11.1	1010.0	90	0/10
2b	N/A	Mapping	08/Sep/2010	21h25	UTC-6	70°55.097	135°25.489	Bottom Mapping 个	574	56	13	135	8.6	10.9	1009.9	92	0/10
2b	N/A	Mapping	08/Sep/2010	21h30	UTC-6	70°55.251	135°24.758	Bottom Mapping \downarrow	570	56	14	135	8.7	10.9	1009.8	92	0/10
2b	N/A	Mapping	08/Sep/2010	23h14	UTC-6	71°07.169	134°27.748	Bottom Mapping 个	533	58	17	120	6.0	8.0	1010.0	96	0/10
2b	N/A	Mapping	08/Sep/2010	23h23	UTC-6	71°07.540	134°29.260	Bottom Mapping \downarrow	550	234	120	18	5.7	7.6	1010.1	96	0/10
2b	N/A	Mapping	09/Sep/2010	01h05	UTC-6	70°54.740	135°29.806	Bottom Mapping 个	581	234	105	7	8.5	10.4	1010.3	93	0/10
2b	N/A	Mapping	09/Sep/2010	01h29	UTC-6	70°50.960	135°22.330	Bottom Mapping \downarrow	459	57	105	7	8.5	10.4	1010.3	93	0/10
2b	N/A	Mapping	09/Sep/2010	03h00	UTC-6	70°01.600	134°32.600	Bottom Mapping 个	318	57	135	15	8.1	10.4	1010.7	93	0/10
2b	N/A	Mapping	09/Sep/2010	03h05	UTC-6	70°01.500	134°31.400	Bottom Mapping \downarrow	318	237	135	15	8.1	10.4	1010.7	93	0/10
2b	N/A	Mapping	09/Sep/2010	04h30	UTC-6	70°50.700	135°22.100	Bottom Mapping 个	449	234	130	13	8.8	10.9	1010.7	92	0/10
2b	F-10	Mooring	09/Sep/2010	10h47	UTC-6	70°55.814	136°24.801	Mooring F-10 Deployed	1003	50	120	5	8.6	12.5	1012.4	96	0/10
2b	F-10	Mooring	09/Sep/2010	12h18	UTC-6	70°55.870	136°24.530	CTD ↓	1009	N/A	160	6	8.1	12.4	1012.6	98	0/10
2b	F-10	Mooring	09/Sep/2010	12h50	UTC-6	70°55.290	136°24.230	CTD ↑	985	N/A	160	6	8.1	12.4	1013.0	99	0/10
2b	A1-09	Mooring	09/Sep/2010	14h05	UTC-6	70°45.410	135°59.910	CTD \downarrow	672	N/A	150	8	8.3	11.5	1013.3	98	0/10
2b	A1-09	Mooring	09/Sep/2010	14h36	UTC-6	70°45.370	136°00.210	CTD ↑	672	N/A	150	7	8.2	11.5	1013.3	97	0/10
2b	A1-09	Mooring	09/Sep/2010	15h58	UTC-6	70°45.880	136°00.890	Mooring A1-09 Recovered	689	N/A	169	5	8.2	12.5	1014.1	98	0/10
2b	A1-09	Mooring	09/Sep/2010	16h35	UTC-6	70°45.880	136°00.890	Mooring A1-09 Recovered (end)	689	N/A	169	5	8.2	12.5	1014.1	98	0/10
2b	BP10-PC26	Piston Core	09/Sep/2010	19h23	UTC-6	70°51.570	134°59.680	Piston Core $\downarrow \uparrow$	103	242	192	5	9.2	12.4	1015.3	94	0/10
2b	N/A	Mapping	09/Sep/2010	21h11	UTC-6	70°50.525	70°50.525	Bottom Mapping \downarrow	425	56	300	10	6.7	12.5	1015.9	99	0/10
2b	N/A	Mapping	10/Sep/2010	00h50	UTC-6	71°06.455	71°06.455	Bottom Mapping 个	450	100	278	6	3.8	7.5	1017.0	99	0/10

Leg	Station ID	Station Type	Local Date	Local	UTC to	Latitude (N)	Longitude	Activity	Depth	Heading	w	ind	Air	Water	Pr Baro	Hum	lce
8	••••••	otation i ype		Time	local		(W)		(m)	(°)	Dir	Speed	(ºC)	(ºC)		(%)	
2b	N/A	Mapping	10/Sep/2010	00h56	UTC-6	71°06.125	134°06.145	Bottom Mapping \downarrow	452	240	278	5	3.8	3.8	1016.9	99	0/10
2b	N/A	Mapping	10/Sep/2010	04h15	UTC-6	70°49.900	135°22.800	Bottom Mapping 个	N/A	237	315	10	4.8	4.8	1018.0	96	0/10
2b	N/A	Mapping	10/Sep/2010	04h20	UTC-6	70°49.600	135°22.430	Bottom Mapping \downarrow	N/A	57	315	10	4.8	4.8	1018.4	96	0/10
2b	N/A	Mapping	10/Sep/2010	05h15	UTC-6	70°56.600	135°45.500	Bottom Mapping 个	80	57	315	10	4.8	4.8	1018.0	96	0/10
2b	GSC-PC01	Piston Core	10/Sep/2010	06h20	UTC-6	70°51.340	134°41.090	Piston Core ↓	80	N/A	325	10	3.7	3.7	1017.0	93	0/10
2b	BP10-PC09	Piston Core	10/Sep/2010	08h49	UTC-6	70°51.571	134°26.409	Piston Core ↓	78	265	330	11	4.1	4.1	1018.9	92	0/10
2b	BP10-PC09	Piston Core	10/Sep/2010	08h57	UTC-6	70°51.571	134°26.409	Piston Core 个	78	265	330	11	4.1	4.1	1018.9	92	0/10
2b	BP10-PC08	Piston Core	10/Sep/2010	10h15	UTC-6	70°53.994	134°46.611	Piston Core \downarrow	141	203	321	8	3.9	3.9	1019.1	96	0/10
2b	BP10-PC08	Piston Core	10/Sep/2010	10h23	UTC-6	70°53.994	134°46.611	Piston Core ↑	141	203	321	8	3.9	3.9	1019.1	96	0/10
2b	BP10-PC30	Piston Core	10/Sep/2010	12h11	UTC-6	70°55.310	134°33.150	Piston Core \downarrow	93	N/A	290	2	5.2	5.2	1019.4	90	0/10
2b	BP10-PC30	Piston Core	10/Sep/2010	12h30	UTC-6	70°55.310	134°33.150	Piston Core 个	93	N/A	290	2	5.2	5.2	1019.4	90	0/10
2b	BP10-PC41	Piston Core	10/Sep/2010	13h19	UTC-6	70°57.350	134°40.450	Piston Core \downarrow	238	N/A	320	3	4.5	4.5	1019.6	94	0/10
2b	BP10-PC41	Piston Core	10/Sep/2010	13h41	UTC-6	70°57.350	134°40.450	Piston Core 个	238	N/A	320	3	4.5	4.5	1019.6	94	0/10
2b	GSC10-PC06	Piston Core	10/Sep/2010	14h43	UTC-6	70°54.870	134°48.530	Piston Core \downarrow	190	N/A	10	5	4.7	4.7	1019.7	94	0/10
2b	GSC10-PC06	Piston Core	10/Sep/2010	15h04	UTC-6	70°54.870	134°48.530	Piston Core 个	190	N/A	10	5	4.7	4.7	1019.7	94	0/10
2b	GSC10-BX06	Box Core	10/Sep/2010	15h35	UTC-6	70°54.870	134°48.530	Box Core \downarrow	182	N/A	15	6	4.7	4.7	1019.6	95	0/10
2b	GSC10-BX06	Box Core	10/Sep/2010	15h39	UTC-6	70°54.870	134°48.530	Box Core (bottom)	182	N/A	15	6	4.7	4.7	1019.6	95	0/10
2b	GSC10-BX06	Box Core	10/Sep/2010	15h44	UTC-6	70°54.870	134°48.530	Box Core ↑	182	N/A	10	6	4.7	4.7	1019.6	95	0/10
2b	BP10-BX09	Box Core	10/Sep/2010	16h55	UTC-6	70°55.530	134°22.750	Box Core \downarrow	111	N/A	7	5	3.1	3.1	1019.7	99	0/10
2b	BP10-BX09	Box Core	10/Sep/2010	16h57	UTC-6	70°55.530	134°22.760	Box Core (bottom)	111	N/A	8	4	3.1	3.1	1019.7	99	0/10
2b	BP10-BX09	Box Core	10/Sep/2010	17h00	UTC-6	70°55.530	134°22.780	Box Core ↑	111	N/A	7	3	3.1	3.1	1019.8	99	0/10
2b	BP10-BX13	Box Core	10/Sep/2010	18h16	UTC-6	70°58.450	134°43.110	Box Core ↓	285	N/A	345	6	3.3	3.3	1019.9	99	0/10
2b	BP10-BX13	Box Core	10/Sep/2010	18h26	UTC-6	70°58.440	134°43.090	Box Core (bottom)	288	N/A	345	6	3.3	3.3	1019.9	99	0/10
2b	BP10-BX13	Box Core	10/Sep/2010	18h33	UTC-6	70°58.440	134°43.200	Box Core ↑	287	N/A	353	4	3.1	3.1	1019.9	99	0/10
2b	N/A	Mapping	10/Sep/2010	19h00	UTC-6	70°56.400	134°50.660	Bottom Mapping \downarrow	270	57	325	7	3.7	11.1	1019.9	98	0/10
2b	N/A	Mapping	10/Sep/2010	20h25	UTC-6	71°05.857	134°05.831	Bottom Mapping 个	460	55	313	4	3.5	8.8	1020.1	98	0/10
2b	N/A	Mapping	10/Sep/2010	20h30	UTC-6	71°05.533	134°06.103	Bottom Mapping \downarrow	465	236	313	1	3.5	9.0	1020.2	98	0/10
2b	N/A	Mapping	10/Sep/2010	22h45	UTC-6	70°49.373	135°20.905	Bottom Mapping 个	389	237	358	1	4.2	10.6	1020.4	99	0/10
2b	N/A	Mapping	10/Sep/2010	22h49	UTC-6	70°49.570	135°19.816	Bottom Mapping \downarrow	388	55	350	1	4.2	10.6	1020.4	99	0/10
2b	N/A	Mapping	11/Sep/2010	01h04	UTC-6	71°05.400	134°04.810	Bottom Mapping 个	440	57	120	3	3.4	9.1	1020.5	99	0/10

Leg	Station ID	Station Type	Local Date	Local	UTC to	Latitude (N)	Longitude	Activity	Depth	Heading	w	ind	Air	Water	Pr Baro	Hum	lce
8	00000012	otation type		Time	local		(W)	· · · · · · · · · · · · · · · · · · ·	(m)	(°)	Dir	Speed	(ºC)	(ºC)		(%)	
2b	N/A	Mapping	11/Sep/2010	01h09	UTC-6	71°05.210	134°04.270	Bottom Mapping \downarrow	440	237	120	3	3.4	9.1	1020.5	99	0/10
2b	N/A	Mapping	11/Sep/2010	03h53	UTC-6	70°47.440	135°26.000	Bottom Mapping 个	355	237	215	3	4.7	10.7	1020.0	96	0/10
2b	N/A	Mapping	11/Sep/2010	03h52	UTC-6	70°47.700	135°25.340	Bottom Mapping \downarrow	220	368	220	6	4.8	10.7	1020.6	96	0/10
2b	N/A	Mapping	11/Sep/2010	04h30	UTC-6	70°51.500	135°08.150	Bottom Mapping 个	274	368	220	6	4.8	10.7	1020.0	96	0/10
2b	N/A	Mapping	11/Sep/2010	04h33	UTC-6	70°51.250	135°07.350	Bottom Mapping \downarrow	247	237	Calm	Calm	4.5	11.0	1020.5	99	0/10
2b	N/A	Mapping	11/Sep/2010	05h08	UTC-6	70°47.140	135°26.400	Bottom Mapping 个	371	237	Calm	Calm	4.5	11.0	1020.5	99	0/10
2b	A1-10	Mooring	11/Sep/2010	09h35	UTC-6	70°45.891	136°00.111	Mooring A1-10 Deployed	684	325	232	4	5.2	12.7	1020.5	99	0/10
2b	A1-10	Mooring	11/Sep/2010	10h22	UTC-6	70°46.029	135°59.764	CTD-Rosette \downarrow	692	284	207	6	5.6	12.8	1020.6	99	0/10
2b	A1-10	Mooring	11/Sep/2010	11h24	UTC-6	70°46.005	135°59.643	CTD-Rosette 个	690	240	198	7	5.8	13.0	1020.5	99	0/10
2b	A2-09	Mooring	11/Sep/2010	12h30	UTC-6	70°44.610	135°54.560	Mooring A2-09 Recovered	607	N/A	145	4	6.2	12.0	1020.5	99	0/10
2b	BP10-PC18	Piston Core	11/Sep/2010	15h01	UTC-6	70°46.170	135°10.830	Piston Core ↓	91	N/A	160	11	6.6	12.7	1020.5	95	0/10
2b	BP10-PC18	Piston Core	11/Sep/2010	15h30	UTC-6	70°46.170	135°10.830	Piston Core 个	91	N/A	160	11	6.6	12.7	1020.5	95	0/10
2b	BP10-PC44	Piston Core	11/Sep/2010	17h11	UTC-6	70°39.360	134°41.840	Piston Core ↓	60	N/A	168	6	6.0	12.9	1020.6	99	0/10
2b	BP10-PC44	Piston Core	11/Sep/2010	17h16	UTC-6	70°39.360	134°41.840	Piston Core 个	60	N/A	168	6	6.0	12.9	1020.6	99	0/10
2b	GSC10-BX05	Box Core	11/Sep/2010	19h09	UTC-6	70°55.730	134°50.240	Box Core \downarrow	254	N/A	198	6	6.2	12.7	1020.7	99	0/10
2b	GSC10-BX05	Box Core	11/Sep/2010	19h16	UTC-6	70°55.730	134°50.260	Box Core (bottom)	254	N/A	198	6	6.3	12.7	1020.0	99	0/10
2b	GSC10-BX05	Box Core	11/Sep/2010	19h23	UTC-6	70°55.750	135°50.090	Box Core ↑	254	N/A	198	6	6.5	12.7	1020.0	99	0/10
2b	BP10-BX16	Box Core	11/Sep/2010	20h14	UTC-6	71°01.943	134°49.352	Box Core ↓	453	205	177	7	6.4	12.7	1020.0	99	0/10
2b	BP10-BX16	Box Core	11/Sep/2010	20h24	UTC-6	71°01.954	134°49.461	Box Core (bottom)	454	162	203	8	6.5	12.9	1019.9	99	0/10
2b	BP10-BX16	Box Core	11/Sep/2010	20h38	UTC-6	71°02.077	134°49.222	Box Core ↑	454	77	189	7	6.5	12.9	1019.9	99	0/10
2b	BP10-BX15	Box Core	11/Sep/2010	21h16	UTC-6	71°05.096	134°38.293	Box Core ↓	467	142	192	6	6.3	12.2	1019.9	99	0/10
2b	BP10-BX15	Box Core	11/Sep/2010	21h26	UTC-6	71°05.076	134°38.260	Box Core (bottom)	467	136	195	6	6.2	11.7	1019.9	99	0/10
2b	BP10-BX15	Box Core	11/Sep/2010	21h38	UTC-6	71°05.076	134°38.299	Box Core ↑	467	96	200	6	6.4	11.5	1019.9	99	0/10
2b	N/A	Mapping	11/Sep/2010	22h39	UTC-6	71°04.978	134°04.305	Bottom Mapping \downarrow	429	233	126	6	5.2	9.7	1019.9	99	0/10
2b	N/A	Mapping	12/Sep/2010	00h36	UTC-6	70°51.500	135°08.000	Bottom Mapping 个	245	237	310	6	4.2	10.9	1020.1	99	0/10
2b	N/A	Mapping	12/Sep/2010	00h38	UTC-6	70°51.220	135°07.680	Bottom Mapping \downarrow	245	57	310	6	4.2	10.9	1020.1	99	0/10
2b	N/A	Mapping	12/Sep/2010	02h31	UTC-6	71°04.810	134°03.020	Bottom Mapping 个	417	57	300	10	4.4	12.5	1019.6	99	0/10
2b	N/A	Mapping	12/Sep/2010	02h34	UTC-6	71°04.660	134°02.670	Bottom Mapping \downarrow	417	237	300	10	4.4	12.5	1019.6	99	0/10
2b	N/A	Mapping	12/Sep/2010	04h42	UTC-6	70°49.500	135°14.500	Bottom Mapping 个	257	237	304	7	4.5	11.0	1020.0	99	0/10
2b	BP10-PC42	Piston Core	12/Sep/2010	06h49	UTC-6	70°49.520	134°21.610	Piston Core (bottom)	70	N/A	320	9	4.4	12.2	1020.1	98	0/10

Leg	Station ID	Station Type	Local Date	Local	UTC to	Latitude (N)	Longitude	Activity	Depth	Heading	w	ind	Air	Water	Pr Baro	Hum	lce
8				Time	local		(W)		(m)	(°)	Dir	Speed	(ºC)	(ºC)		(%)	
2b	BP10-PC27	Piston Core	12/Sep/2010	08h22	UTC-6	70°46.989	134°25.682	Piston Core (bottom)	69	255	303	4	3.9	12.6	1020.4	99	0/10
2b	BP10-PC43	Piston Core	12/Sep/2010	09h23	UTC-6	70°47.558	134°33.153	Piston Core (bottom)	56	257	304	7	3.6	12.5	1020.3	99	0/10
2b	GSC10-PC05	Piston Core	12/Sep/2010	10h55	UTC-6	70°55.730	134°50.224	Piston Core (bottom)	255	245	287	7	2.9	12.4	1020.6	99	0/10
2b	BP10-PC36	Piston Core	12/Sep/2010	13h06	UTC-6	70°57.010	135°07.110	Piston Core (bottom)	472	N/A	270	5	3.0	12.0	1020.5	95	0/10
2b	BP10-PC37	Piston Core	12/Sep/2010	14h23	UTC-6	70°56.240	135°09.910	Piston Core (bottom)	489	N/A	236	10	4.3	12.6	1020.1	99	0/10
2b	BP10-PC01	Piston Core	12/Sep/2010	15h50	UTC-6	70°54.670	135°15.460	Piston Core (bottom)	485	N/A	220	11	4.9	12.8	1019.8	99	0/10
2b	BP10-BX01	Box Core	12/Sep/2010	19h18	UTC-6	71°01.550	135°33.020	Box Core ↓	772	N/A	280	22	6.5	11.5	1018.3	95	0/10
2b	BP10-BX01	Box Core	12/Sep/2010	19h38	UTC-6	71°01.570	135°33.140	Box Core (bottom)	772	N/A	305	19	6.3	11.5	1018.5	95	0/10
2b	BP10-BX01	Box Core	12/Sep/2010	19h55	UTC-6	71°01.475	135°33.350	Box Core ↑	783	148	288	19	4.6	11.6	1018.6	99	0/10
2b	BP10-BX02	Box Core	12/Sep/2010	21h08	UTC-6	71°01.775	135°35.157	Box Core ↓	839	321	275	17	6.2	12.2	1019.3	95	0/10
2b	BP10-BX02	Box Core	12/Sep/2010	21h24	UTC-6	71°01.785	135°35.082	Box Core (bottom)	832	332	277	17	4.5	12.0	1019.4	99	0/10
2b	BP10-BX02	Box Core	12/Sep/2010	21h45	UTC-6	71°01.815	135°35.066	Box Core ↑	848	335	277	17	4.9	12.8	1019.5	99	0/10
2b	N/A	Mapping	12/Sep/2010	22h10	UTC-6	71°02.223	135°39.184	Bottom Mapping \downarrow	897	104	288	13	5.2	11.7	1019.2	99	0/10
2b	N/A	Mapping	12/Sep/2010	22h26	UTC-6	71°01.282	135°30.133	Bottom Mapping 个	730	108	285	14	5.3	10.8	1019.7	99	0/10
2b	N/A	Mapping	12/Sep/2010	23h35	UTC-6	70°46.573	135°25.587	Bottom Mapping \downarrow	248	54	270	18	7.4	11.1	1020.1	99	0/10
2b	N/A	Mapping	13/Sep/2010	02h00	UTC-6	71°04.300	134°02.400	Bottom Mapping 个	352	57	284	19	6.1	8.8	1018.7	99	0/10
2b	N/A	Mapping	13/Sep/2010	02h05	UTC-6	71°04.080	134°02.100	Bottom Mapping \downarrow	349	237	277	19	6.1	8.8	1018.7	99	0/10
2b	N/A	Mapping	13/Sep/2010	04h35	UTC-6	70°46.500	135°25.000	Bottom Mapping 个	N/A	237	285	20	6.8	10.0	1019.0	N/A	0/10
2b	N/A	Mapping	13/Sep/2010	04h40	UTC-6	70°46.300	135°23.800	Bottom Mapping \downarrow	N/A	57	285	20	6.8	10.0	1019.0	N/A	0/10
2b	N/A	Mapping	13/Sep/2010	05h50	UTC-6	70°54.600	134°45.100	Bottom Mapping 个	N/A	57	280	20	7.0	11.0	1019.0	N/A	0/10
2b	N/A	Mapping	13/Sep/2010	05h55	UTC-6	70°55.000	134°43.000	Bottom Mapping ↓	N/A	237	280	20	8.0	11.0	1019.0	N/A	0/10
2b	N/A	Mapping	13/Sep/2010	07h15	UTC-6	70°46.000	134°24.000	Bottom Mapping 个	N/A	237	280	20	8.0	11.0	1019.0	N/A	0/10
2b	A2-10	Mooring	13/Sep/2010	10h56	UTC-6	70°44.652	135°54.966	Mooring A2-10 Deployed	609	140	290	18	10.2	12.5	1019.9	83	0/10
2b	A2-10	Mooring	13/Sep/2010	12h22	UTC-6	70°44.010	135°55.210	CTD \downarrow	570	N/A	290	10	6.6	13.2	1019.8	99	0/10
2b	A2-10	Mooring	13/Sep/2010	12h47	UTC-6	70°43.980	135°54.950	CTD ↑	571	N/A	290	21	6.6	13.3	1019.7	99	0/10
2b	BP10-PC23	Piston Core	13/Sep/2010	15h04	UTC-6	71°00.590	135°34.020	Piston Core \downarrow	776	N/A	315	21	2.3	11.4	1020.0	99	0/10
2b	BP10-PC23	Piston Core	13/Sep/2010	15h36	UTC-6	71°00.590	135°34.020	Piston Core ↑	776	N/A	315	21	2.3	11.4	1020.0	99	0/10
2b	BP10-PC21	Piston Core	13/Sep/2010	17h10	UTC-6	71°00.030	135°32.850	Piston Core \downarrow	696	N/A	343	19	1.9	11.9	1021.0	97	0/10
2b	BP10-PC21	Piston Core	13/Sep/2010	17h38	UTC-6	71°00.030	135°32.850	Piston Core ↑	696	N/A	343	19	1.9	11.9	1021.0	97	0/10
2b	GSC10-BX04	Box Core	13/Sep/2010	19h27	UTC-6	71°03.810	135°07.440	Box Core ↓	629	N/A	351	17	0.8	12.0	1020.9	95	0/10
2b	GSC10-BX04	Box Core	13/Sep/2010	19h48	UTC-6	71°03.810	135°07.400	Box Core (bottom)	629	N/A	356	21	0.6	12.0	1023.0	96	0/10

Leg	Station ID	Station Type	Local Date	Local	UTC to	Latitude (N)	Longitude	Activity	Depth	Heading	w	ind	Air	Water	Pr Baro	Hum	lce
8	0.000.00	otation type		Time	local		(W)		(m)	(°)	Dir	Speed	(ºC)	(ºC)		(%)	
2b	GSC10-BX04	Box Core	13/Sep/2010	20h01	UTC-6	71°03.835	135°07.659	Box Core ↑	629	N/A	351	17	0.6	12.0	1023.4	96	0/10
2b	BP10-BX10	Box Core	13/Sep/2010	20h55	UTC-6	71°02.597	135°17.388	Box Core ↓	680	237	3	22	3.3	11.8	1024.2	86	0/10
2b	BP10-BX10	Box Core	13/Sep/2010	21h09	UTC-6	71°02.575	135°17.343	Box Core (bottom)	676	159	339	18	2.1	11.7	1024.2	90	0/10
2b	BP10-BX10	Box Core	13/Sep/2010	21h23	UTC-6	71°02.612	135°17.406	Box Core 个	672	189	350	18	1.1	11.7	1024.4	90	0/10
2b	N/A	Mapping	13/Sep/2010	23h37	UTC-6	71°00.700	134°54.150	Bottom Mapping \downarrow	459	60	340	22	-1.3	9.9	1025.7	88	0/10
2b	N/A	Mapping	14/Sep/2010	00h05	UTC-6	71°03.900	134°41.100	Bottom Mapping 个	429	60	0	28	-1.5	9.3	1025.1	86	0/10
2b	N/A	Mapping	14/Sep/2010	01h10	UTC-6	71°03.820	134°02.100	Bottom Mapping \downarrow	375	237	0	19	-1.4	7.4	1025.2	89	0/10
2b	N/A	Mapping	14/Sep/2010	02h25	UTC-6	70°55.200	134°43.700	Bottom Mapping 个	130	237	0	22	-1.2	8.4	1025.5	85	0/10
2b	N/A	Mapping	14/Sep/2010	02h30	UTC-6	70°55.100	134°42.900	Bottom Mapping \downarrow	130	57	0	22	-1.2	8.4	1025.5	85	0/10
2b	N/A	Mapping	14/Sep/2010	03h30	UTC-6	71°03.690	134°01.580	Bottom Mapping 个	N/A	57	356	17	-0.5	7.6	1026.0	89	0/10
2b	N/A	Mapping	14/Sep/2010	03h57	UTC-6	71°03.100	134°03.500	Bottom Mapping \downarrow	371	237	356	17	-0.5	7.6	1026.0	89	0/10
2b	N/A	Mapping	14/Sep/2010	05h37	UTC-6	70°51.700	134°57.800	Bottom Mapping 个	290	237	16	20	-0.8	8.4	1027.8	87	0/10
2b	N/A	Mapping	14/Sep/2010	05h46	UTC-6	70°51.700	134°57.800	Bottom Mapping \downarrow	290	57	16	20	-0.8	8.4	1027.8	87	0/10
2b	N/A	Mapping	14/Sep/2010	07h30	UTC-6	71°51.500	134°00.350	Bottom Mapping 个	349	57	25	18	-0.3	7.6	1027.8	81	0/10
2b	BP10-PC25	Piston Core	14/Sep/2010	08h32	UTC-6	70°57.924	134°08.281	Piston Core \downarrow	194	150	5	13	2.4	9.8	1029.1	75	0/10
2b	BP10-PC25	Piston Core	14/Sep/2010	09h14	UTC-6	70°57.924	134°08.281	Piston Core 个	194	150	5	13	2.4	9.8	1029.1	75	0/10
2b	BP10-PC10	Piston Core	14/Sep/2010	12h12	UTC-6	70°47.170	133°47.170	Piston Core \downarrow	81	N/A	12	30	-0.1	10.6	1029.6	91	0/10
2b	BP10-PC10	Piston Core	14/Sep/2010	12h36	UTC-6	70°47.170	133°47.170	Piston Core 个	81	N/A	12	30	-0.1	10.6	1029.6	91	0/10
2b	BP10-PC13	Piston Core	14/Sep/2010	19h50	UTC-6	70°40.249	133°21.264	Piston Core \downarrow	54	N/A	6	23	-0.1	11.0	1029.9	87	0/10
2b	BP10-PC13	Piston Core	14/Sep/2010	19h51	UTC-6	70°40.247	133°21.295	Piston Core (bottom)	53	N/A	6	358	0.5	11.0	1029.7	80	0/10
2b	BP10-PC13	Piston Core	14/Sep/2010	19h54	UTC-6	70°40.330	133°21.258	Piston Core 个	53	72	4	340	0.5	10.9	1029.7	80	0/10
2b	BP10-PC16	Piston Core	15/Sep/2010	10h43	UTC-6	70°40.751	132°59.300	Piston Core	20	48	13	15	0.1	10.7	1026.4	71	0/10
2b	BP10-PC17	Piston Core	15/Sep/2010	13h13	UTC-6	70°47.040	132°35.580	Piston Core \downarrow	30	N/A	30	14	-0.7	10.3	1027.6	79	0/10
2b	BP10-PC17	Piston Core	15/Sep/2010	13h28	UTC-6	70°47.040	132°35.580	Piston Core 个	30	N/A	30	14	-0.7	10.3	1027.6	79	0/10
2b	BP10-PC07	Piston Core	15/Sep/2010	16h58	UTC-6	70°35.120	132°05.480	Piston Core \downarrow	45	N/A	0	15	0.2	10.5	1028.6	83	0/10
2b	BP10-PC07	Piston Core	15/Sep/2010	17h01	UTC-6	70°35.120	132°05.480	Piston Core ↑	45	N/A	0	15	0.2	10.5	1028.6	83	0/10
2b	BP10-PC11	Piston Core	15/Sep/2010	20h59	UTC-6	70°48.389	133°13.641	Piston Core \checkmark	23	37	10	10	-0.8	10.8	1029.2	88	0/10
2b	BP10-PC11	Piston Core	15/Sep/2010	21h02	UTC-6	70°48.389	133°13.641	Piston Core ↑	23	37	10	10	-0.8	10.8	1029.2	88	0/10
2b	BP10-PC15	Piston Core	16/Sep/2010	08h34	UTC-6	71°00.992	132°41.383	Piston Core \checkmark	67	45	44	6	0.1	9.9	1028.0	94	0/10
2b	BP10-PC15	Piston Core	16/Sep/2010	08h40	UTC-6	71°00.992	132°41.383	Piston Core ↑	67	45	44	6	0.1	9.9	1028.0	94	0/10

Leg	Station ID	Station Type	Local Date	Local	UTC to	Latitude (N)	Longitude	Activity	Depth	Heading	w	ind	Air	Water	Pr Baro	Hum	lce
8	00000012	otation type		Time	local		(W)		(m)	(°)	Dir	Speed	(ºC)	(ºC)		(%)	
2b	BP10-PC33	Piston Core	16/Sep/2010	14h34	UTC-6	71°00.890	135°10.090	Piston Core \downarrow	602	N/A	130	10	1.3	8.6	1026.7	95	0/10
2b	BP10-PC33	Piston Core	16/Sep/2010	15h00	UTC-6	71°00.890	135°10.090	Piston Core 个	602	N/A	130	10	1.3	8.6	1026.7	95	0/10
2b	BP10-PC43	ROV	16/Sep/2010	17h44	UTC-6	70°47.550	134°33.210	ROV \downarrow	62	N/A	134	14	3.4	9.5	1025.0	85	0/10
2b	BP10-PC43	ROV	16/Sep/2010	20h00	UTC-6	70°47.572	134°33.169	ROV (bottom)	N/A	167	120	13	2.3	11.7	1024.5	89	0/10
2b	BP10-PC43	ROV	16/Sep/2010	N/A	UTC-6	N/A	N/A	ROV 个	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0/10
2b	N/A	Mapping	17/Sep/2010	00h55	UTC-6	70°46.110	135°22.240	Bottom Mapping \downarrow	262	57	150	11	4.3	10.1	1022.6	82	0/10
2b	N/A	Mapping	17/Sep/2010	01h45	UTC-6	70°51.570	134°58.280	Bottom Mapping 个	118	237	150	12	4.2	10.1	1022.6	82	0/10
2b	N/A	Mapping	17/Sep/2010	01h44	UTC-6	70°51.410	134°59.080	Bottom Mapping \downarrow	118	237	150	12	4.2	10.1	1022.6	82	0/10
2b	N/A	Mapping	17/Sep/2010	02h30	UTC-6	70°45.990	135°24.180	Bottom Mapping 个	254	237	146	8	4.6	10.0	1022.1	81	0/10
2b	N/A	Mapping	17/Sep/2010	02h35	UTC-6	70°45.680	135°23.720	Bottom Mapping \downarrow	250	57	146	8	4.6	10.0	1022.1	81	0/10
2b	N/A	Mapping	17/Sep/2010	05h00	UTC-6	71°02.960	134°01.600	Bottom Mapping 个	N/A	57	0	12	2.0	6.2	1023.4	92	0/10
2b	N/A	Mapping	17/Sep/2010	06h15	UTC-6	71°13.200	134°35.600	Bottom Mapping \downarrow	635	237	0	12	2.0	6.2	1023.4	92	0/10
2b	N/A	Mapping	17/Sep/2010	08h25	UTC-6	70°57.639	135°51.482	Bottom Mapping 个	831	0	90	13	2.8	9.3	1023.2	93	0/10
2b	N/A	Mapping	17/Sep/2010	08h31	UTC-6	70°58.682	135°50.749	Bottom Mapping \downarrow	816	48	80	14	3.0	9.2	1023.0	94	0/10
2b	N/A	Mapping	17/Sep/2010	09h28	UTC-6	71°05.660	135°18.194	Bottom Mapping 个	731	60	73	12	2.6	9.3	1022.7	88	0/10
2b	GSC10-BX02	Box Core	17/Sep/2010	10h14	UTC-6	71°11.435	135°23.827	Box Core ↓	993	141	81	7	2.4	9.9	1023.7	85	0/10
2b	GSC10-BX02	Box Core	17/Sep/2010	10h32	UTC-6	71°11.409	135°23.878	Box Core (bottom)	N/A	155	80	8	2.3	10.8	1023.7	90	0/10
2b	GSC10-BX02	Box Core	17/Sep/2010	10h55	UTC-6	71°11.414	135°23.858	Box Core 个	993	158	60	8	2.3	11.2	1023.9	88	0/10
2b	GSC10-PC02	Piston Core	17/Sep/2010	12h05	UTC-6	71°11.407	135°23.863	Piston Core \downarrow	999	N/A	45	11	2.1	12.0	1024.5	93	0/10
2b	GSC10-PC02	Piston Core	17/Sep/2010	13h00	UTC-6	71°11.407	135°23.863	Piston Core 个	999	N/A	45	11	2.1	12.0	1024.5	93	0/10
2b	BP10-PC02	Piston Core	17/Sep/2010	13h53	UTC-6	71°06.990	135°05.930	Piston Core \downarrow	680	N/A	46	11	2.2	11.0	1025.2	89	0/10
2b	BP10-PC02	Piston Core	17/Sep/2010	14h33	UTC-6	71°06.990	135°05.930	Piston Core 个	680	N/A	46	11	2.2	11.0	1025.2	89	0/10
2b	BP10-PC35	Piston Core	17/Sep/2010	15h37	UTC-6	70°58.900	135°17.040	Piston Core \downarrow	600	N/A	44	9	2.3	10.2	1025.7	89	0/10
2b	BP10-PC35	Piston Core	17/Sep/2010	16h50	UTC-6	70°58.900	135°17.040	Piston Core 个	600	N/A	44	9	2.3	10.2	1025.7	89	0/10
2b	BP10-PC38	Piston Core	17/Sep/2010	18h11	UTC-6	71°02.900	135°46.340	Piston Core \downarrow	970	N/A	26	9	1.6	10.0	1027.2	94	0/10
2b	BP10-PC38	Piston Core	17/Sep/2010	19h24	UTC-6	71°02.900	135°46.340	Piston Core 个	970	N/A	26	9	1.6	10.0	1027.2	94	0/10
2b	BP10-BX03	Box Core	17/Sep/2010	20h06	UTC-6	71°02.374	135°38.076	Box Core ↓	883	N/A	40	11	0.3	10.1	1027.6	99	0/10
2b	BP10-BX03	Box Core	17/Sep/2010	20h24	UTC-6	71°02.355	135°37.973	Box Core (bottom)	883	N/A	29	12	0.0	10.2	1027.7	99	0/10
2b	BP10-BX03	Box Core	17/Sep/2010	20h43	UTC-6	71°02.377	135°38.039	Box Core 个	883	50	21	12	-0.1	10.2	1027.9	99	0/10
2b	BP10-BX04	Box Core	17/Sep/2010	21h09	UTC-6	71°03.413	135°40.252	Box Core ↓	854	66	5	12	0.3	10.3	1027.8	99	0/10

Leg	Station ID	Station Type	Local Date	Local	UTC to	Latitude (N)	Longitude	Activity	Depth	Heading	w	ind	Air	Water	Pr Baro	Hum	lce
8	0.000.00	otation type		Time	local		(W)		(m)	(°)	Dir	Speed	(ºC)	(ºC)		(%)	
2b	BP10-BX04	Box Core	17/Sep/2010	21h27	UTC-6	71°03.409	135°40.260	Box Core (bottom)	850	138	33	10	-0.1	10.2	1028.0	99	0/10
2b	BP10-BX04	Box Core	17/Sep/2010	21h48	UTC-6	71°03.416	135°40.248	Box Core 个	850	157	30	9	-0.4	10.2	1028.1	99	0/10
2b	N/A	Mapping	17/Sep/2010	21h53	UTC-6	71°03.400	135°40.600	Bottom Mapping \downarrow	962	233	37	9	-0.2	10.2	1028.3	99	0/10
2b	N/A	Mapping	17/Sep/2010	22h40	UTC-6	70°57.982	136°06.310	Bottom Mapping 个	960	235	2	9	0.3	9.9	1028.7	99	0/10
2b	N/A	Mapping	17/Sep/2010	22h47	UTC-6	70°58.738	136°08.509	Bottom Mapping \downarrow	979	56	9	12	0.3	9.9	1028.7	99	0/10
2b	N/A	Mapping	18/Sep/2010	01h00	UTC-6	71°14.900	134°51.500	Bottom Mapping 个	N/A	N/A	30	10	-0.5	9.9	1028.0	N/A	0/10
2b	N/A	Mapping	18/Sep/2010	02h55	UTC-6	71°03.000	134°09.100	Bottom Mapping \downarrow	N/A	237	350	10	-0.6	7.9	1029.7	N/A	0/10
2b	N/A	Mapping	18/Sep/2010	05h00	UTC-6	70°45.900	135°21.400	Bottom Mapping 个	359	237	21	7	0.2	10.0	1030.0	98	0/10
2b	N/A	Mapping	18/Sep/2010	05h10	UTC-6	70°47.000	135°25.500	Bottom Mapping \downarrow	359	57	21	7	-0.5	10.0	1030.0	98	0/10
2b	N/A	Mapping	18/Sep/2010	05h35	UTC-6	70°49.200	135°15.300	Bottom Mapping 个	300	57	12	8	0.0	9.0	1030.2	98	0/10
2b	BP10-PC24	Piston Core	18/Sep/2010	08h28	UTC-6	71°08.475	135°30.771	Piston Core \downarrow	909	59	22	10	-0.2	10.1	1030.8	99	0/10
2b	BP10-PC24	Piston Core	18/Sep/2010	09h00	UTC-6	71°08.475	135°30.771	Piston Core 个	909	59	22	10	-0.2	10.1	1030.8	99	0/10
2b	BP10-PC19	Piston Core	18/Sep/2010	10h18	UTC-6	71°10°382	135°53.910	Piston Core \downarrow	1070	134	75	6	04	9.9	1031.0	96	0/10
2b	BP10-PC19	Piston Core	18/Sep/2010	10h58	UTC-6	71°10°382	135°53.910	Piston Core ↑	1070	134	75	6	04	9.9	1031.0	96	0/10
2b	BP10-PC20	Piston Core	18/Sep/2010	12h30	UTC-6	71°00.421	135°53.053	Piston Core \downarrow	912	N/A	N/A	N/A	1.5	9.7	1031.5	86	0/10
2b	BP10-PC20	Piston Core	18/Sep/2010	13h16	UTC-6	71°00.421	135°53.053	Piston Core 个	912	N/A	N/A	N/A	1.5	9.7	1031.5	86	0/10
2b	BP10-BX05	Box Core	18/Sep/2010	14h08	UTC-6	71°02.320	135°44.920	Box Core ↓	924	N/A	80	2	0.0	9.9	1031.5	95	0/10
2b	BP10-BX05	Box Core	18/Sep/2010	14h28	UTC-6	71°02.340	135°44.970	Box Core (bottom)	924	N/A	150	3	0.6	10.0	1031.5	91	0/10
2b	BP10-BX05	Box Core	18/Sep/2010	14h46	UTC-6	71°02.350	135°44.890	Box Core ↑	924	N/A	155	3	0.4	10.1	1031.5	92	0/10
2b	BP10-PC45	Piston Core	18/Sep/2010	15h54	UTC-6	70°59.490	135°13.710	Piston Core \downarrow	598	N/A	158	4	0.5	9.9	1031.2	97	0/10
2b	BP10-PC45	Piston Core	18/Sep/2010	16h20	UTC-6	70°59.490	135°13.710	Piston Core 个	598	N/A	158	4	0.5	9.9	1031.2	97	0/10
2b	BP10-BX11	Box Core	18/Sep/2010	18h14	UTC-6	71°04.910	134°55.540	Box Core ↓	558	N/A	170	6	1.1	7.8	1031.0	95	0/10
2b	BP10-BX11	Box Core	18/Sep/2010	18h30	UTC-6	71°04.960	134°55.430	Box Core (bottom)	558	N/A	170	6	1.1	7.8	1031.0	95	0/10
2b	BP10-BX11	Box Core	18/Sep/2010	18h44	UTC-6	71°05.000	134°55.460	Box Core 个	559	N/A	180	5	0.7	7.9	1031.0	92	0/10
2b	N/A	Mapping	18/Sep/2010	20h35	UTC-6	71°05.457	134°18.085	Bottom Mapping \downarrow	485	233	160	6	1.1	7.6	1031.1	93	0/10
2b	N/A	Mapping	18/Sep/2010	22h47	UTC-6	70°49.870	135°32.133	Bottom Mapping 个	497	236	130	14	1.5	9.6	1030.0	96	0/10
2b	N/A	Mapping	18/Sep/2010	23h17	UTC-6	70°45.403	135°22.807	Bottom Mapping \downarrow	240	58	150	17	2.1	9.9	1029.1	95	0/10
2b	N/A	Mapping	19/Sep/2010	01h50	UTC-6	71°02.950	134°00.160	Bottom Mapping 个	320	57	140	14	1.9	8.4	1028.9	99	0/10
2b	N/A	Mapping	19/Sep/2010	01h55	UTC-6	71°02.810	133°59.710	Bottom Mapping \downarrow	317	237	140	14	1.9	8.3	1028.8	99	0/10
2b	N/A	Mapping	19/Sep/2010	04h20	UTC-6	70°45.800	135°22.700	Bottom Mapping 个	219	237	155	20	3.2	9.5	1022.0	N/A	0/10

Leg	Station ID	Station Type	Local Date	Local	UTC to	Latitude (N)	Longitude	Activity	Depth	Heading	w	ind	Air	Water	Pr Baro	Hum	lce
8	00000012	otation type		Time	local		(W)		(m)	(°)	Dir	Speed	(ºC)	(ºC)		(%)	
2b	N/A	Mapping	19/Sep/2010	04h25	UTC-6	70°45.000	135°22.500	Bottom Mapping \downarrow	211	57	155	20	3.2	9.5	1022.0	N/A	0/10
2b	N/A	Mapping	19/Sep/2010	07h20	UTC-6	71°02.700	135°59.500	Bottom Mapping 个	N/A	57	160	22	3.9	7.7	1025.0	88	0/10
2b	BP10-PC46	Piston Core	19/Sep/2010	08h42	UTC-6	70°59.268	134°33.031	Piston Core \downarrow	259	308	179	16	6.9	8.1	1025.0	77	0/10
2b	BP10-PC46	Piston Core	19/Sep/2010	08h52	UTC-6	70°59.268	134°33.031	Piston Core 个	259	308	179	16	6.9	8.1	1025.0	77	0/10
2b	BP10-PC04	Piston Core	19/Sep/2010	10h35	UTC-6	71°03.809	134°07.403	Piston Core \downarrow	635	340	167	19	5.8	9.2	1022.9	82	0/10
2b	BP10-PC04	Piston Core	19/Sep/2010	10h59	UTC-6	71°03.809	134°07.403	Piston Core 个	635	340	167	19	5.8	9.2	1022.9	82	0/10
2b	GSC10-PC03	Piston Core	19/Sep/2010	12h27	UTC-6	71°10.192	135°21.217	Piston Core \downarrow	880	N/A	190	12	7.0	10.0	1021.5	81	0/10
2b	GSC10-PC03	Piston Core	19/Sep/2010	13h14	UTC-6	71°10.192	135°21.217	Piston Core ↑	880	N/A	190	12	7.0	10.0	1021.5	81	0/10
2b	GSC10-BX03	Box Core	19/Sep/2010	13h32	UTC-6	71°10.189	135°21.209	Box Core ↓	880	N/A	190	12	7.0	10.0	1021.4	81	0/10
2b	GSC10-BX03	Box Core	19/Sep/2010	13h48	UTC-6	71°10.187	135°21.203	Box Core (bottom)	880	N/A	190	12	7.0	10.0	1021.4	81	0/10
2b	GSC10-BX03	Box Core	19/Sep/2010	14h03	UTC-6	71°10.189	135°21.201	Box Core ↑	880	N/A	190	12	7.0	10.0	1021.4	81	0/10
2b	N/A	Mapping	19/Sep/2010	14h20	UTC-6	71°12.500	135°22.100	Bottom Mapping \downarrow	880	237	193	12	4.1	10.1	1021.0	94	0/10
2b	N/A	Mapping	19/Sep/2010	18h00	UTC-6	70°57.000	135°45.700	Bottom Mapping 个	251	76	0	11	4.0	10.3	1019.0	99	0/10
2b	N/A	N/A	19/Sep/2010	18h33	UTC-6	70°56.830	134°44.980	Surface Buoy Recovered	250	N/A	0	10	4.0	9.9	1019.3	99	0/10
2b	N/A	N/A	19/Sep/2010	19h20	UTC-6	70°56.840	134°44.720	Surface Buoy Recovered (end)	252	N/A	344	15	3.4	9.7	1019.2	99	0/10
2b	N/A	Mapping	19/Sep/2010	20h13	UTC-6	70°54.635	134°43.720	Bottom Mapping \downarrow	118	57	344	19	3.6	9.5	1019.4	99	0/10
2b	N/A	Mapping	19/Sep/2010	21h30	UTC-6	71°03.507	134°00.850	Bottom Mapping 个	359	54	330	14	2.6	8.2	1018.6	96	0/10
2b	N/A	Mapping	19/Sep/2010	21h40	UTC-6	71°02.544	133°59.386	Bottom Mapping \downarrow	317	233	333	14	2.7	8.1	1018.6	97	0/10
2b	N/A	Mapping	20/Sep/2010	00h22	UTC-6	71°02.540	133°59.160	Bottom Mapping 个	197	237	320	22	2.7	9.4	1018.3	97	0/10
2b	N/A	Mapping	20/Sep/2010	00h27	UTC-6	71°44.830	135°21.940	Bottom Mapping \downarrow	218	57	310	23	2.7	9.4	1018.3	97	0/10
2b	N/A	Mapping	20/Sep/2010	02h50	UTC-6	71°02.400	133°58.880	Bottom Mapping 个	305	57	310	24	-0.8	7.8	1017.8	91	0/10
2b	N/A	Mapping	20/Sep/2010	02h53	UTC-6	71°02.270	133°58.610	Bottom Mapping \downarrow	305	237	325	22	-0.8	7.8	1017.8	91	0/10
2b	N/A	Mapping	20/Sep/2010	06h00	UTC-6	70°55.500	134°59.700	Bottom Mapping 个	N/A	237	340	24	-0.7	7.8	1017.0	N/A	0/10
2b	N/A	Mapping	20/Sep/2010	N/A	UTC-6	N/A	N/A	Bottom Mapping \downarrow	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0/10
2b	N/A	Mapping	20/Sep/2010	07h10	UTC-6	N/A	N/A	Bottom Mapping 个	440	0	335	19	-0.6	8.3	1018.0	78	0/10
2b	N/A	Mapping	20/Sep/2010	08h36	UTC-6	71°02.979	134°51.398	Bottom Mapping \downarrow	491	333	323	24	0.3	8.0	1017.9	82	0/10
2b	N/A	Mapping	20/Sep/2010	09h07	UTC-6	71°07.826	135°03.429	Bottom Mapping 个	692	N/A	326	20	0.1	7.9	1017.8	83	0/10
2b	N/A	Mapping	20/Sep/2010	09h16	UTC-6	71°08.822	135°03.072	Bottom Mapping \downarrow	758	54	322	23	-0.1	7.9	1017.8	90	0/10
2b	N/A	Mapping	20/Sep/2010	09h37	UTC-6	71°10.867	134°52.173	Bottom Mapping 个	733	107	310	20	-0.3	7.8	1018.3	88	0/10
2b	N/A	MVP	20/Sep/2010	09h50	UTC-6	71°10.183	134°49.144	MVP \downarrow	673	143	326	15	-0.3	7.4	1018.4	90	0/10

Leg	Station ID	Station Type	Local Date	Local	UTC to	Latitude (N)	Longitude	Activity	Depth	Heading	w	ind	Air	Water	Pr Baro	Hum	lce
8		·····//		Time	local		(W)		(m)	(°)	Dir	Speed	(ºC)	(ºC)		(%)	
2b	N/A	MVP	20/Sep/2010	12h40	UTC-6	70°52.200	134°11.500	MVP 个	70	57	315	21	-0.4	7.1	1017.4	96	0/10
2b	N/A	Mapping	20/Sep/2010	14h20	UTC-6	71°02.130	133°58.330	Bottom Mapping \downarrow	300	237	315	22	-0.4	7.1	1017.4	96	0/10
2b	N/A	Mapping	20/Sep/2010	16h50	UTC-6	70°44.500	135°21.400	Bottom Mapping 个	100	237	340	25	0.4	9.1	1017.9	96	0/10
2b	N/A	Mapping	20/Sep/2010	16h55	UTC-6	70°44.400	135°21.000	Bottom Mapping \downarrow	100	57	340	25	0.4	9.1	1017.9	96	0/10
2b	N/A	Mapping	20/Sep/2010	19h30	UTC-6	71°01.900	133°58.320	Bottom Mapping 个	300	57	328	22	-0.9	7.4	1017.0	93	0/10
2b	N/A	Mapping	20/Sep/2010	19h34	UTC-6	71°01.800	133°58.200	Bottom Mapping \downarrow	305	237	328	22	0.9	7.4	1017.0	93	0/10
2b	N/A	Mapping	20/Sep/2010	21h54	UTC-6	70°44.320	135°20.874	Bottom Mapping 个	140	237	339	21	-0.4	8.6	1017.5	91	0/10
2b	N/A	Mapping	20/Sep/2010	22h00	UTC-6	70°44.323	135°19.872	Bottom Mapping \downarrow	137	54	347	27	-0.5	8.7	1017.6	91	0/10
2b	N/A	Mapping	21/Sep/2010	00h41	UTC-6	71°01.730	133°57.510	Bottom Mapping 个	303	57	330	26	0.2	7.1	1015.8	91	0/10
2b	N/A	Mapping	21/Sep/2010	00h43	UTC-6	71°01.670	133°57.370	Bottom Mapping \downarrow	303	237	330	25	0.1	7.1	1015.7	91	0/10
2b	N/A	Mapping	21/Sep/2010	03h11	UTC-6	70°44.040	135°20.430	Bottom Mapping 个	102	237	335	23	0.2	8.9	1017.2	92	0/10
2b	N/A	Mapping	21/Sep/2010	03h20	UTC-6	70°43.930	135°20.210	Bottom Mapping \downarrow	106	57	335	23	0.2	8.9	1017.2	92	0/10
2b	N/A	Mapping	21/Sep/2010	06h00	UTC-6	71°01.500	133°56.700	Bottom Mapping 个	266	57	330	20/25	0.0	9.0	1016.0	N/A	0/10
2b	N/A	Mapping	21/Sep/2010	06h08	UTC-6	71°01.400	133°57.000	Bottom Mapping \downarrow	266	237	330	20/25	0.0	9.0	1016.0	N/A	0/10
2b	N/A	Mapping	21/Sep/2010	06h40	UTC-6	70°59.700	134°14.000	Bottom Mapping 个	N/A	237	330	20	0.0	9.0	1016.0	N/A	0/10
2b	N/A	Mapping	21/Sep/2010	06h50	UTC-6	70°57.700	134°13.500	Bottom Mapping \downarrow	N/A	57	330	20	0.0	9.0	1016.0	N/A	0/10
2b	N/A	Mapping	21/Sep/2010	07h25	UTC-6	70°59.000	134°70.500	Bottom Mapping 个	254	57	350	23	-1.0	6.9	1015.0	97	0/10
2b	CA04-10	Mooring	21/Sep/2010	10h55	UTC-6	71°04.865	133°37.866	Mooring CA04-10 Deployed	308	142	340	22	-0.2	7.5	1015.0	88	0/10
2b	CA04-10	Mooring	21/Sep/2010	11h43	UTC-6	71°04.776	133°37.085	CTD \downarrow	310	159	352	22	-0.2	7.5	1015.1	89	0/10
2b	CA04-10	Mooring	21/Sep/2010	11h58	UTC-6	71°04.690	133°36.970	CTD ↑	309	185	340	18	1.8	7.5	1015.3	80	0/10
2b	CA16-MMP-09	Mooring	22/Sep/2010	18h17	UTC-6	71°45.180	126°30.040	CTD \downarrow	352	N/A	20	11	-1.5	8.2	1017.2	89	0/10
2b	CA16-MMP-09	Mooring	22/Sep/2010	18h35	UTC-6	71°45.010	126°30.450	CTD ↑	352	N/A	30	12	-0.8	8.4	1017.3	83	0/10
2b	CA16-MMP-09	Mooring	22/Sep/2010	18h54	UTC-6	71°45.200	126°30.740	Mooring CA16-MMP-09 Recovered	356	N/A	40	10	-1.5	8.6	1017.0	90	0/10
2b	CA16-MMP-09	Mooring	22/Sep/2010	19h26	UTC-6	71°44.970	126°31.260	Mooring CA16-MMP-09 Recovered (end)	359	N/A	40	13	-1.1	8.3	1017.0	91	0/10
Leg 3a																	
3a	CA16-09	Mooring	24/Sep/2010	12h17	UTC-6	71°48.450	126°32.150	CTD \downarrow	307	N/A	31	8	-3.6	6.1	1014.6	93	0/10
3a	CA16-09	Mooring	24/Sep/2010	12h30	UTC-6	71°48.470	126°32.140	CTD ↑	303	N/A	41	6	-3.8	6.0	1014.6	93	0/10
3a	CA16-09	Mooring	24/Sep/2010	12h41	UTC-6	71°47.990	126°30.860	Mooring CA16-09 Recovered	302	N/A	43	8	-3.8	6.0	1014.6	93	0/10
3a	CA16-MMP-09	Mooring	24/Sep/2010	13h32	UTC-6	71°47.620	126°31.780	Mooring CA16-09 Recovered (end)	325	N/A	25	4	-3.6	6.0	1014.3	90	0/10
3a	CA05-09	Mooring	24/Sep/2010	16h43	UTC-6	71°19.660	127°35.730	CTD-Rosette \downarrow	214	33	30	8	-1.8	6.8	1013.4	87	0/10

Leg	Station ID	Station Type	Local Date	Local	UTC to	Latitude (N)	Longitude	Activity	Depth	Heading	w	ind	Air	Water	Pr Baro	Hum	lce
8	011101112	otation i ype		Time	local		(W)		(m)	(°)	Dir	Speed	(ºC)	(ºC)		(%)	
3a	CA05-09	Mooring	24/Sep/2010	16h55	UTC-6	71°19.710	127°35.690	CTD-Rosette 个	211	2	10	6	-1.8	6.8	1013.1	88	0/10
3a	CA05-09	Mooring	24/Sep/2010	17h16	UTC-6	71°19.060	127°35.490	Mooring CA05-09 Recovered	209	N/A	20	7	-1.8	6.8	1012.9	87	0/10
3a	CA05-09	Mooring	24/Sep/2010	17h30	UTC-6	76°19.052	127°35.290	Mooring CA05-09 (line broken)	423	350	20	5	-1.6	6.8	1012.8	88	0/10
3a	CA05-MMP-09	Mooring	24/Sep/2010	18h44	UTC-6	71°25.630	127°39.390	CTD-Rosette ↓	255	32	30	7	-1.9	6.5	1012.0	85	0/10
3a	CA05-MMP-09	Mooring	24/Sep/2010	18h57	UTC-6	71°25.630	127°39.150	CTD-Rosette 个	253	43	30	7	-1.8	6.5	1011.9	86	0/10
3a	CA05-MMP-09	Mooring	24/Sep/2010	19h20	UTC-6	71°24.930	127°39.610	Mooring CA05-MMP-09 Recovered	238	153	60	5	-1.9	6.5	1011.7	87	0/10
3a	CA05-MMP-09	Mooring	24/Sep/2010	19h51	UTC-6	71°24.760	127°39.810	Mooring CA05-MMP-09 Recovered (end)	235	193	70	6	-1.9	6.4	1011.4	85	0/10
3a	LF-8	Hydrophone	25/Sep/2010	09h22	UTC-6	70°50.870	134°06.860	MARU Buoy Recovered	68	200	187	23	1.0	6.4	1001.6	73	0/10
3a	LF-1	Hydrophone	25/Sep/2010	10h25	UTC-6	70°48.360	134°19.730	MARU Buoy Recovered	69	215	171	25	0.8	6.6	1001.2	71	0/10
3a	LF-5	Hydrophone	25/Sep/2010	11h25	UTC-6	70°53.340	134°17.500	MARU Buoy Recovered	80	133	184	19	1.0	6.5	1001.2	71	0/10
3a	HF-2	Hydrophone	25/Sep/2010	12h52	UTC-6	70°52.280	134°28.360	MARU Buoy Recovered	81	185	175	20	0.9	6.5	1000.9	70	0/10
3a	N/A	Weather	25/Sep/2010	12h40	UTC-6	70°52.290	134°28.379	Weather Balloon	80	189	187	21	0.8	6.6	1000.9	70	0/10
3a	LF-6	Hydrophone	25/Sep/2010	15h35	UTC-6	70°55.830	134°32.930	MARU Buoy Recovered	104	112	211	20	1.1	6.1	1000.8	74	0/10
3a	LF-3	Hydrophone	25/Sep/2010	16h23	UTC-6	70°53.260	134°46.018	MARU Buoy Recovered	108	80	185	16	1.1	5.9	1000.9	78	0/10
3a	HF-3	Hydrophone	25/Sep/2010	17h00	UTC-6	70°55.810	134°46.550	MARU Buoy Recovered	228	51	192	16	1.2	5.4	1000.8	81	0/10
3a	LF-7	Hydrophone	25/Sep/2010	18h19	UTC-6	70°58.270	134°46.040	MARU Buoy Recovered	303	204	330	16	-0.8	5.3	1001.3	98	0/10
3a	LF-4	Hydrophone	25/Sep/2010	19h13	UTC-6	70°55.850	134°58.620	MARU Buoy Recovered	345	204	330	14	-0.5	5.4	1002.1	81	0/10
3a	N/A	Mapping	25/Sep/2010	20h40	UTC-6	70°56.810	134°18.600	Bottom Mapping	172	237	338	16	-0.1	5.6	1002.4	78	0/10
3a	N/A	Mapping	25/Sep/2010	22h22	UTC-6	70°44.190	135°17.360	Bottom Mapping	97	57	318	9	0.5	5.6	1002.9	65	0/10
3a	N/A	Weather	26/Sep/2010	00h30	UTC-6	70°57.484	134°14.247	Weather Balloon	181	237	240	1	0.1	5.6	1003.2	66	0/10
3a	HF-4	Hydrophone	26/Sep/2010	08h00	UTC-6	70°45.540	135°08.940	CTD $\downarrow \uparrow$	77	315	323	6	0.5	6.2	1002.1	77	0/10
3a	HF-5	Hydrophone	26/Sep/2010	09h33	UTC-6	70°53.330	135°22.230	MARU Buoy Recovered	524	300	265	8	5.0	0.5	1004.6	75	0/10
3a	HF-4	Hydrophone	26/Sep/2010	10h55	UTC-6	71°06.042	135°23.011	MARU Buoy Recovered	641	82	259	6	1.3	4.0	1004.3	78	0/10
3a	N/A	Mapping	26/Sep/2010	12h15	UTC-6	71°03.877	134°52.204	Bottom Mapping \downarrow	519	57	280	9	0.8	4.2	1005.2	79	0/10
3a	N/A	Weather	26/Sep/2010	12h38	UTC-6	71°06.430	134°40.030	Weather Balloon	499	58	275	5	0.8	4.3	1005.3	79	0/10
3a	N/A	Mapping	26/Sep/2010	14h21	UTC-6	71°10.170	134°40.000	Bottom Mapping 个	599	54	340	7	0.2	4.3	1005.5	88	0/10
3a	N/A	Weather	27/Sep/2010	00h00	UTC-6	72°40.560	130°37.740	Weather Balloon	1531	40	190	5	-1.8	1.2	1006.0	89	Frasil
3a	N/A	N/A	27/Sep/2010	22h13	UTC-6	74°23.774	129°08.154	EM Sampling	404	107	160	7	-4.1	0.3	1000.9	93	8/10
3a	N/A	Weather	28/Sep/2010	00h35	UTC-6	74°23.770	129°09.400	Weather Balloon	411	35	164	8	-3.8	0.2	999.9	97	9/10
3a	N/A	N/A	28/Sep/2010	09h05	UTC-6	74°21.840	129°10.150	On Ice Sampling \downarrow	428	73	120	6	-3.3	0.2	997.7	76	9/10

Leg	Station ID	Station Type	Local Date	Local	UTC to	Latitude (N)	Longitude	Activity	Depth	Heading	w	ind	Air	Water	Pr Baro	Hum	lce
8				Time	local		(W)		(m)	(°)	Dir	Speed	(ºC)	(ºC)		(%)	
3a	N/A	N/A	28/Sep/2010	10h00	UTC-6	74°21.660	129°11.050	On Ice Sampling ↑	428	73	161	6	-3.5	0.9	1000.2	88	9/10
3a	N/A	Weather	28/Sep/2010	12h11	UTC-6	74°24.460	129°09.550	Weather Balloon	287	22	156	6	-3.9	1.2	1000.1	93	3/10
3a	NWBI-1	Nutrient	28/Sep/2010	17h01	UTC-6	74°40.280	128°32.550	CTD-Rosette \downarrow	379	80	180	6	-4.1	1.3	1000.6	96	8/10
3a	NWBI-1	Nutrient	28/Sep/2010	17h35	UTC-6	74°40.170	128°32.300	CTD-Rosette 个	385	88	150	7	-4.0	1.3	1000.7	97	8/10
3a	N/A	N/A	28/Sep/2010	19h29	UTC-6	74°39.930	128°15.500	On Ice Sampling \downarrow	378	281	61	2	-3.5	0.5	1000.7	97	8/10
3a	N/A	N/A	28/Sep/2010	20h43	UTC-6	74°39.930	128°15.500	On Ice Sampling 个	378	281	61	2	-3.5	0.5	1000.7	97	8/10
3a	N/A	N/A	29/Sep/2010	10h37	UTC-6	74°37.250	128°20.864	Scatterometer	381	355	227	5	-5.8	1.7	1000.8	99	7/10
3a	N/A	N/A	29/Sep/2010	11h25	UTC-6	74°36.960	128°21.205	On Ice Sampling \downarrow	379	0	213	2	-5.3	1.8	1001.0	99	8/10
3a	N/A	N/A	29/Sep/2010	14h45	UTC-6	74°36.900	128°21.300	On Ice Sampling 个	380	0	220	8	-5.8	2.2	1001.3	99	9+/10
3a	N/A	N/A	29/Sep/2010	15h30	UTC-6	74°45.340	127°56.620	On Ice Sampling \downarrow	367	130	234	9	-4.1	2.4	1001.8	99	9+/10
3a	N/A	N/A	29/Sep/2010	17h47	UTC-6	74°45.490	127°54.220	On Ice Sampling 个	367	130	230	8	-8.9	2.1	1002.4	95	9+/10
3a	N/A	N/A	30/Sep/2010	11h20	UTC-6	71°55.860	125°20.520	Calibration Team On Ice	17	268	277	22	-0.8	5.2	1006.4	67	0/10
3a	N/A	Weather	30/Sep/2010	13h20	UTC-6	71°55.875	125°29.513	Weather Balloon	24	291	282	20	-1.1	0.1	1010.3	66	0/10
3a	437	Full	30/Sep/2010	18h37	UTC-6	71°47.183	126°29.969	Secchi Disk \downarrow	318	330	280	10	-1.4	5.6	1013.9	67	0/10
3a	437	Full	30/Sep/2010	18h39	UTC-6	71°47.191	126°29.951	Secchi Disk 个	317	347	273	6	-1.5	5.6	1014.1	67	0/10
3a	437	Full	30/Sep/2010	18h40	UTC-6	71°47.193	126°29.943	PNF \downarrow	315	2	278	6	-1.5	5.6	1014.1	67	0/10
3a	437	Full	30/Sep/2010	18h47	UTC-6	71°47.184	126°29.916	PNF 个	316	16	260	7	-1.5	5.6	1014.1	67	0/10
3a	CA16-10	Mooring	30/Sep/2010	19h36	UTC-6	71°47.178	126°29.762	Mooring CA16-10 Deployed	318	252	240	13	-1.4	5.5	1014.2	64	0/10
3a	437	Full	30/Sep/2010	19h48	UTC-6	71°46.948	126°29.415	Triangulation	321	50	270	10	-1.3	5.5	1014.4	65	0/10
3a	437	Full	30/Sep/2010	20h02	UTC-6	71°47.437	126°29.364	Triangulation	304	30	263	11	-1.6	5.5	1014.5	64	0/10
3a	437	Full	30/Sep/2010	20h13	UTC-6	71°47.303	126°30.443	Triangulation	318	165	264	9	-1.6	5.5	1014.5	64	0/10
3a	437	Full	30/Sep/2010	20h44	UTC-6	71°46.800	126°32.600	CTD-Rosette \downarrow	341	283	232	5	-1.3	5.5	1012.4	64	0/10
3a	437	Full	30/Sep/2010	21h13	UTC-6	71°46.800	126°33.000	CTD-Rosette 个	342	303	253	8	-1.6	5.4	1014.8	63	0/10
3a	437	Full	30/Sep/2010	21h39	UTC-6	71°46.400	126°32.200	Horizontal Net Tow \downarrow	344	97	236	9	-1.1	5.4	1014.7	64	0/10
3a	437	Full	30/Sep/2010	21h56	UTC-6	71°46.800	126°31.600	Horizontal Net Tow 个	335	348	237	9	-1.1	5.4	1012.3	61	0/10
3a	437	Full	30/Sep/2010	22h40	UTC-6	71°47.100	126°34.400	Vertical Net Tow \downarrow	350	21	230	8	-1.2	5.5	1012.4	64	0/10
3a	437	Full	30/Sep/2010	23h06	UTC-6	71°47.000	126°34.400	Vertical Net Tow 个	351	10	234	9	-1.2	5.5	1012.5	62	0/10
3a	437	Full	30/Sep/2010	23h50	UTC-6	71°47.000	126°35.000	CTD-Rosette \downarrow	355	333	222	7	-1.0	5.6	1012.6	64	0/10
3a	437	Full	01/Oct/2010	00h35	UTC-6	71°47.020	126°35.840	CTD-Rosette 个	360	210	242	9	-0.6	5.6	1014.9	64	0/10
3a	437	Full	01/Oct/2010	23h11	UTC-6	71°47.000	126°34.500	Phytoplankton Net \downarrow	351	9	243	8	-1.2	5.5	1012.5	61	0/10

Leg	Station ID	Station Type	Local Date	Local	UTC to	Latitude (N)	Longitude	Activity	Depth	Heading	w	ind	Air	Water	Pr Baro	Hum	lce
8		·····,		Time	local		(W)		(m)	(°)	Dir	Speed	(ºC)	(ºC)		(%)	
3a	437	Full	01/Oct/2010	23h23	UTC-6	71°47.000	126°34.500	Phytoplankton Net 个	352	21	246	9	-1.1	5.5	1012.5	62	0/10
3a	410	Nutrient	01/Oct/2010	01h33	UTC-6	71°41.830	126°29.490	CTD-Rosette ↓	410	205	199	9	-0.4	5.6	1015.1	66	0/10
3a	410	Nutrient	01/Oct/2010	02h06	UTC-6	71°41.790	126°29.580	CTD-Rosette 个	411	208	186	8	-0.2	5.6	1015.1	66	0/10
3a	412	Nutrient	01/Oct/2010	03h19	UTC-6	71°33.800	126°55.150	CTD-Rosette \downarrow	419	178	192	10	-0.1	5.5	1014.8	70	0/10
3a	412	Nutrient	01/Oct/2010	03h43	UTC-6	71°33.670	126°54.750	CTD-Rosette 个	418	176	208	10	0.2	5.7	1014.9	71	0/10
3a	414	Nutrient	01/Oct/2010	04h51	UTC-6	71°25.350	127°21.780	CTD-Rosette ↓	306	183	179	10	0.4	5.7	1014.6	72	0/10
3a	414	Nutrient	01/Oct/2010	05h14	UTC-6	71°25.280	127°21.200	CTD-Rosette 个	312	172	170	9	0.4	5.8	1014.6	73	0/10
3a	416	Nutrient	01/Oct/2010	06h17	UTC-6	71°17.550	127°45.330	CTD-Rosette ↓	160	184	187	10	0.7	5.6	1013.9	80	0/10
3a	416	Nutrient	01/Oct/2010	06h33	UTC-6	71°17.440	127°44.610	CTD-Rosette 个	160	178	178	10	0.9	5.6	1014.4	82	0/10
3a	418	Nutrient	01/Oct/2010	07h33	UTC-6	71°09.810	128°10.230	CTD-Rosette ↓	66	203	240	6	0.7	5.5	1014.0	80	0/10
3a	418	Nutrient	01/Oct/2010	07h43	UTC-6	71°09.810	128°10.050	CTD-Rosette 个	65	204	230	6	0.7	5.5	1014.1	80	0/10
3a	N/A	Mapping	01/Oct/2010	10h00	UTC-6	71°28.300	127°30.280	Bottom Mapping \downarrow	312	41	274	9	1.0	5.6	1013.7	75	0/10
3a	CA05-MMP-10	Mooring	01/Oct/2010	11h25	UTC-6	71°24.990	127°39.690	Mooring CA05-MMP-10 Deployed	238	5	298	9	0.3	5.6	1013.7	90	0/10
3a	CA05-MMP-10	Mooring	01/Oct/2010	11h37	UTC-6	71°25.023	127°39.677	Mooring CA05-MMP-10 Deployed (end)	238	321	272	7	0.1	5.6	1013.7	91	0/10
3a	CA05-MMP-10	Mooring	01/Oct/2010	11h52	UTC-6	71°25.223	127°40.077	Triangulation	248	341	266	12	0.2	5.5	1011.4	88	0/10
3a	CA05-MMP-10	Mooring	01/Oct/2010	12h01	UTC-6	71°24.760	127°39.884	Triangulation	242	178	262	9	0.7	5.5	1013.8	87	0/10
3a	CA05-MMP-10	Mooring	01/Oct/2010	12h07	UTC-6	71°25.076	127°38.850	Triangulation	242	270	262	9	0.7	5.5	1013.8	87	0/10
3a	CA05-MMP-10	Mooring	01/Oct/2010	12h58	UTC-6	71°24.670	127°41.600	CTD \downarrow	229	219	221	12	0.7	5.4	1013.5	85	0/10
3a	CA05-MMP-10	Mooring	01/Oct/2010	13h04	UTC-6	71°24.610	127°41.590	CTD ↑	230	205	218	8	0.2	5.4	1013.4	93	0/10
3a	N/A	Weather	01/Oct/2010	12h39	UTC-6	71°24.740	127°41.550	Weather Balloon	232	262	260	5/10	0.9	5.4	1013.6	80	0/10
3a	N/A	Mapping	01/Oct/2010	13h47	UTC-6	71°24.970	127°43.580	Bottom Mapping \downarrow	225	41	262	7	0.8	5.4	1013.3	85	0/10
3a	N/A	Mapping	01/Oct/2010	15h30	UTC-6	71°42.510	126°55.181	Bottom Mapping 个	439	41	310	14	0.6	5.6	1012.9	76	0/10
3a	CA16-MMP-10	Mooring	01/Oct/2010	16h29	UTC-6	71°45.310	126°30.520	Mooring CA16-MMP-10 Deployed	352	354	300	12	0.6	5.4	1012.6	75	0/10
3a	CA16-MMP-10	Mooring	01/Oct/2010	16h54	UTC-6	71°45.270	126°30.540	Mooring CA16-MMP-10 Deployed (end)	353	21	290	9	0.6	5.4	1012.6	75	0/10
3a	CA16-MMP-10	Mooring	01/Oct/2010	16h57	UTC-6	71°45.640	126°30.404	Triangulation	353	320	280	12	0.6	5.4	1012.6	75	0/10
3a	CA16-MMP-10	Mooring	01/Oct/2010	17h15	UTC-6	71°41.051	126°31.343	Triangulation	393	96	264	9	0.6	5.4	1012.6	75	0/10
3a	CA16-MMP-10	Mooring	01/Oct/2010	17h25	UTC-6	71°45.311	126°29.436	Triangulation	249	262	270	10	0.5	5.4	1012.5	75	0/10
3a	CA16-MMP-10	Mooring	01/Oct/2010	17h57	UTC-6	71°45.410	126°32.700	CTD \downarrow	366	269	300	10	0.5	5.4	1012.5	75	0/10
3a	CA16-MMP-10	Mooring	01/Oct/2010	18h13	UTC-6	71°45.370	126°33.060	CTD ↑	369	270	270	10	0.4	5.4	1012.3	76	0/10
3a	Tuktoyaktuk	Weather	02/Oct/2010	12h38	UTC-6	69°51.933	133°20.440	Weather Balloon	16	93	71	28	0.1	4.4	1000.4	97	0/10
3a	Pullen Pingos	Mapping	03/Oct/2010	01h18	UTC-6	70°59.363	133°58.999	Bottom Mapping \downarrow	218	237	56	21	-0.6	6.8	1003.3	87	0/10

Leg	Station ID	Station Type	Local Date	Local	UTC to	Latitude (N)	Longitude	Activity	Depth	Heading	w	ind	Air	Water	Pr Baro	Hum	lce
8	••••••	otation type		Time	local		(W)	······	(m)	(°)	Dir	Speed	(ºC)	(ºC)		(%)	
3a	Pullen Pingos	Mapping	03/Oct/2010	02h30	UTC-6	70°56.790	134°13.777	Bottom Mapping 个	158	237	56	19	-0.7	6.2	1005.3	86	0/10
3a	Pullen Pingos	Mapping	03/Oct/2010	02h30	UTC-6	70°56.790	134°13.770	Bottom Mapping \downarrow	158	237	56	19	-0.7	6.2	1005.3	86	0/10
3a	Pullen Pingos	Mapping	03/Oct/2010	14h14	UTC-6	70°56.390	134°13.510	Bottom Mapping 个	143	60	51	20	-2.2	6.9	1009.1	87	0/10
3a	N/A	Mapping	03/Oct/2010	14h20	UTC-6	70°56.467	134°13.117	CTD \downarrow	144	58	55	21	-2.4	6.8	1009.5	87	0/10
3a	N/A	Mapping	03/Oct/2010	14h30	UTC-6	70°56.509	134°13.204	CTD ↑	146	52	51	22	-2.4	6.8	1009.9	87	0/10
3a	N/A	Mapping	03/Oct/2010	14h37	UTC-6	70°56.543	134°11.972	Bottom Mapping	149	237	62	22	-1.1	6.8	1009.8	93	0/10
3a	N/A	Mapping	03/Oct/2010	16h45	UTC-6	70°42.667	135°18.900	CTD \downarrow	87	70	70	21	-1.1	6.8	1009.8	93	0/10
3a	N/A	Mapping	03/Oct/2010	16h59	UTC-6	70°42.727	135°19.150	CTD ↑	88	50	70	22	-0.9	6.8	1009.6	91	0/10
3a	N/A	Mapping	03/Oct/2010	17h15	UTC-6	70°44.149	135°16.982	Bottom Mapping \downarrow	86	57	70	23	-0.8	6.8	1009.4	91	0/10
3a	N/A	Mapping	03/Oct/2010	23h45	UTC-6	70°53.260	134°27.800	Bottom Mapping 个	N/A	N/A	85	25	-1.3	6.9	1008.7	N/A	0/10
3a	N/A	Mapping	04/Oct/2010	00h45	UTC-6	71°05.030	134°17.400	Bottom Mapping \downarrow	481	304	71	25	-1.4	6.8	1011.2	76	0/10
3a	N/A	Mapping	04/Oct/2010	03h08	UTC-6	71°14.768	134°34.793	Bottom Mapping 个	860	35	75	28	-1.7	6.4	1012.7	80	0/10
3a	N/A	Weather	04/Oct/2010	12h52	UTC-6	71°47.200	130°00.840	Weather Balloon	289	92	99	35	-3.4	5.9	1015.5	74	0/10
3a	N/A	Weather	05/Oct/2010	13h24	UTC-6	71°55.915	125°21.454	Weather Balloon	16	86	83	27	-6.5	5.1	1007.8	91	0/10
3a	408	Full	06/Oct/2010	N/A	UTC-6	N/A	N/A	CTD-Rosette \downarrow	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0/10
3a	408	Full	06/Oct/2010	N/A	UTC-6	N/A	N/A	CTD-Rosette 个	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0/10
3a	408	Full	06/Oct/2010	14h35	UTC-6	71°19.050	127°35.600	PNF \downarrow	205	25	48	16	-4.2	6.0	1008.2	81	0/10
3a	408	Full	06/Oct/2010	14h40	UTC-6	71°19.050	127°35.680	PNF 个	207	16	40	14	-4.9	6.0	1008.1	79	0/10
3a	408	Full	06/Oct/2010	14h40	UTC-6	71°19.060	127°35.690	Secchi Disk 🗸	208	14	42	15	-4.9	6.0	1008.1	79	0/10
3a	408	Full	06/Oct/2010	14h43	UTC-6	71°19.060	127°35.730	Secchi Disk 个	205	13	34	13	-4.9	6.0	1008.1	79	0/10
3a	CA05-10	Mooring	06/Oct/2010	15h10	UTC-6	71°19.050	127°35.540	Mooring CA05-10 Deployed	205	30	56	15	-5.2	6.1	1008.1	79	0/10
3a	CA05-10	Mooring	06/Oct/2010	15h37	UTC-6	71°19.050	127°35.590	Mooring CA05-10 Deployed (end)	206	31	25	10	-5.1	6.2	1008.2	78	0/10
3a	CA05-10	Mooring	06/Oct/2010	15h51	UTC-6	71°19.062	127°36.212	Triangulation	202	147	30	16	-4.0	6.2	1008.2	79	0/10
3a	CA05-10	Mooring	06/Oct/2010	15h56	UTC-6	71°18.912	127°35.394	Triangulation	207	96	29	20	-4.0	6.2	1008.2	79	0/10
3a	CA05-10	Mooring	06/Oct/2010	16h01	UTC-6	71°19.230	127°35.514	Triangulation	209	318	44	18	-4.7	6.2	1008.0	82	0/10
3a	CA08-10	Mooring	06/Oct/2010	20h40	UTC-6	71°00.220	126°04.376	Mooring CA08-10 Deployed	392	30	11	14	-3.5	5.6	1007.2	88	0/10
3a	CA08-10	Mooring	06/Oct/2010	21h14	UTC-6	71°00.274	126°04.275	Mooring CA08-10 Deployed (end)	394	71	22	18	-3.6	5.5	1007.4	88	0/10
3a	CA08-10	Mooring	06/Oct/2010	21h47	UTC-6	71°00.025	126°04.704	Triangulation	394	143	27	14	-3.6	5.5	1007.4	88	0/10
3a	407	Full	06/Oct/2010	22h00	UTC-6	71°01.050	126°02.233	CTD-Rosette \downarrow	393	36	15	14	-3.5	5.4	1007.2	93	0/10
3a	407	Full	06/Oct/2010	22h41	UTC-6	71°01.070	126°02.627	CTD-Rosette 个	396	20	25	13	-3.9	5.4	1007.1	94	0/10

Leg	Station ID	Station Type	Local Date	Local	UTC to	Latitude (N)	Longitude	Activity	Depth	Heading	w	ind	Air	Water	Pr Baro	Hum	lce
8		·····,		Time	local		(W)	·····,	(m)	(°)	Dir	Speed	(ºC)	(ºC)		(%)	
3a	407	Full	06/Oct/2010	22h56	UTC-6	71°00.987	126°02.136	Horizontal Net Tow \downarrow	392	123	20	15	-4.1	5.4	1007.6	94	0/10
3a	407	Full	06/Oct/2010	23h17	UTC-6	71°00.618	126°00.009	Horizontal Net Tow 个	393	107	20	16	-4.2	5.4	1007.7	96	0/10
3a	407	Full	06/Oct/2010	23h27	UTC-6	71°00.529	125°59.767	Phytoplankton Net \downarrow	397	90	20	16	-4.3	5.4	1007.7	95	0/10
3a	407	Full	06/Oct/2010	23h35	UTC-6	71°00.473	125°59.784	Phytoplankton Net 个	394	114	15	14	-4.3	5.4	1007.7	95	0/10
3a	407	Full	06/Oct/2010	23h57	UTC-6	71°00.440	125°59.720	Vertical Net Tow \downarrow	397	52	18	13	-4.1	5.4	1007.8	94	0/10
3a	407	Full	07/Oct/2010	00h25	UTC-6	71°00.420	125°59.460	Vertical Net Tow 个	394	47	24	13	-4.1	5.4	1007.9	95	0/10
3a	407	Full	07/Oct/2010	00h54	UTC-6	71°00.480	125°59.850	CTD-Rosette \downarrow	395	5	13	13	-4.1	5.4	1008.2	96	0/10
3a	407	Full	07/Oct/2010	01h12	UTC-6	71°00.520	126°00.230	CTD-Rosette 个	396	10	0	12	-4.3	5.4	1008.3	96	0/10
3a	N/A	Mapping	07/Oct/2010	02h27	UTC-6	70°32.890	123°15.300	Bottom Mapping \downarrow	419	119	136	1	-1.4	4.9	1007.8	98	0/10
Leg 3b																	
3b	N/A	Mapping	08/Oct/2010	07h09	UTC-6	70°27.150	123°10.100	Bottom Mapping 个	479	12	328	10	-0.9	5.2	1007.7	96	0/10
3b	405	Basic	08/Oct/2010	08h10	UTC-6	70°38.149	123°02.376	CTD-Rosette \downarrow	612	317	332	12	-1.2	5.0	1007.6	97	0/10
3b	405	Basic	08/Oct/2010	08h36	UTC-6	70°38.130	123°02.591	CTD-Rosette 个	609	330	328	13	-0.9	5.3	1007.7	94	0/10
3b	405	Basic	08/Oct/2010	08h48	UTC-6	70°38.320	123°02.334	Horizontal Net Tow \downarrow	611	63	343	15	-0.9	5.3	1007.6	93	0/10
3b	405	Basic	08/Oct/2010	09h08	UTC-6	70°38.582	123°01.079	Horizontal Net Tow 个	611	65	341	15	-1.1	5.4	1007.6	92	0/10
3b	405	Basic	08/Oct/2010	09h20	UTC-6	70°38.947	123°00.538	Phytoplankton Net \downarrow	607	85	338	12	-1.1	5.4	1007.7	91	0/10
3b	405	Basic	08/Oct/2010	09h33	UTC-6	70°38.907	123°00.632	Phytoplankton Net 个	607	67	355	10	-1.1	5.4	1007.7	90	0/10
3b	405	Basic	08/Oct/2010	09h37	UTC-6	70°38.923	123°00.664	Vertical Net Tow \downarrow	609	78	345	10	-1.0	5.4	1007.7	91	0/10
3b	405	Basic	08/Oct/2010	10h18	UTC-6	70°38.780	123°01.453	Vertical Net Tow 个	610	78	337	12	-1.0	5.3	1008.2	92	0/10
3b	405	Basic	08/Oct/2010	10h19	UTC-6	70°38.769	123°01.506	PNF $\downarrow \uparrow$	609	68	340	9	-1.0	5.3	1008.2	92	0/10
3b	405	Basic	08/Oct/2010	10h23	UTC-6	70°38.750	123°01.612	Secchi Disk ${igstar} {igstar}$	609	89	340	10	-1.0	5.3	1008.3	93	0/10
3b	405	Basic	08/Oct/2010	10h40	UTC-6	70°38.790	123°01.910	CTD-Rosette \downarrow	605	330	343	8	-0.8	5.4	1008.5	90	0/10
3b	405	Basic	08/Oct/2010	11h13	UTC-6	70°38.780	123°02.270	CTD-Rosette 个	670	329	340	10	-0.7	5.5	1008.5	87	0/10
3b	405	Basic	08/Oct/2010	12h21	UTC-6	70°38.150	123°02.000	Agassiz Trawl \downarrow	614	123	333	7	-0.2	5.5	1008.7	89	0/10
3b	405	Basic	08/Oct/2010	12h39	UTC-6	70°37.810	123°00.240	Agassiz Trawl \downarrow	617	105	297	6	0.3	5.6	1008.9	82	0/10
3b	405	Basic	08/Oct/2010	12h46	UTC-6	70°37.820	122°59.710	Agassiz Trawl 个	615	82	321	8	-0.1	5.5	1009.0	82	0/10
3b	405	Basic	08/Oct/2010	13h35	UTC-6	70°38.250	123°02.220	Box Core ↓↑	609	327	318	6	0.0	5.3	1009.0	86	0/10
3b	405	Basic	08/Oct/2010	14h13	UTC-6	70°39.040	123°02.860	CTD-Rosette \downarrow	601	342	326	6	0.0	5.5	1009.2	85	0/10
3b	405	Basic	08/Oct/2010	14h53	UTC-6	70°39.130	123°03.510	CTD-Rosette 个	602	300	313	7	-0.5	5.6	1009.3	84	0/10
3b	405	Basic	09/Oct/2010	00h23	UTC-6	72°01.203	119°47.409	Weather Balloon	107	3	215	1	-1.5	2.8	1010.2	100	0/10

Leg	Station ID	Station Type	Local Date	Local	UTC to	Latitude (N)	Longitude	Activity	Depth	Heading	w	ind	Air	Water	Pr Baro	Hum	lce
-0				Time	local		(W)		(m)	(°)	Dir	Speed	(ºC)	(ºC)		(%)	
3b	450	Basic	09/Oct/2010	00h51	UTC-6	72°03.100	119°46.580	CTD-Rosette ↓	102	214	Calm	Calm	-1.8	2.7	1010.3	100	0/10
3b	450	Basic	09/Oct/2010	01h11	UTC-6	72°03.080	119°46.740	CTD-Rosette 个	100	233	Calm	Calm	-1.5	2.7	1010.4	100	0/10
3b	450	Basic	09/Oct/2010	01h40	UTC-6	72°02.930	119°46.550	Horizontal Net Tow 🗸	103	291	Calm	Calm	-1.8	2.7	1010.4	100	0/10
3b	450	Basic	09/Oct/2010	01h56	UTC-6	72°02.800	119°47.760	Horizontal Net Tow 个	104	197	Calm	Calm	-1.8	2.6	1010.4	100	0/10
3b	450	Basic	09/Oct/2010	02h07	UTC-6	72°03.090	119°46.730	Phytoplankton Net \downarrow	102	356	60	1	-1.9	2.6	1010.4	100	0/10
3b	450	Basic	09/Oct/2010	02h12	UTC-6	72°03.080	119°46.740	Phytoplankton Net 个	103	356	53	1	-1.8	2.5	1001.5	100	0/10
3b	450	Basic	09/Oct/2010	02h27	UTC-6	72°03.110	119°46.700	Vertical Net Tow \downarrow	102	22	51	1	-1.8	2.5	1010.5	100	0/10
3b	450	Basic	09/Oct/2010	02h35	UTC-6	72°03.090	119°46.760	Vertical Net Tow 个	102	42	48	1	-1.9	2.5	1010.6	100	0/10
3b	450	Basic	09/Oct/2010	02h59	UTC-6	72°03.150	119°46.770	Box Core $\downarrow \uparrow$	100	6	59	4	-1.9	2.5	1010.6	100	0/10
3b	450	Basic	09/Oct/2010	03h36	UTC-6	72°02.980	119°46.190	Agassiz Trawl 🗸	102	87	4	6	-2.2	2.5	1010.6	100	0/10
3b	450	Basic	09/Oct/2010	03h41	UTC-6	72°03.000	119°45.790	Agassiz Trawl 个	101	68	0	6	-2.2	2.5	1010.6	100	0/10
3b	308	Basic	10/Oct/2010	18h07	UTC-6	74°05.210	108°24.810	PNF \downarrow	564	129	137	18	-4.8	1.4	1010.6	94	0/10
3b	308	Basic	10/Oct/2010	18h12	UTC-6	74°05.240	108°24.830	PNF 个	511	118	134	16	-4.8	1.4	1019.3	95	0/10
3b	308	Basic	10/Oct/2010	18h12	UTC-6	74°05.250	108°24.820	Secchi Disk \downarrow	510	118	130	17	-4.7	1.4	1019.3	95	0/10
3b	308	Basic	10/Oct/2010	18h15	UTC-6	74°05.260	108°24.810	Secchi Disk 个	510	124	131	16	-4.7	1.4	1019.3	95	0/10
3b	MS01-10	Mooring	10/Oct/2010	19h03	UTC-6	74°05.590	108°24.790	Mooring MS01-10 Deployed	524	132	132	18	-4.4	3.6	1018.9	97	6/10
3b	MS01-10	Mooring	10/Oct/2010	19h33	UTC-6	74°05.760	108.24.794	Mooring MS01-10 Deployed (end)	528	131	129	19	-4.4	4.6	1018.7	99	6/10
3b	308	Full	10/Oct/2010	20h15	UTC-6	74°06.177	108°24.698	CTD-Rosette ↓	544	113	115	14	-4.1	5.1	1018.5	99	7/10
3b	308	Full	10/Oct/2010	20h38	UTC-6	74°06.296	108°22.755	CTD-Rosette 个	541	112	120	14	-4.3	4.5	1018.3	99	7/10
3b	308	Full	10/Oct/2010	21h00	UTC-6	74°06.352	1018°25.260	Phytoplankton Net \downarrow	541	131	128	17	-3.4	5.8	1017.9	99	7/10
3b	308	Full	10/Oct/2010	21h05	UTC-6	74°06.377	108°25.353	Phytoplankton Net 个	543	131	121	16	-3.9	5.8	1017.9	99	7/10
3b	308	Full	10/Oct/2010	21h25	UTC-6	74°06.463	108°25.371	Vertical Net Tow \downarrow	555	137	129	16	-3.7	4.3	1017.7	99	7/10
3b	308	Full	10/Oct/2010	22h00	UTC-6	74°06.711	108°25.677	Vertical Net Tow 个	560	138	147	24	-3.2	5.2	1017.1	99	7/10
3b	308	Full	10/Oct/2010	22h22	UTC-6	74°06.860	108°25.898	CTD-Rosette ↓	555	128	138	17	-3.1	5.2	1017.6	99	7/10
3b	308	Full	10/Oct/2010	22h50	UTC-6	74°07.058	108°26.260	CTD-Rosette 个	555	127	129	18	-3.3	6.5	1017.4	99	7/10
3b	308	Full	10/Oct/2010	23h25	UTC-6	74°07.273	108°26.684	Box Core $\downarrow \uparrow$	558	130	128	16	-3.2	6.8	1017.1	99	7/10
3b	308	Full	11/Oct/2010	11h12	UTC-6	74°05.946	107°17.744	On Ice Sampling \downarrow	571	328	90	21	-3.2	2.3	1010.2	99	9+/10
3b	308	Full	11/Oct/2010	11h42	UTC-6	74°04.946	107°17.744	On Ice Sampling 个	571	328	92	17	-3.5	2.4	1009.6	99	9+/10
3b	308	Full	11/Oct/2010	13h05	UTC-6	74°00.450	107°07.770	Weather Balloon	476	158	86	27	-3.6	2.1	1007.4	99	6/10
3b	304	Full	12/Oct/2010	15h10	UTC-6	74°15.060	091°31.040	PNF \downarrow	315	112	104	27	-2.4	3.0	1003.7	82	5/10

Leg	Station ID	Station Type	Local Date	Local	UTC to	Latitude (N)	Longitude	Activity	Depth	Heading	w	ind	Air	Water	Pr Baro	Hum	lce
0				Time	local		(W)	· · · · · · · · · · · · · · · · · · ·	(m)	(°)	Dir	Speed	(ºC)	(ºC)		(%)	
3b	304	Full	12/Oct/2010	15h14	UTC-6	74°15.080	091°31.010	PNF 个	316	110	105	24	-2.4	3.0	1003.7	82	5/10
3b	304	Full	12/Oct/2010	15h15	UTC-6	74°15.110	091°31.010	Secchi Disk 🗸	317	110	106	25	-2.5	3.6	1003.5	82	5/10
3b	304	Full	12/Oct/2010	15h17	UTC-6	74°15.110	091°31.020	Secchi Disk 个	317	110	106	25	-2.5	3.6	1003.5	82	5/10
3b	304	Full	12/Oct/2010	15h19	UTC-5	74°15.110	091°31.020	CTD-Rosette ↓	317	110	106	25	-2.5	3.6	1003.5	82	5/10
3b	304	Full	12/Oct/2010	15h47	UTC-5	74°15.150	091°31.040	CTD-Rosette 个	318	120	104	27	-2.5	5.2	1003.4	79	5/10
3b	304	Full	12/Oct/2010	16h10	UTC-5	74°13.160	091°29.460	Horizontal Net Tow 🗸	318	145	110	20	-2.5	5.9	1003.5	78	5/10
3b	304	Full	12/Oct/2010	16h38	UTC-5	74°12.810	091°28.640	Horizontal Net Tow 个	305	145	110	23	-2.5	5.9	1003.5	78	5/10
3b	304	Full	12/Oct/2010	16h43	UTC-5	74°12.760	091°29.090	Phytoplankton Net \downarrow	307	112	112	23	-2.6	6.0	1004.3	79	2/10
3b	304	Full	12/Oct/2010	16h49	UTC-5	74°12.790	091°29.220	Phytoplankton Net 个	307	110	110	20	-2.6	6.1	1004.4	79	2/10
3b	304	Full	12/Oct/2010	17h00	UTC-5	74°12.820	091°29.510	Vertical Net Tow \downarrow	305	109	92	18	-2.6	6.1	1004.4	79	2/10
3b	304	Full	12/Oct/2010	17h22	UTC-5	74°12.860	091°29.940	Vertical Net Tow 个	307	116	110	24	-2.7	6.2	1004.0	78	2/10
3b	304	Full	12/Oct/2010	17h34	UTC-5	74°12.920	091°30.130	CTD-Rosette ↓	307	91	110	22	-2.6	6.3	1003.7	78	2/10
3b	304	Full	12/Oct/2010	17h51	UTC-5	74°12.970	091°30.430	CTD-Rosette 个	307	114	112	22	-2.5	6.2	1003.6	77	2/10
3b	304	Full	12/Oct/2010	18h13	UTC-5	74°13.040	091°30.970	Box Core ↓	309	119	110	24	-2.6	6.2	1003.5	77	0/10
3b	304	Full	12/Oct/2010	18h20	UTC-5	74°13.080	091°31.140	Box Core (bottom)	309	127	110	25	-2.6	6.2	1003.5	77	0/10
3b	304	Full	12/Oct/2010	18h28	UTC-5	74°13.040	091°31.220	Box Core ↑	310	124	110	23	-2.6	6.2	1003.5	77	0/10
3b	304	Full	12/Oct/2010	18h47	UTC-5	74°13.510	091°33.870	Agassiz Trawl 🗸	305	135	115	30	-2.6	6.0	1002.5	76	1/10
3b	304	Full	12/Oct/2010	19h25	UTC-5	74°12.762	091°35.564	Agassiz Trawl 个	315	140	130	21	-3.0	5.5	1003.4	81	2/10
3b	304	Full	12/Oct/2010	19h00	UTC-5	74°13.302	091°33.300	Agassiz Trawl 🗸	305	130	117	30	-2.6	6.0	1002.6	76	3/10
3b	304	Full	12/Oct/2010	19h04	UTC-5	74°13.213	091°32.991	Agassiz Trawl 个	305	130	116	32	-2.6	6.0	1002.6	76	1/10
3b	304	Full	12/Oct/2010	20h20	UTC-5	74°13.100	091°50.110	Bottom Mapping \downarrow	239	260	116	25	-3.1	4.5	1003.6	76	3/10
3b	304	Full	13/Oct/2010	07h50	UTC-5	74°07.300	091°41.700	Bottom Mapping 个	168	80	126	16	-2.6	2.9	1003.2	80	1/10
3b	304	Full	13/Oct/2010	13h00	UTC-5	74°04.640	088°00.840	Weather Balloon	420	96	80	24	-4.0	3.0	1003.6	99	2/10
3b	324	Nutrient	14/Oct/2010	12h29	UTC-4	73°52.590	080°10.440	CTD-Rosette ↓	797	106	10	99	-3.0	2.9	1008.8	99	2/10
3b	324	Nutrient	14/Oct/2010	13h17	UTC-4	73°53.070	080°04.590	CTD-Rosette 个	826	71	6	96	-3.0	2.9	1004.3	99	2/10
3b	323	Basic	14/Oct/2010	15h41	UTC-4	76°11.260	079°46.540	PNF \downarrow	778	67	8	60	-3.1	2.8	1010.3	99	3/10
3b	323	Basic	14/Oct/2010	15h45	UTC-4	74°11.200	079°31.490	PNF 个	781	61	9	51	-3.1	2.8	1010.3	99	3/10
3b	323	Basic	14/Oct/2010	15h49	UTC-4	74°11.240	079°46.530	Secchi Disk $\downarrow \uparrow$	779	49	9	60	-3.2	2.8	1010.4	99	3/10
3b	323	Basic	14/Oct/2010	15h53	UTC-4	74°11.240	079°46.530	Water Sampling ${f ar {f \uparrow}}$	779	49	9	60	-3.2	2.8	1010.4	99	3/10
3b	323	Basic	14/Oct/2010	15h58	UTC-4	74°11.230	079°46.520	CTD-Rosette \downarrow	779	45	9	60	-3.1	2.7	1010.4	99	3/10

Leg	Station ID	Station Type	Local Date	Local	UTC to	Latitude (N)	Longitude	Activity	Depth	Heading	w	ind	Air	Water	Pr Baro	Hum	lce
8		otation type		Time	local		(W)	· · · · · · · · · · · · · · · · · · ·	(m)	(°)	Dir	Speed	(ºC)	(ºC)		(%)	
3b	323	Basic	14/Oct/2010	16h41	UTC-4	74°11.310	079°46.570	CTD-Rosette 个	779	26	8	60	-3.1	2.6	1010.4	99	3/10
3b	323	Basic	14/Oct/2010	17h42	UTC-4	74°11.810	079°11.490	Horizontal Net Tow \downarrow	779	50	9	60	-3.2	2.8	1010.4	99	3/10
3b	323	Basic	14/Oct/2010	17h56	UTC-4	74°11.490	079°44.740	Horizontal Net Tow 个	780	52	9	60	-3.2	2.8	1010.4	99	3/10
3b	323	Basic	14/Oct/2010	18h11	UTC-4	74°11.990	079°43.330	Phytoplankton Net \downarrow	780	225	8	50	-3.2	2.7	1010.4	99	3/10
3b	323	Basic	14/Oct/2010	18h15	UTC-4	74°11.850	079°44.300	Phytoplankton Net 个	779	230	8	40	-3.3	2.7	1010.4	99	3/10
3b	323	Basic	14/Oct/2010	18h20	UTC-4	74°11.970	079°43.330	Vertical Net Tow \downarrow	779	50	8	40	-3.3	2.6	1010.4	99	3/10
3b	323	Basic	14/Oct/2010	19h12	UTC-4	74°11.860	079°44.260	Vertical Net Tow 个	782	50	9	30	-3.3	2.5	1010.4	99	3/10
3b	323	Basic	14/Oct/2010	19h26	UTC-4	74°11.890	079°44.570	CTD-Rosette \downarrow	782	23	8	40	-3.3	2.5	1010.4	99	3/10
3b	323	Basic	14/Oct/2010	19h55	UTC-4	74°11.950	079°45.198	CTD-Rosette 个	783	48	8	30	-3.3	2.5	1010.4	98	3/10
3b	323	Basic	14/Oct/2010	20h18	UTC-4	74°20.990	079°75.270	Box Core ↓	783	40	8	38	-3.3	2.5	1010.4	98	3/10
3b	323	Basic	14/Oct/2010	20h35	UTC-4	74°12.020	079°45.760	Box Core (bottom)	783	41	7	48	-3.2	2.4	1010.4	98	7/10
3b	323	Basic	14/Oct/2010	21h10	UTC-4	74°12.570	079°44.030	Agassiz Trawl \downarrow	785	55	8	42	-3.2	3.2	1010.4	98	7/10
3b	323	Basic	14/Oct/2010	22h15	UTC-4	74°11.820	079°41.600	Agassiz Trawl 个	780	227	9	33	-3.0	2.2	1010.4	96	7/10
3b	115	Full	15/Oct/2010	19h26	UTC-4	76°20.000	071°11.130	CTD-Rosette \downarrow	655	110	18	130	-1.2	3.2	1008.5	99	Icebergs
3b	115	Full	15/Oct/2010	20h06	UTC-4	76°20.260	071°11.040	CTD-Rosette 个	658	117	17	127	-1.3	3.1	1008.9	99	Icebergs
3b	115	Full	15/Oct/2010	20h20	UTC-4	76°20.380	071°10.870	Horizontal Net Tow \downarrow	655	145	21	123	-1.3	3.0	1008.9	98	Icebergs
3b	115	Full	15/Oct/2010	20h36	UTC-4	76°20.090	071°09.700	Horizontal Net Tow 个	650	93	19	134	-1.4	3.0	1008.8	98	Icebergs
3b	115	Full	15/Oct/2010	20h48	UTC-4	76°20.260	071°09.500	Phytoplankton Net \downarrow	640	122	19	126	-1.4	3.0	1008.9	98	Icebergs
3b	115	Full	15/Oct/2010	20h54	UTC-4	76°20.370	071°09.530	Phytoplankton Net 个	635	128	19	127	-1.6	3.0	1009.0	99	Icebergs
3b	115	Full	15/Oct/2010	21h04	UTC-4	76°20.420	071°09.690	Vertical Net Tow \downarrow	639	131	17	127	-1.6	3.2	1009.0	99	Icebergs
3b	115	Full	15/Oct/2010	21h46	UTC-4	76°20.580	071°10.970	Vertical Net Tow 个	657	120	20	126	-1.6	3.9	1009.0	99	Icebergs
3b	115	Full	15/Oct/2010	21h58	UTC-4	76°20.680	071°10.880	CTD-Rosette ↓	651	117	20	125	-1.6	3.9	1009.1	99	Icebergs
3b	115	Full	15/Oct/2010	22h25	UTC-4	76°20.880	071°11.450	CTD-Rosette 个	653	132	19	121	-1.6	3.7	1009.2	99	Icebergs
3b	115	Full	15/Oct/2010	23h05	UTC-4	76°21.230	071°11.810	Box Core $\downarrow \uparrow$	644	140	22	123	-1.5	3.3	1009.4	99	Icebergs
3b	115	Full	16/Oct/2010	00h12	UTC-4	76°21.600	071°15.600	Agassiz Trawl 🗸	655	217	20	126	-2.1	3.4	1009.4	99	Icebergs
3b	115	Full	16/Oct/2010	00h17	UTC-4	76°21.600	071°16.200	Agassiz Trawl 个	652	213	22	124	-2.1	3.0	1009.4	99	Icebergs
3b	114	CTD	16/Oct/2010	02h32	UTC-4	76°19.430	071°46.470	CTD \downarrow	633	126	18	115	-2.3	3.9	1009.8	99	Icebergs
3b	114	CTD	16/Oct/2010	02h53	UTC-4	76°19.640	071°46.940	CTD 个	636	119	119	22	-2.1	6.2	1009.9	99	Icebergs
3b	113	Nutrient	16/Oct/2010	04h00	UTC-4	76°19.580	072°12.930	CTD-Rosette \downarrow	561	105	110	22	-1.9	5.3	1009.9	99	Icebergs
3b	113	Nutrient	16/Oct/2010	04h30	UTC-4	76°19.870	072°12.830	CTD-Rosette 个	563	101	130	23	-2.1	6.5	1009.8	99	Icebergs

Leg	Station ID	Station Type	Local Date	Local	UTC to	Latitude (N)	Longitude	Activity	Depth	Heading	w	ind	Air	Water	Pr Baro	Hum	lce
8				Time	local		(W)	······,	(m)	(°)	Dir	Speed	(ºC)	(ºC)		(%)	
3b	112	CTD	16/Oct/2010	05h17	UTC-4	76°19.050	072°41.940	CTD \downarrow	568	110	110	17	-2.3	4.3	1009.9	99	Icebergs
3b	112	CTD	16/Oct/2010	05h37	UTC-4	76°19.150	072°42.260	CTD ↑	573	109	110	20	-2.1	6.2	1009.8	99	Icebergs
3b	111	Basic	16/Oct/2010	07h14	UTC-4	76°18.530	073°15.440	CTD-Rosette \downarrow	608	150	140	10	-2.1	2.7	1010.4	99	Icebergs
3b	111	Basic	16/Oct/2010	07h39	UTC-4	76°18.520	073°15.060	CTD-Rosette 个	605	102	140	10	-2.0	2.8	1010.5	99	Icebergs
3b	111	Basic	16/Oct/2010	08h05	UTC-4	76°18.320	073°15.040	Horizontal Net Tow \downarrow	588	215	130	11	-2.0	2.7	1010.6	99	Icebergs
3b	111	Basic	16/Oct/2010	08h25	UTC-4	76°17.910	073°16.630	Horizontal Net Tow 个	571	212	134	12	-2.2	3.0	1010.7	99	Icebergs
3b	111	Basic	16/Oct/2010	08h35	UTC-4	76°17.700	073°16.800	Phytoplankton Net \downarrow	568	144	133	10	-2.2	3.1	1010.8	99	Icebergs
3b	111	Basic	16/Oct/2010	08h40	UTC-4	76°17.670	073°16.800	Phytoplankton Net 个	568	140	131	9	-2.1	3.1	1010.8	99	Icebergs
3b	111	Basic	16/Oct/2010	08h52	UTC-4	76°17.660	073°16.920	Vertical Net Tow \downarrow	568	139	130	9	-2.2	3.2	1010.9	99	Icebergs
3b	111	Basic	16/Oct/2010	09h27	UTC-4	76°17.580	073°16.530	Vertical Net Tow 个	566	130	132	8	-2.2	3.2	1011.0	99	Icebergs
3b	111	Basic	16/Oct/2010	09h41	UTC-4	76°17.560	073°16.520	CTD-Rosette \downarrow	569	126	129	7	-2.3	3.0	1011.1	99	Icebergs
3b	111	Basic	16/Oct/2010	10h11	UTC-4	76°17.480	073°16.330	CTD-Rosette 个	567	155	113	8	-2.3	2.8	1011.1	99	Icebergs
3b	111	Basic	16/Oct/2010	10h40	UTC-4	76°17.320	073°15.730	Box Core $\downarrow \uparrow$	568	125	121	8	-2.3	2.7	1011.2	99	Icebergs
3b	111	Basic	16/Oct/2010	11h27	UTC-4	76°17.060	073°17.800	Agassiz Trawl \downarrow	572	240	136	6	-2.5	2.5	1011.2	99	Icebergs
3b	111	Basic	16/Oct/2010	11h37	UTC-4	76°17.020	073°18.250	Agassiz Trawl 个	568	240	137	6	-2.5	2.5	1011.2	99	Icebergs
3b	110	Nutrient	16/Oct/2010	13h15	UTC-4	76°18.120	073°36.870	CTD-Rosette \downarrow	548	139	125	2	-2.2	3.1	1011.4	99	Icebergs
3b	110	Nutrient	16/Oct/2010	13h42	UTC-4	76°18.160	073°36.520	CTD-Rosette 个	555	155	78	2	-2.6	3.2	1011.5	99	Icebergs
3b	109	CTD	16/Oct/2010	15h11	UTC-4	76°15.960	074°07.410	PNF \downarrow	448	30	58	4	-2.7	3.2	1011.7	99	Icebergs
3b	109	CTD	16/Oct/2010	15h14	UTC-4	76°15.970	074°07.360	PNF 个	448	30	59	4	-2.7	3.2	1011.7	99	Icebergs
3b	109	CTD	16/Oct/2010	15h16	UTC-4	76°15.970	074°07.340	Secchi Disk \downarrow	450	35	59	4	-2.7	3.2	1011.7	99	Icebergs
3b	109	CTD	16/Oct/2010	15h18	UTC-4	76°15.970	074°07.300	Secchi Disk 个	452	39	52	4	-2.7	3.2	1011.7	99	Icebergs
3b	109	CTD	16/Oct/2010	15h26	UTC-4	76°15.960	074°07.250	PNF \downarrow	452	31	51	4	-2.7	3.1	1011.8	99	Icebergs
3b	109	CTD	16/Oct/2010	15h27	UTC-4	76°15.960	074°07.190	PNF 个	452	42	41	4	-2.7	3.1	1011.8	99	Icebergs
3b	109	CTD	16/Oct/2010	15h33	UTC-4	76°15.950	074°07.080	CTD-Rosette \downarrow	448	45	40	5	-2.7	3.1	1011.8	99	Icebergs
3b	109	CTD	16/Oct/2010	15h53	UTC-4	76°15.950	074°06.850	CTD-Rosette 个	448	10	30	5	-2.7	3.1	1011.9	99	Icebergs
3b	108	Full	16/Oct/2010	17h32	UTC-4	76°16.220	074°43.430	CTD-Rosette \downarrow	458	34	20	6	-2.6	3.1	1012.2	99	Icebergs
3b	108	Full	16/Oct/2010	18h05	UTC-4	76°16.050	074°44.540	CTD-Rosette 个	452	24	60	7	-2.2	3.2	1012.3	99	Icebergs
3b	108	Full	16/Oct/2010	18h24	UTC-4	76°15.578	074°50.752	Horizontal Net Tow \downarrow	470	42	56	7	-2.3	3.3	1012.4	99	Icebergs
3b	108	Full	16/Oct/2010	18h46	UTC-4	76°15.610	074°50.080	Horizontal Net Tow 个	470	65	50	8	-2.3	3.3	1012.3	99	Icebergs
3b	108	Full	16/Oct/2010	19h01	UTC-4	76°15.270	074°47.850	Phytoplankton Net 个	478	60	50	9	-2.3	3.3	1012.3	99	9/10

Leg	Station ID	Station Type	Local Date	Local	UTC to	Latitude (N)	Longitude	Activity	Depth	Heading	w	ind	Air	Water	Pr Baro	Hum	lce
-05	Station is	otation type	Lotar Bute	Time	local	Lutitude (II)	(W)	, centry	(m)	(°)	Dir	Speed	(ºC)	(ºC)		(%)	lec
3b	108	Full	16/Oct/2010	19h55	UTC-4	76°15.880	074°45.300	Vertical Net Tow \downarrow	465	58	56	8	-2.2	3.4	1012.7	99	9/10
3b	108	Full	16/Oct/2010	20h25	UTC-4	76°15.590	074°46.180	Vertical Net Tow 个	466	56	36	7	-2.1	3.4	1012.8	99	9/10
3b	108	Full	16/Oct/2010	20h10	UTC-4	76°15.740	074°45.680	Weather Balloon	464	53	53	8	-2.2	3.4	1012.7	99	9/10
3b	108	Full	16/Oct/2010	20h39	UTC-4	76°15.430	074°46.760	CTD-Rosette \downarrow	465	36	35	7	-2.2	3.4	1012.8	99	9/10
3b	108	Full	16/Oct/2010	20h58	UTC-4	76°15.250	074°47.640	CTD-Rosette 个	462	43	32	7	-2.2	3.4	1012.9	99	9/10
3b	108	Full	16/Oct/2010	21h35	UTC-4	76°14.030	074°55.820	Box Core \downarrow \uparrow	435	35	14	8	-2.3	3.5	1012.8	99	9/10
3b	108	Full	16/Oct/2010	22h23	UTC-4	76°13.700	074°55.550	Agassiz Trawl \downarrow	434	55	4	9	-2.3	3.5	1012.9	99	9/10
3b	108	Full	16/Oct/2010	22h29	UTC-4	76°13.750	074°55.070	Agassiz Trawl 个	434	55	5	9	-2.3	3.5	1012.9	99	9/10
3b	107	Nutrient	17/Oct/2010	00h56	UTC-4	76°16.440	075°01.650	CTD-Rosette \downarrow	426	33	2	10	-3.6	3.4	1013.0	99	9/10
3b	107	Nutrient	17/Oct/2010	01h24	UTC-4	76°16.580	075°02.650	CTD-Rosette 个	428	33	7	16	-3.8	3.4	1013.1	99	9/10
3b	106	CTD	17/Oct/2010	02h20	UTC-4	76°18.290	075°22.710	CTD \downarrow	384	308	20	18	-4.1	3.5	1013.6	97	9/10
3b	106	CTD	17/Oct/2010	02h33	UTC-4	76°13.520	075°29.260	СТД ↑	382	307	16	15	-4.1	3.5	1013.7	97	9/10
3b	105	Basic	17/Oct/2010	10h10	UTC-4	76°20.580	075°48.350	PNF $\downarrow \uparrow$	330	342	350	11	-6.1	4.0	1016.0	90	9+/10
3b	105	Basic	17/Oct/2010	10h17	UTC-4	76°20.550	075°48.510	Secchi Disk $\downarrow \uparrow$	340	2	348	12	-6.1	4.0	1016.9	90	9+/10
3b	105	Basic	17/Oct/2010	10h21	UTC-4	76°20.520	075°48.570	CTD-Rosette ↓	339	356	346	12	-6.2	4.0	1016.2	90	9+/10
3b	105	Basic	17/Oct/2010	N/A	UTC-4	N/A	N/A	CTD-Rosette \uparrow (canceled)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
3b	105	Basic	17/Oct/2010	10h37	UTC-4	76°20.310	075°48.900	CTD-Rosette ↓	336	350	350	13	-6.3	4.0	1016.3	90	9+/10
3b	105	Basic	17/Oct/2010	11h00	UTC-4	76°20.020	075°49.520	CTD-Rosette 个	341	350	346	12	-6.4	4.1	1016.4	91	9+/10
3b	105	Basic	17/Oct/2010	11h17	UTC-4	76°19.714	075°51.317	Horizontal Net Tow \downarrow	328	60	348	16	-6.4	4.0	1016.5	91	9+/10
3b	105	Basic	17/Oct/2010	11h30	UTC-4	76°19.700	075°50.130	Horizontal Net Tow 个	332	83	355	12	-6.7	3.8	1016.6	92	9+/10
3b	105	Basic	17/Oct/2010	11h40	UTC-4	76°19.600	075°50.170	Phytoplankton Net \downarrow	336	347	348	10	-6.6	3.7	1016.7	92	9+/10
3b	105	Basic	17/Oct/2010	11h45	UTC-4	76°19.540	075°50.240	Phytoplankton Net 个	330	351	343	12	-6.6	3.7	1016.7	92	9+/10
3b	105	Basic	17/Oct/2010	11h50	UTC-4	76°19.490	075°50.320	Vertical Net Tow \downarrow	330	350	346	11	-6.7	3.6	1016.9	93	9+/10
3b	105	Basic	17/Oct/2010	12h10	UTC-4	76°16.510	075°58.840	Vertical Net Tow \uparrow (canceled)	330	358	339	13	-7.1	3.4	1016.9	93	9+/10
3b	105	Basic	17/Oct/2010	12h23	UTC-4	76°19.150	075°50.720	Vertical Net Tow \downarrow	330	353	336	12	-7.2	3.4	1017.0	92	9+/10
3b	105	Basic	17/Oct/2010	12h42	UTC-4	76°18.940	075°50.800	Vertical Net Tow 个	327	350	335	14	-7.6	3.3	1017.2	92	9+/10
3b	105	Basic	17/Oct/2010	13h08	UTC-4	76°16.120	075°59.230	CTD-Rosette \downarrow	327	328	332	11	-7.7	3.2	1017.3	91	9+/10
3b	105	Basic	17/Oct/2010	13h23	UTC-4	76°18.760	075°51.370	CTD-Rosette 个	331	317	343	10	-7.4	3.1	1017.5	91	9+/10
3b	105	Basic	17/Oct/2010	14h42	UTC-4	76°15.280	075°55.820	Box Core ${\bf ar ar {ar {ar {ar {ar {ar {ar {$	337	354	335	9	-7.0	3.1	1018.2	93	9+/10
3b	105	Basic	17/Oct/2010	15h00	UTC-4	76°15.130	075°55.880	Box Core ↓↑	338	352	331	13	-6.9	3.4	1018.4	94	9+/10
3b	105	Basic	17/Oct/2010	15h41	UTC-4	76°17.140	075°54.970	Agassiz Trawl ↓	363	51	342	14	-7.3	3.6	1018.8	95	7/10

Leg	Station ID	Station Type	Local Date	Local	UTC to	Latitude (N)	Longitude	Activity	Depth	Heading	W	ind	Air	Water	Pr Baro	Hum	lce
-0		//		Time	local		(W)		(m)	(°)	Dir	Speed	(ºC)	(ºC)		(%)	
3b	105	Basic	17/Oct/2010	15h46	UTC-4	76°17.160	075°46.640	Agassiz Trawl 个	363	43	346	13	-7.3	3.6	1018.8	95	7/10
3b	105	Basic	17/Oct/2010	16h05	UTC-4	76°17.410	075°53.780	Agassiz Trawl (on board)	358	360	340	10	-7.1	3.3	1018.9	95	7/10
3b	104	CTD	17/Oct/2010	17h54	UTC-4	76°19.000	076°13.740	CTD-Rosette \downarrow	169	334	350	12	-8.4	3.3	1019.8	90	8/10
3b	104	CTD	17/Oct/2010	18h06	UTC-4	76°18.960	076°13.690	CTD-Rosette 个	175	338	340	14	-8.5	3.3	1019.9	88	8/10
3b	N/A	Mapping	19/Oct/2010	12h20	UTC-4	71°37.340	070°13.960	Bottom Mapping \downarrow	580	N/A	58	14	-2.2	3.6	1021.5	93	Bergy
3b	N/A	Mapping	19/Oct/2010	17h49	UTC-4	71°11.300	068°03.900	Bottom Mapping 个	555	126	58	17	-1.2	4.5	1018.5	94	Bergy
3b	N/A	Mapping	21/Oct/2010	18h32	UTC-4	62°31.990	066°11.750	Bottom Mapping \downarrow	380	290	111	13	1.7	5.5	1010.3	99	0/10
3b	N/A	Mapping	22/Oct/2010	05h30	UTC-4	63°06.200	067°30.700	Bottom Mapping 个	591	275	122	28	2.6	5.4	1010.3	93	Bergy
Leg 3c																	
3c	N/A	Mapping	23/Oct/2010	18h30	UTC-4	59°10.800	063°15.000	Bottom Mapping \downarrow	80	190	Calm	Calm	2.1	5.9	1014.3	99	0/10
3c	N/A	Mapping	23/Oct/2010	21h15	UTC-4	59°06.700	063°23.450	Bottom Mapping 个	140	180	Calm	Calm	1.9	6.0	1014.1	98	0/10
3c	N/A	MVP	23/Oct/2010	21h30	UTC-4	59°06.560	063°23.280	MVP \downarrow	140	228	Calm	Calm	1.9	6.0	1014.1	98	0/10
3c	N/A	MVP	23/Oct/2010	23h55	UTC-4	58°59.290	063°53.500	MVP 个	55	170	336	5/10	2.4	5.7	1013.6	86	0/10
3c	600	Basic	24/Oct/2010	02h01	UTC-4	59°05.750	063°26.340	Horizontal Net Tow \downarrow	192	197	58	4	1.6	5.9	1013.2	94	0/10
3c	600	Basic	24/Oct/2010	02h16	UTC-4	59°05.350	063°26.330	Horizontal Net Tow 个	205	147	80	3	1.5	5.9	1013.3	95	0/10
3c	600	Basic	24/Oct/2010	02h36	UTC-4	59°05.270	063°26.240	Vertical Net Tow \downarrow	209	68	91	1	1.5	6.0	1013.2	94	0/10
3c	600	Basic	24/Oct/2010	02h48	UTC-4	59°05.280	063°26.200	Vertical Net Tow 个	209	76	Calm	Calm	1.6	6.0	1013.1	93	0/10
3c	600	Basic	24/Oct/2010	03h06	UTC-4	59°05.280	063°26.130	CTD-Rosette \downarrow	207	184	175	4	1.9	6.1	1013.0	93	0/10
3c	600	Basic	24/Oct/2010	03h30	UTC-4	59°05.230	063°26.130	CTD-Rosette 个	204	172	44	2	1.3	6.1	1013.0	94	0/10
3c	600	Basic	24/Oct/2010	04h33	UTC-4	59°05.370	063°25.870	Hydrobios \downarrow	204	45	70	5	1.6	6.2	1012.8	91	0/10
3c	600	Basic	24/Oct/2010	04h54	UTC-4	59°05.350	063°25.810	Hydrobios 个	205	41	60	7	1.3	6.1	1012.8	90	0/10
3c	600	Basic	24/Oct/2010	05h15	UTC-4	59°05.330	063°25.730	Box Core ↓	203	43	60	4	1.3	6.2	1012.8	90	0/10
3c	600	Basic	24/Oct/2010	05h24	UTC-4	59°05.300	063°25.730	Box Core 个	203	46	60	4	1.2	6.1	1012.9	90	0/10
3c	600	Basic	24/Oct/2010	05h40	UTC-4	59°05.080	063°26.500	Agassiz Trawl 🗸	207	80	60	5	1.3	6.1	1012.6	89	0/10
3c	600	Basic	24/Oct/2010	06h16	UTC-4	59°05.120	063°27.590	Agassiz Trawl 个	210	88	Calm	Calm	1.5	5.9	1012.6	89	0/10
3c	601	CTD	24/Oct/2010	08h33	UTC-4	59°03.160	063°36.510	Barge Deployed	168	115	30	2	1.4	6.0	1012.4	85	0/10
3c	601	CTD	24/Oct/2010	09h03	UTC-4	59°03.100	063°36.120	CTD ↓	170	108	Calm	Calm	1.6	6.0	1012.4	84	0/10
3c	601	CTD	24/Oct/2010	09h10	UTC-4	59°03.110	063°36.100	CTD ↑	170	118	Calm	Calm	1.8	6.0	1012.4	83	0/10
3c	602	Basic	24/Oct/2010	10h27	UTC-4	59°03.240	063°52.020	PNF $\downarrow \uparrow$	165	270	Calm	Calm	1.7	6.8	1012.2	87	0/10
3c	602	Basic	24/Oct/2010	10h37	UTC-4	59°03.240	063°52.010	Secchi Disk $\downarrow \uparrow$	165	271	Calm	Calm	2.0	5.8	1012.2	81	0/10

Leg	Station ID	Station Type	Local Date	Local	UTC to	Latitude (N)	Longitude	Activity	Depth	Heading	w	ind	Air	Water	Pr Baro	Hum	lce
	Station is	otation type	Local Bate	Time	local	Lutitude (II)	(W)		(m)	(°)	Dir	Speed	(ºC)	(ºC)		(%)	100
3c	602	Basic	24/Oct/2010	10h39	UTC-4	59°03.240	063°51.990	CTD-Rosette \downarrow	155	276	320	4	2.2	5.8	1012.1	79	0/10
3c	602	Basic	24/Oct/2010	11h00	UTC-4	59°03.210	063°51.960	CTD-Rosette 个	155	264	340	4	2.5	5.9	1011.9	79	0/10
3c	602	Basic	24/Oct/2010	11h27	UTC-4	59°03.199	063°49.550	Horizontal Net Tow \downarrow	161	320	Calm	Calm	2.6	5.9	N/A	76	0/10
3c	602	Basic	24/Oct/2010	11h43	UTC-4	59°03.380	063°50.830	Horizontal Net Tow 个	171	254	Calm	Calm	2.5	5.9	1011.8	76	0/10
3c	602	Basic	24/Oct/2010	12h48	UTC-4	59°03.250	063°51.970	Vertical Net Tow \downarrow	151	276	241	3	2.8	5.9	1011.3	74	0/10
3c	602	Basic	24/Oct/2010	12h58	UTC-4	59°03.260	063°51.960	Vertical Net Tow 个	151	275	196	2	2.7	6.0	1011.2	74	0/10
3c	602	Basic	24/Oct/2010	13h31	UTC-4	59°03.210	063°51.810	Hydrobios 🗸	152	191	213	3	2.8	6.0	1010.9	73	0/10
3c	602	Basic	24/Oct/2010	13h43	UTC-4	59°03.210	063°51.690	Hydrobios ↑	151	161	233	3	2.9	6.0	1010.8	72	0/10
3c	602	Basic	24/Oct/2010	14h05	UTC-4	59°03.220	063°51.700	Box Core $\downarrow \uparrow$	152	268	219	3	2.8	6.0	1010.9	72	0/10
3c	602	Basic	24/Oct/2010	14h39	UTC-4	59°03.550	063°50.630	Agassiz Trawl \downarrow	160	263	247	4	2.9	5.9	1010.7	72	0/10
3c	602	Basic	24/Oct/2010	14h44	UTC-4	59°03.520	063°50.880	Agassiz Trawl 个	160	254	277	1	2.9	5.9	1010.7	72	0/10
Зc	604	Nutrient	24/Oct/2010	17h24	UTC-4	58°59.880	063°53.580	CTD-Rosette \downarrow	60	33	350	11	2.8	5.8	1010.4	67	0/10
Зc	604	Nutrient	24/Oct/2010	17h33	UTC-4	58°59.880	063°53.590	CTD-Rosette 个	60	34	20	6	3.0	5.8	1010.4	65	0/10
3c	Nachvak Fjord	N/A	24/Oct/2010	19h27	UTC-4	59°06.230	063°24.340	Agassiz Trawl \downarrow	185	230	240	10	1.8	6.0	1009.5	80	0/10
3c	Nachvak Fjord	N/A	24/Oct/2010	19h50	UTC-4	59°06.010	063°25.210	Agassiz Trawl 个	188	250	240	10	1.8	6.0	1009.5	85	0/10
3c	617	Basic	25/Oct/2010	01h38	UTC-4	58°30.060	062°41.350	Horizontal Net Tow \downarrow	131	35	248	8	2.0	6.0	1008.1	76	0/10
3c	617	Basic	25/Oct/2010	01h46	UTC-4	58°30.250	062°41.110	Horizontal Net Tow 个	115	11	244	8	2.0	6.0	1008.1	76	0/10
3c	617	Basic	25/Oct/2010	02h17	UTC-4	58°30.000	062°41.210	Vertical Net Tow \downarrow	130	24	265	6	1.7	6.0	1007.9	77	0/10
3c	617	Basic	25/Oct/2010	02h26	UTC-4	58°29.990	062°41.100	Vertical Net Tow 个	130	7	268	5	1.5	6.0	1007.9	77	0/10
3c	617	Basic	25/Oct/2010	02h52	UTC-4	58°29.970	062°41.310	Hydrobios \checkmark	130	250	260	7	2.0	6.0	1007.8	75	0/10
Зc	617	Basic	25/Oct/2010	03h08	UTC-4	58°29.870	062°41.240	Hydrobios 个	130	226	264	7	2.0	6.0	1007.9	75	0/10
3c	617	Basic	25/Oct/2010	03h27	UTC-4	58°30.090	062°41.380	CTD-Rosette \downarrow	132	231	269	7	1.9	6.0	1007.8	75	0/10
3c	617	Basic	25/Oct/2010	03h46	UTC-4	58°29.940	062°41.250	CTD-Rosette 个	127	238	263	5	2.0	6.0	1007.7	75	0/10
3c	617	Basic	25/Oct/2010	04h32	UTC-4	58°30.140	062°40.900	Box Core ↓	135	335	265	6	2.0	6.1	1007.5	70	0/10
3c	617	Basic	25/Oct/2010	04h40	UTC-4	58°30.180	062°40.870	Box Core ↑	130	330	270	7	2.0	6.1	1007.5	70	0/10
3c	617	Basic	25/Oct/2010	05h19	UTC-4	58°30.080	062°42.180	Agassiz Trawl 🗸	134	76	275	6	2.2	6.1	1007.5	70	0/10
3c	617	Basic	25/Oct/2010	05h39	UTC-4	58°30.090	062°41.210	Agassiz Trawl 个	136	71	290	5	2.4	6.1	1007.5	69	0/10
3c	610	Nutrient	25/Oct/2010	06h37	UTC-4	58°31.200	062°50.310	CTD-Rosette \downarrow	124	335	20	4	1.9	6.0	1007.6	78	0/10
3c	610	Nutrient	25/Oct/2010	06h50	UTC-4	58°31.210	062°50.350	CTD-Rosette 个	127	352	350	3	1.9	6.0	1007.6	80	0/10
3c	N/A	Mapping	25/Oct/2010	07h38	UTC-4	58°29.770	062°54.490	Bottom Mapping \downarrow	62	20	0	4	1.9	5.9	1007.8	74	0/10

Leg	Station ID	Station Type	Local Date	Local	UTC to	Latitude (N)	Longitude	Activity	Depth	Heading	W	ind	Air	Water	Pr Baro	Hum	lce
8	00000012	otation type		Time	local		(W)		(m)	(°)	Dir	Speed	(ºC)	(ºC)		(%)	
3c	612	CTD	25/Oct/2010	09h24	UTC-4	58°28.290	062°59.200	CTD \downarrow	48	312	Calm	Calm	2.2	5.8	1008.1	75	0/10
3c	612	CTD	25/Oct/2010	09h28	UTC-4	58°28.120	062°59.250	CTD ↑	48	325	Calm	Calm	2.2	5.8	1005.8	75	0/10
3c	613	Nutrient	25/Oct/2010	10h26	UTC-4	58°29.030	063°13.110	CTD-Rosette \downarrow	255	268	232	5	2.6	5.7	1008.4	69	0/10
3c	613	Nutrient	25/Oct/2010	10h44	UTC-4	58°29.040	063°13.080	CTD-Rosette 个	255	228	Calm	Calm	2.7	5.7	1008.7	68	0/10
3c	613	Nutrient	25/Oct/2010	11h11	UTC-4	58°29.020	063°13.170	Box Core $\downarrow \uparrow$	255	250	Calm	Calm	3.1	5.7	1008.8	64	0/10
3c	613	Nutrient	25/Oct/2010	11h43	UTC-4	58°29.040	063°13.800	Agassiz Trawl 🗸	255	256	288	12	3.4	5.7	1008.7	61	0/10
3c	613	Nutrient	25/Oct/2010	11h47	UTC-4	58°29.000	063°13.930	Agassiz Trawl 个	255	247	288	10	3.4	5.7	1008.7	61	0/10
3c	614	CTD	25/Oct/2010	13h47	UTC-4	58°24.080	063°23.360	CTD \downarrow	93	231	6	2	3.8	5.5	1009.3	58	0/10
3c	614	CTD	25/Oct/2010	13h53	UTC-4	58°24.070	063°23.390	CTD 个	94	248	42	3	4.3	5.5	1009.4	59	0/10
3c	615	Basic	25/Oct/2010	14h45	UTC-4	58°19.180	063°32.450	PNF \downarrow	129	265	281	6	4.2	5.6	1009.8	58	0/10
3c	615	Basic	25/Oct/2010	14h49	UTC-4	58°19.180	063°32.450	PNF 个	135	255	246	7	4.2	5.6	1009.8	58	0/10
3c	615	Basic	25/Oct/2010	14h50	UTC-4	58°19.180	063°32.440	Secchi Disk 🗸	134	248	279	10	4.0	5.6	1009.9	58	0/10
3c	615	Basic	25/Oct/2010	14h51	UTC-4	58°19.180	063°32.440	Secchi Disk 个	128	234	284	11	4.0	5.6	1009.9	58	0/10
3c	615	Basic	25/Oct/2010	15h01	UTC-4	58°19.160	063°32.440	CTD-Rosette \downarrow	132	264	240	8	4.0	5.6	1009.9	58	0/10
3c	615	Basic	25/Oct/2010	15h17	UTC-4	58°19.170	063°32.430	CTD-Rosette 个	128	270	262	9	3.9	5.6	1010.0	58	0/10
3c	615	Basic	25/Oct/2010	15h43	UTC-4	58°19.540	063°31.920	Horizontal Net Tow \downarrow	131	58	309	10	4.1	5.7	1010.3	59	0/10
3c	615	Basic	25/Oct/2010	15h55	UTC-4	58°19.140	063°32.690	Horizontal Net Tow 个	135	37	310	14	3.8	5.7	1010.3	60	0/10
3c	615	Basic	25/Oct/2010	16h21	UTC-4	58°19.160	063°32.560	Vertical Net Tow \downarrow	133	294	290	7	3.7	5.7	1010.3	58	0/10
3c	615	Basic	25/Oct/2010	16h29	UTC-4	58°19.160	063°32.600	Vertical Net Tow 个	134	293	300	13	3.7	5.7	1010.5	57	0/10
3c	615	Basic	25/Oct/2010	16h41	UTC-4	58°19.160	063°32.590	Hydrobios \downarrow	134	298	292	15	3.5	5.7	1010.4	57	0/10
3c	615	Basic	25/Oct/2010	16h53	UTC-4	58°19.170	063°32.560	Hydrobios 个	134	296	295	14	3.4	5.8	1010.4	57	0/10
3c	615	Basic	25/Oct/2010	17h17	UTC-4	58°18.910	063°32.840	Agassiz Trawl 🗸	126	33	303	17	3.2	5.8	1010.4	52	0/10
3c	615	Basic	25/Oct/2010	17h23	UTC-4	58°18.980	063°32.640	Agassiz Trawl 个	127	353	306	20	3.0	5.8	1010.8	54	0/10
3c	615	Basic	25/Oct/2010	18h18	UTC-4	58°20.060	063°31.840	$MVP \downarrow$	141	32	301	28	3.2	5.6	1011.2	54	0/10
3c	615	Basic	25/Oct/2010	21h58	UTC-4	58°30.102	062°40.788	MVP 个	134	90	308	9	2.8	5.8	1012.2	67	0/10
3c	633	Basic	26/Oct/2010	08h40	UTC-4	57°36.310	061°54.310	PNF $\downarrow \uparrow$	170	257	282	10	1.9	6.4	1017.6	70	0/10
3c	633	Basic	26/Oct/2010	08h45	UTC-4	57°36.290	061°54.300	Secchi Disk $\downarrow \uparrow$	169	272	264	10	1.9	6.4	1017.6	70	0/10
Зc	633	Basic	26/Oct/2010	09h10	UTC-4	57°36.300	061°54.260	CTD-Rosette \downarrow	178	267	272	11	1.9	6.4	1017.8	69	0/10
3c	633	Basic	26/Oct/2010	09h34	UTC-4	57°36.230	061°54.240	CTD-Rosette 个	178	256	288	11	2.6	6.5	1018.0	66	0/10
3c	633	Basic	26/Oct/2010	09h54	UTC-4	57°36.250	061°52.820	Horizontal Net Tow \downarrow	149	320	280	11	3.0	6.5	1018.2	67	0/10

Leg	Station ID	Station Type	Local Date	Local	UTC to	Latitude (N)	Longitude	Activity	Depth	Heading	w	ind	Air	Water	Pr Baro	Hum	lce
8	00000012	oution type		Time	local		(W)	· · · · · · · · · · · · · · · · · · ·	(m)	(°)	Dir	Speed	(ºC)	(ºC)		(%)	
3c	633	Basic	26/Oct/2010	10h08	UTC-4	57°36.550	061°53.300	Horizontal Net Tow 个	185	306	299	17	3.0	6.5	1018.2	66	0/10
3c	633	Basic	26/Oct/2010	10h30	UTC-4	57°36.450	061°53.930	Vertical Net Tow \downarrow	192	343	306	20	3.2	6.5	1018.2	62	0/10
3c	633	Basic	26/Oct/2010	10h40	UTC-4	57°36.470	061°53.810	Vertical Net Tow 个	192	323	306	18	3.2	6.5	1018.2	62	0/10
3c	633	Basic	26/Oct/2010	10h54	UTC-4	57°36.430	061°53.770	Hydrobios 🗸	186	315	311	17	3.4	6.5	1018.3	61	0/10
3c	633	Basic	26/Oct/2010	11h09	UTC-4	57°36.390	061°53.730	Hydrobios 个	184	312	305	18	3.9	6.5	1018.4	60	0/10
3c	633	Basic	26/Oct/2010	12h07	UTC-4	57°36.390	061°53.620	Box Core $\downarrow \uparrow$	176	330	316	14	3.8	6.6	1018.7	59	0/10
3c	633	Basic	26/Oct/2010	12h37	UTC-4	57°36.250	061°53.890	Agassiz Trawl 🗸	176	45	308	17	3.7	6.6	1018.9	62	0/10
3c	633	Basic	26/Oct/2010	12h41	UTC-4	57°36.270	061°53.720	Agassiz Trawl 个	175	43	309	14	3.5	6.6	1019.0	63	0/10
3c	633	Basic	26/Oct/2010	N/A	UTC-4	N/A	N/A	Agassiz Trawl (canceled)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0/10
3c	632	Nutrient	26/Oct/2010	14h15	UTC-4	57°34.100	062°03.100	CTD-Rosette ↓	83	328	324	12	5.2	6.5	1019.9	52	0/10
3c	632	Nutrient	26/Oct/2010	14h27	UTC-4	57°34.100	062°03.090	CTD-Rosette 个	83	309	332	16	4.3	6.5	1019.9	54	0/10
3c	632	Nutrient	26/Oct/2010	14h46	UTC-4	57°34.110	062°03.140	Box Core $\downarrow \uparrow$	83	317	323	11	4.6	6.5	1020.1	54	0/10
3c	632	Nutrient	26/Oct/2010	15h09	UTC-4	57°34.270	062°03.170	Agassiz Trawl 🗸	86	21	313	15	4.4	6.5	1020.5	53	0/10
3c	632	Nutrient	26/Oct/2010	15h13	UTC-4	57°34.340	062°03.060	Agassiz Trawl 个	87	23	298	13	4.4	6.5	1020.5	55	0/10
3c	631	Nutrient	26/Oct/2010	16h37	UTC-4	57°29.660	062°11.400	CTD-Rosette ↓	87	261	270	10	2.9	6.3	1021.3	60	0/10
Зc	631	Nutrient	26/Oct/2010	16h48	UTC-4	57°29.610	062°11.440	CTD-Rosette 个	85	255	285	10	2.7	6.2	1021.7	60	0/10
Зc	630	Basic	26/Oct/2010	18h09	UTC-4	57°28.330	062°26.810	CTD-Rosette ↓	43	268	230	4	1.0	5.7	1022.7	66	0/10
3c	630	Basic	26/Oct/2010	18h19	UTC-4	57°28.320	062°26.820	CTD-Rosette 个	43	263	306	3	1.0	5.7	1022.7	66	0/10
3c	630	Basic	26/Oct/2010	18h50	UTC-4	57°27.730	062°25.100	Horizontal Net Tow \downarrow	45	314	250	3	0.8	5.7	1022.9	68	0/10
3c	630	Basic	26/Oct/2010	18h58	UTC-4	57°27.730	062°27.850	Horizontal Net Tow 个	43	310	250	2	0.6	5.7	1022.9	69	0/10
3c	630	Basic	26/Oct/2010	19h17	UTC-4	57°28.330	062°26.860	Vertical Net Tow \downarrow	43	290	Calm	Calm	0.4	5.7	1023.1	71	0/10
3c	630	Basic	26/Oct/2010	19h21	UTC-4	57°28.330	062°26.880	Vertical Net Tow 个	43	288	Calm	Calm	0.4	5.7	1023.1	71	0/10
3c	630	Basic	26/Oct/2010	19h35	UTC-4	57°28.330	062°26.890	Hydrobios 🗸	43	282	238	3	0.2	5.6	1023.2	69	0/10
Зc	630	Basic	26/Oct/2010	19h41	UTC-4	57°28.330	062°26.900	Hydrobios 个	43	283	Calm	Calm	0.1	5.6	1023.3	69	0/10
Зc	630	Basic	26/Oct/2010	20h16	UTC-4	57°27.200	062°24.250	Agassiz Trawl 🗸	57	340	300	6	-0.2	5.6	1023.1	73	0/10
Зc	630	Basic	26/Oct/2010	20h19	UTC-4	57°27.280	062°24.270	Agassiz Trawl ↑	58	335	300	6	-0.2	5.6	1023.1	73	0/10
Зc	N/A	MVP	26/Oct/2010	20h46	UTC-4	57°27.430	062°24.370	$MVP \downarrow$	59	126	306	9	-0.1	5.5	1023.1	72	0/10
Зc	N/A	MVP	26/Oct/2010	23h23	UTC-4	57°37.230	062°51.660	MVP 个	161	56	235	9	-0.3	6.1	1022.6	76	0/10
Зc	N/A	MVP	27/Oct/2010	09h48	UTC-4	56°26.152	061°22.677	MVP \downarrow	125	270	Calm	Calm	-0.1	7.2	1022.2	78	0/10
Зc	624	Basic	27/Oct/2010	13h03	UTC-4	56°25.120	062°04.260	PNF \downarrow	56	65	68	9	0.2	6.5	1019.2	77	0/10

Leg	Station ID	Station Type	Local Date	Local	UTC to	Latitude (N)	Longitude	Activity	Depth	Heading	w	ind	Air	Water	Pr Baro	Hum	lce
8	0000012	otation type		Time	local		(W)		(m)	(°)	Dir	Speed	(ºC)	(ºC)		(%)	
3c	624	Basic	27/Oct/2010	13h07	UTC-4	56°25.170	062°04.230	PNF 个	56	54	65	9	0.2	6.2	1019.2	77	0/10
3c	624	Basic	27/Oct/2010	13h08	UTC-4	56°25.170	062°04.230	Secchi Disk 🗸	56	48	65	9	0.2	6.2	1019.2	77	0/10
3c	624	Basic	27/Oct/2010	13h10	UTC-4	56°25.170	062°04.230	Secchi Disk 个	56	38	66	9	0.2	6.2	1018.8	78	0/10
3c	624	Basic	27/Oct/2010	13h18	UTC-4	56°25.190	062°04.240	CTD-Rosette ↓	59	48	70	8	0.2	6.2	1018.8	78	0/10
3c	624	Basic	27/Oct/2010	13h27	UTC-4	56°25.240	062°04.230	CTD-Rosette 个	62	74	66	7	0.3	6.2	1018.6	79	0/10
3c	624	Basic	27/Oct/2010	13h42	UTC-4	56°25.650	062°03.420	Horizontal Net Tow \downarrow	84	237	75	7	0.6	6.2	1018.4	76	0/10
3c	624	Basic	27/Oct/2010	13h49	UTC-4	56°25.540	062°03.700	Horizontal Net Tow 个	81	227	90	7	0.6	6.2	1018.4	76	0/10
3c	624	Basic	27/Oct/2010	14h05	UTC-4	56°25.150	062°04.290	Vertical Net Tow \downarrow	54	50	51	6	0.6	6.1	1018.2	76	0/10
3c	624	Basic	27/Oct/2010	14h09	UTC-4	56°25.150	062°04.260	Vertical Net Tow 个	52	40	50	7	0.6	6.1	1018.2	76	0/10
3c	624	Basic	27/Oct/2010	14h25	UTC-4	56°25.180	062°04.300	Hydrobios 🗸	60	52	64	7	1.0	6.1	1017.9	75	0/10
3c	624	Basic	27/Oct/2010	14h33	UTC-4	56°25.000	062°04.280	Hydrobios 个	60	55	68	6	1.1	6.1	1017.6	73	0/10
3c	624	Basic	27/Oct/2010	14h51	UTC-4	56°25.680	062°03.420	Agassiz Trawl 🗸	87	231	90	8	1.4	6.1	1017.5	72	0/10
3c	624	Basic	27/Oct/2010	14h54	UTC-4	56°25.620	062°03.560	Agassiz Trawl 个	81	229	86	8	1.4	6.1	1017.5	72	0/10
3c	623	Nutrient	27/Oct/2010	16h20	UTC-4	56°26.800	061°56.470	CTD-Rosette ↓	110	74	70	9	1.6	6.1	1016.3	74	0/10
3c	623	Nutrient	27/Oct/2010	16h36	UTC-4	56°26.790	061°56.490	CTD-Rosette 个	110	80	70	8	1.7	6.1	1016.0	75	0/10
3c	622	Nutrient	27/Oct/2010	17h43	UTC-4	56°25.010	061°44.020	CTD-Rosette \downarrow	79	72	80	13	2.1	6.1	1014.9	80	0/10
3c	622	Nutrient	27/Oct/2010	17h54	UTC-4	56°25.080	061°44.010	CTD-Rosette 个	80	81	80	9	2.2	6.1	1014.3	80	0/10
3c	622	Nutrient	27/Oct/2010	18h11	UTC-4	56°25.070	061°44.030	Box Core ↓	80	99	90	11	2.2	6.1	1014.0	80	0/10
3c	622	Nutrient	27/Oct/2010	18h16	UTC-4	56°25.070	061°44.060	Box Core 个	81	100	90	14	2.2	6.1	1014.0	80	0/10
3c	622	Nutrient	27/Oct/2010	18h33	UTC-4	56°25.210	061°44.160	Agassiz Trawl 🗸	80	110	100	12	2.2	6.1	1013.9	80	0/10
3c	622	Nutrient	27/Oct/2010	18h44	UTC-4	56°25.090	061°43.790	Agassiz Trawl 个	80	143	120	9	2.3	6.1	1013.9	79	0/10
3c	621	CTD	27/Oct/2010	20h54	UTC-4	56°25.000	061°31.170	CTD-Rosette ↓	110	109	114	13	2.8	6.2	1011.5	79	0/10
3c	621	CTD	27/Oct/2010	20h57	UTC-4	56°25.000	061°31.140	CTD-Rosette 个	110	112	113	14	2.8	6.2	1011.5	79	0/10
3c	620	Basic	27/Oct/2010	21h15	UTC-4	56°24.020	061°12.700	CTD-Rosette ↓	79	126	136	17	3.1	6.4	1010.3	81	0/10
3c	620	Basic	27/Oct/2010	21h25	UTC-4	56°24.040	061°12.670	CTD-Rosette 个	73	140	139	18	3.0	6.4	1010.0	82	0/10
3c	620	Basic	27/Oct/2010	21h40	UTC-4	56°23.960	061°12.490	Horizontal Net Tow \downarrow	83	250	140	18	2.8	6.5	1009.6	82	0/10
3c	620	Basic	27/Oct/2010	21h50	UTC-4	56°23.910	061°13.120	Horizontal Net Tow 个	93	257	157	10	2.5	6.5	1009.7	81	0/10
3c	620	Basic	27/Oct/2010	22h10	UTC-4	56°24.030	061°12.400	Vertical Net Tow \downarrow	60	153	142	16	2.5	6.5	1009.1	82	0/10
3c	620	Basic	27/Oct/2010	22h15	UTC-4	56°24.030	061°12.400	Vertical Net Tow ↑	60	167	142	14	2.5	6.5	1009.1	82	0/10
3c	620	Basic	27/Oct/2010	22h29	UTC-4	56°24.020	061°12.500	Hydrobios \downarrow	80	159	135	16	2.3	6.5	1008.9	82	0/10

Leg	Station ID	Station Type	Local Date		UTC to	Latitude (N)	Longitude	Activity		Heading	w	ind	Air	Water	Pr Baro	Hum	lce
-5				Time	local		(W)		(m)	(°)	Dir	Speed	(ºC)	(ºC)		(%)	
3c	620	Basic	27/Oct/2010	22h37	UTC-4	56°24.040	061°12.430	Hydrobios 个	80	155	154	14	2.2	6.5	1008.5	84	0/10
3c	620	Basic	27/Oct/2010	23h04	UTC-4	56°23.960	061°12.520	Flowmeter (test) \downarrow	87	170	135	12	1.5	6.5	1008.2	94	0/10
3c	620	Basic	27/Oct/2010	23h36	UTC-4	56°23.960	061°12.450	Flowmeter (test) 个	85	176	139	11	1.2	6.6	1007.4	97	0/10
3c	620	Basic	27/Oct/2010	23h51	UTC-4	56°23.960	061°12.450	Box Core $\downarrow \uparrow$	82	162	347	8	1.4	6.6	1006.8	97	0/10
3c	620	Basic	28/Oct/2010	00h53	UTC-4	56°23.920	061°12.870	Agassiz Trawl 🗸	85	236	133	19	1.4	6.6	1004.9	97	0/10
3c	620	Basic	28/Oct/2010	00h58	UTC-4	56°23.880	061°13.090	Agassiz Trawl 个	86	237	140	15	1.4	6.6	1004.9	97	0/10
3c	620	Basic	28/Oct/2010	00h26	UTC-4	56°23.860	061°12.940	Box Core $\downarrow \uparrow$	87	152	136	14	1.1	6.6	1005.9	98	0/10
3c	620	Basic	28/Oct/2010	01h21	UTC-4	56°23.900	061°12.760	Agassiz Trawl 🗸	88	237	150	15	1.9	6.6	1004.3	96	0/10
3c	620	Basic	28/Oct/2010	01h26	UTC-4	56°23.850	061°12.990	Agassiz Trawl ↑	86	237	135	14	1.9	6.6	1004.3	96	0/10

Appendix 3: CTD Logbook

Leg	Cast#	Station	Date UTC	Time Start UTC	Latitude N	Longitude W	Bottom depth (m)	Cast depth (m)	Comments	Rosette Type	Init
Leg 1a				-		_	-			-	
1a	1	St-Laurent	2010-07-03	09:44	48°51.683	068°01.444	325	315	Winch and CTD test. MVP comparison.	CTD	DB
1a	2	Labrador Sea	2010-07-05	22:24	54°58.328	056°39.821	182	167	Bottles 9 to 11 didn't close	Zoo + Optics	DB
1a	3	356	2010-07-07	08:44	60°48.336	064°43.700	351	336	No problem	Nutrients	DB
1a	4	354	2010-07-07	11:08	60°58.117	064°46.226	572	559	Pump took a long time to start, had to go down to 20 meters. Had to go back down to 35 meters.	Nutrients	СН
1a	5	352	2010-07-07	13:35	61°09.030	064°48.305	410	400	No problem.	Nutrients	DB
1a	6	362	2010-07-08	07:56	62°05.080	071°43.024	290	280	No problem.	Nutrients	DB
1a	7	360	2010-07-08	11:11	62°25.568	071°04.566	342	330	No problem.	Nutrients	CH
1a	8	370	2010-07-09	07:06	64°35.372	079°06.559	208	191	No problem.	Nutrients	DB
1a	9	350	2010-07-09	12:13	64°26.704	080°27.940	388	371	Basic station	Primary Prod	DB
1a	10	350	2010-07-09	15:44	64°27.730	080°30.803	376	370	Basic station	Nutrients	CH
1a	11	710	2010-07-10	04:20	62°57.900	080°12.941	278	268	No problem.	Nutrients	DB
1a	12	698	2010-07-10	16:26	62°06.426	078°42.324	143	130	No problem.	Nutrients	CH
1a	13	699	2010-07-11	03:59	59°59.897	078°26.215	83	75	Basic station	Nutrients	DB
1a	14	699	2010-07-11	06:55	60°00.025	078°26.222	83	73	Basic station	Primary Prod	DB
1a	15	701b	2010-07-11	16:45	58°25.101	079°22.045	111	100	No problem.	Nutrients	СН
1a	16	720	2010-07-12	09:26	57°00.620	076°53.322	88	79	No problem.	Nutrients	DB
1a	17	C. Lovejoy	2010-07-12	13:59	56°32.278	076°46.098	110	102	No problem	C. Lovejoy	СН
1a	18	702	2010-07-13	12:04	55°24.680	077°55.852	134	126	Full Station. AN03-09 (mooring lost)	Primary Prod	СН
1a	19	702	2010-07-13	16:36	55°25.556	077°55.406	110	97	Full station.	Nutrients	СН
1a	20	702	2010-07-13	23:10	55°24.721	077°55.66	135	125	Full station. AN03-10 calibration.	Micro +DMHg	DB
1a	21	703	2010-07-15	02:01	54°40.779	079°57.431	51	42	No problem.	Nutrients	СН
1a	22	709	2010-07-15	05:25	54°42.710	080°46.812	88	83	Basic Station. No problem.	Micro +DMHg	DB
1a	23	709	2010-07-15	08:10	54°42.779	080°46.877	93	83	Basic Station. No problem.	Nutrients	DB
1a	24	704	2010-07-15	12:31	54°45.383	081°42.233	30	21	No problem. Waves.	Nutrients	DB
1a	25	730	2010-07-15	18:09	55°26.880	080°33.304	95	87	No problem.	Nutrients	СН
1a	26	735	2010-07-16	01:06	56°47.603	080°49.716	178	170	Basic station	Micro+DMHg	СН
1a	27	735	2010-07-16	04:40	56°47.678	080°50.360	183	170	Basic station	Nutrients+++	СН
1a	28	745	2010-07-17	03:30	60°30.317	085°00.895	185	176	Basic station	Nutrients+++	DB
1a	29	745	2010-07-17	06:03	60°30.346	085°00.757	184	174	Basic station	Micro +DO	DB
1a	30	745	2010-07-17	07:38	60°30.250	085°00.870	185	175	Basic station	PP+DMHg+JET	DB
1a	31	750	2010-07-17	15:50	60°40.992	087°28.517	195	186	Bottle 14 didn't close	Nutrients	СН
1a	32	760	2010-07-18	04:01	63°03.526	088°24.925	137	128	Bottle 14 didn't close. Double chlorophyll maximum	Nutrients	DB
1a	33	765	2010-07-18	11:32	62°18.505	090°39.692	104	91	Bottle 14 didn't close	DmHg+Micro+PP	СН
1a	34	765	2010-07-18	13:50	62°18.048	090°39.770	104	91	No problem	Nutrients	СН
1a	35	770	2010-07-19	00:10	60°56.252	091°48.017	107	100	Bottle 14 didn't close	Nutrients	DB
1a	36	707	2010-07-19	05:08	59°58.082	091°57.112	106	101	No problem	Nutrients ++	DB
1a	37	707	2010-07-19	09:52	59°58.681	091°56.832	101	91	No problem. Calibration AN01-09	Primary Prod	DB
1a	38	707	2010-07-19	15:55	59°58.625	091°57.140	101	93	No problem. Calibration AN01-10	Micro	DB

Leg	Cast#	Station	Date UTC	Time Start UTC	Latitude N	Longitude W	Bottom depth (m)	Cast depth (m)	Comments	Rosette Type	Init
1a	39	VIP	2010-07-20	22:00	58°54.720	093°57.288	31	20	No problem	VIP	DB
1a	40	706	2010-07-21	13:14	58°47.178	091°31.310	79	71	AN02-09	Nutrients	СН
1a	41	706	2010-07-21	19:51	58°46.368	091°31.978	79	70	AN02-10	Micro+DMHg	DB
1a	42	705a	2010-07-22	14:01	57°25.517	091°53.456	36	25	Mouth of Nelson River	Optics	DB

Leg	Cast#	Station	Date UTC	Time Start UTC	Latitude N	Longitude W	Bottom depth (m)	Cast depth (m)	Comments	Rosette Type	Init
1a	43	705a	2010-07-22	15:23	57°25.591	091°53.485	35	25	Mouth of Nelson River	CTD	DB
1a	44	705a	2010-07-22	15:26	57°25.595	091°53.490	35	25	Mouth of Nelson River	CTD	DB
1a	45	705a	2010-07-22	15:31	57°25.600	091°53.489	35	25	Mouth of Nelson River	CTD	DB
1a	46	705a	2010-07-22	16:47	57°25.621	091°53.479	35	23	Mouth of Nelson River	Nutrients+O18+CDOM	CH
1a	47	705a	2010-07-22	19:18	57°25.573	091°53.550	34	23	Mouth of Nelson River	CTD	CH
1a	48	705a	2010-07-23	11:17	57°25.433	091°53.478	34	27	Mouth of Nelson River	Nutrients+~ ∞	CH
1a	49	705b	2010-07-23	17:17	57°34.972	091°20.173	36	26	No problem	Nutrients	CH
1a	50	705c	2010-07-23	21:03	57°42.347	090°46.080	40	31	No problem	Nutrients	DB
1a	51	705	2010-07-24	10:58	57°40.499	091°34.847	53	43	No problem	Nutrients ++	DB
1a	52	705	2010-07-24	19:06	57°39.548	091°35.513	68	59	No problem	Micro+DMHg	DB
1a	53	Mapping	2010-07-26	17:20	57°16.829	092°06.827	20	10	Mapping calibration	CTD	DB
1a	54	800	2010-07-28	01:30	58°10.303	088°14.586	119	109	No problem	Nutrients	CH
1a	55	795	2010-07-28	05:08	57°39.501	088°33.124	70	60	No problem	Nutrients	СН
1a	56	790	2010-07-28	09:50	57°14.875	088°52.674	39	29	No problem	Nutrients ++	DB
1a	57	790	2010-07-28	11:11	57°15.091	088°53.065	36	28	No problem	Micro+DMHg	DB
1a	58	810	2010-07-28	18:07	56°50.423	087°16.618	60	49	No problem	Nutrients ++	DB
1a	59	820	2010-07-29	02:35	55°41.610	084°53.340	53	45	Big waves	Micro + DMHg	DB
1a	60	820	2010-07-29	04:28	55°41.608	084°54.907	51	41	Medium Waves	Nutrients ++	CH
1a	61	825	2010-07-29	08:50	56°10.687	084°36.959	121	109	No problem	Nutrients	DB
1a	62	830	2010-07-29	14:00	56°47.178	084°15.406	163	157	No problem	Nutrients	DB
1a	63	835	2010-07-29	18:19	57°30.028	083°52.162	176	166	No problem	Nutrients	CH
1a	64	840	2010-07-30	00:04	58°24.590	083°18.174	176	166	Basic. No problem	Nutrients ++	CH
1a	65	840	2010-07-30	02:22	58°25.364	083°19.219	176	166	Basic. No problem	Micro + DMHg	CH
1a	66	740	2010-07-30	14:56	60°22.261	081°58.301	147	137	No problem	Nutrients	DB
1a	67	850	2010-07-31	00:46	62°08.072	081°23.989	208	198	No problem	P. Larouche	DB
1a	68	Core	2010-07-31	05:46	62°39.736	079°27.740	320	311	No problem	Core	DB
eg 1b			•								
1b	69	301	2010-08-07	04:47	74°11.162	083°57.012	669	663	Basic. No problem	PP+DMHg	СН
1b	70	301	2010-08-07	07:23	74°11.010	083°56.498	668	664	Basic. Inconsistent pressure reading (-9200 dbar)	Nutrients	СН
1b	71	302	2010-08-07	16:52	74°09.746	086°10.273	522	514	No problem	Nutrients	DB
1b	72	302	2010-08-07	18:46	74°09.684	086°10.517	521	100	No problem. SonB operator	SonB	DB
1b	73	303	2010-08-08	00:21	74°13.339	089°36.649	235	225	Problem with the caroussel	Nutrients+++	DB
1b	74	BIO	2010-08-08	03:43	74°27.684	090°22.580	282	275	BIO-10 Mooring. Lancaster Sound	CTD + Hg	DB
1b	75	304	2010-08-08	05:46	74°18.432	091°20.574	333	324	No problem	Nutrients	СН
1b	76	305	2010-08-08	09:21	74°19.716	093°24.654	167	157	No problem	PP+contaminants	СН
1b	77	305	2010-08-08	10:43	74°19.748	093°24.610	167	157	Problems with deck unit	Nutrients+DMHg	CH
1b	78	310	2010-08-09	10:05	71°17.608	097°41.432	136	126	Bottle 15 didn't close	Nutrients+++	CH
1b	79	312	2010-08-10	08:07	69°09.679	100°41.712	47	47	Communication problem with water sampler. Two data files. Second data file = bottles closed at surface	Nutrients	DB
1b	80	314	2010-08-11	02:08	69°00.181	106°35.968	112	102	No problem. Last Rosette of leg 1.	Nutrients+~ ∞	СН
eg 2a	00	214	2010-00-11	02.00	05 00.101	100 33.308		102		producento	
2a	1	BP10-018	2010-08-15	06:59	70°46.526	134°23.315	68	50	bottle closed at 26 m: bizarre!	Nutrients	YG

Leg	Cast#	Station	Date UTC	Time Start UTC	Latitude N	Longitude W	Bottom depth (m)	Cast depth (m)	Comments	Rosette Type	Init
2a	2	J-09	2010-08-15	18:55	70°54.040	134°16.590	80	71	First interval 0-10 m not deleted.	CTD	AF
2a	3	BP10-014	2010-08-15	22:15	70°55.380	134°26.620	101	89	weak chloro. max.	Nuts+CON	JB

Leg	Cast#	Station	Date UTC	Time Start UTC	Latitude N	Longitude W	Bottom depth (m)	Cast depth (m)	Comments	Rosette Type	Init
2a	4	BP10-015	2010-08-16	03:15	70°58.908	134°22.708	259	245	First interval 0-10 m not deleted. Initialisation problem.	Nuts+CON	JB
2a	5	BP10-010	2010-08-16	08:28	71°00.590	134°39.828	334	325	Initialisation problem	Nuts+CON	JB
2a	6	BP10-012	2010-08-16	14:57	70°53.576	134°14.872	80	71	No problem	Nutrients	AF
2a	7	J-10	2010-08-17	02:19	70°54.007	134°16.291	81	71	Station name is J-09 on raw files	CTD	JB
2a	8	BP10-009	2010-08-17	06:05	71°09.040	135°38.630	926	917	BP dedicated cast: BP-1	BP-1	JB
2a	9	BP10-009	2010-08-17	09:21	71°09.317	135°39.173	937	927	No problem	Nutrients	AF
2a	10	BP10-004	2010-08-17	17:07	70°55.302	134°51.924	258	248	No problem (BP-2 cast)	BP-2	AF
2a	11	BP10-004	2010-08-17	13:33	70°55.110	134°51.439	248	237	No problem	Nuts+CON	AF
2a	12	G-09	2010-08-18	11:34	71°00.030	135°30.800	740	730	No problem	CTD	JB
2a	13	BP10-007	2010-08-19	04:18	71°05.213	135°35.492	850	839	No problem (BP-3 cast)	BP-3	JB
2a	14	BP10-007	2010-08-19	07:52	71°05.020	135°33.910	848	848	spikes in Oxygen profil	Nuts+CON	JB
2a	15	BP10-005	2010-08-19	14:31	71°01.783	135°48.438	444	435	spikes in Oxygen profil	Nuts+CON	AF
2a	16	BP10-011	2010-08-21	03:48	70°51.710	134°46.110	88	78	spikes in Fluorescence profil	Nuts	JB
2a	17	BP10-001	2010-08-21	08:33	70°45.400	135°03.730	75	64	No problem	Nuts	JB
2a	18	BP10-002	2010-08-21	12:10	70°51.134	135°00.160	124	115	Spikes upward.	Nuts+CON	AF
2a	19	G-10	2010-08-22	00:56	71°00.319	135°27.502	689	679	2 files for LADCP	CTD	JB
2a	20	BP10-008	2010-08-22	02:23	71°08.011	135°29.564	905	895	2 files for LADCP	Nuts	JB
2a	21	H-09	2010-08-22	13:13	71°01.379	134°46.676	393	384	No problem	CTD	AF
2a	22	BP10-006	2010-08-22	18:49	70°59.887	135°36.628	711	703	Nitrate sensor didn't work	Nutrients	AF
2a	23	BP10-006	2010-08-22	22:02	70°59.952	135°36.557	708	698	2 files for LADCP	Hg	JB
2a	24	BP10-016	2010-08-23	06:36	70°59.280	135°22.816	627	423	lost CTD signal	CTD aborted	JB
2a	25	I-09	2010-08-24	00:10	70°48.748	135°31.680	69	59	No problem	CTD	JB
2a	26	BP10-013	2010-08-24	01:30	70°49.547	135°34.472	72	62	No problem	Nuts	JB
2a	27	BP10-003	2010-08-24	07:05	70°57.080	134°58.002	385	375	No problem(BP-4 cast)	BP-4	JB
2a	28	BP10-003	2010-08-24	09:26	70°57.148	134°57.409	379	370	btl 14 did not close	Nuts	JB
2a	29	I-10	2010-08-24	18:39	70°48.686	134°31.900	70	63	No problem	CTD	AF
2a	30	BP10-016	2010-08-25	01:28	70°59.250	135°22.285	629	619	No problem(BP-5 cast)	BP-5	JB
2a	31	BP10-016	2010-08-25	02:37	70°59.134	135°22.525	628	618	No problem	Nuts	JB
2a	32	BP10-017	2010-08-25	05:10	71°07.064	135°11.606	726	716	No problem	Nuts	JB
2a	33	H-10	2010-08-25	10:28	71°00.923	134°40.698	350	343	No problem	CTD	AF
Leg 2b											
2b	34	USBL	2010-09-02	12:11	71°04.428	135°42.770	893	884	No problem	CTD	AF
2b	35	B-09	2010-09-02	23:30	70°39.947	135°35.952	150	141	No problem	CTD	JB
2b	36	B-10	2010-09-04	16:23	70°39.990	135°35.464	144	135	No problem	CTD	AF
2b	37	B-09	2010-09-05	14:17	70°55.697	136°23.620	1007	997	No nitrate probe	CTD	AF
2b	38	F-10	2010-09-09	18:23	70°55.472	136°24.124	993	983	No nitrate probe	CTD	JB
2b	39	A1-09	2010-09-09	20:12	70°45.400	135°59.922	675	664	No nitrate probe	CTD	JB
2b	40	A1-10 A2-09	2010-09-11	16:26	70°46.030	135°59.730	696	687	btl 15 did not close	DO	JB
2b	41	A2-10	2010-09-13	18:25	70°44.032	135°55.164	566	557	No problem	CTD	AF
2b	42	CA04-10	2010-09-21	17:44	71°04.774	133°37.087	310	301	No problem	CTD	AF
2b	43	CA16MMP-09	2010-09-23	00:21	71°45.172	126°30.016	358	348	No problem	CTD	JB
Leg 3a											

Leg	Cast#	Station	Date UTC	Time Start UTC	Latitude N	Longitude W	Bottom depth (m)	Cast depth (m)	Comments	Rosette Type	Init
3a	1	CA16-09	2010-09-24	18:20	71°48.462	126°32.144	307	296	Mooring recovery CA16-09	CTD	DB
3a	2	CA05-09	2010-09-24	22:47	71°19.662	127°35.737	211	202	Mooring recovery CA05-09	CTD	DB

Leg	Cast#	Station	Date UTC	Time Start UTC	Latitude N	Longitude W	Bottom depth (m)	Cast depth (m)	Comments	Rosette Type	Init
3a	3	CA05MMP-09	2010-09-25	00:47	71°25.620	127°39.408	254	240	Mooring recovery CA05MMP-09	CTD	DB
3a	4	Mapping 1	2010-09-26	14:12	70°45.559	135°08.940	77	73	No problem	CTD	DB
3a	5	NWBI-1	2010-09-28	23:05	74°40.267	128°32.636	379	369	Some bottles not fired. Ice work station.	PP+Micro+Nuts	MG
3a	6	437	2010-10-01	02:43	71°46.781	126°32.533	341	331	CA16-10 calibration. No problem	PP + Nuts	MG
3a	7	437	2010-10-01	06:18	71°46.997	126°35.842	356	349	No problem	Micro	MG
3a	8	410	2010-10-01	07:36	71°41.851	126°29.478	410	401	No problem	Nuts	DB
3a	9	412	2010-10-01	09:21	71°33.808	126°55.114	419	410	Bottle 15 didn't close	Nuts	DB
3a	10	414	2010-10-01	10:53	71°25.364	127°21.739	306	298	No problem	Nuts	DB
3a	11	416	2010-10-01	12:19	71°17.572	127°45.268	160	150	No problem	Nuts	DB
3a	12	418	2010-10-01	13:36	71°09.836	128°10.170	65	55	No problem	Nuts + PP	DB
3a	13	CA05MMP-10	2010-10-01	18:55	71°24.684	127°41.557	229	219	No problem	CTD	MG
3a	14	CA16MMP-10	2010-10-01	23:58	71°45.407	126°32.696	367	358	No problem	CTD	MG
3a	15	Mapping 2	2010-10-03	20:22	70°56.486	134°13.170	144	135	No problem	CTD	DB
3a	16	Mapping 3	2010-10-03	22:55	70°42.697	135°19.094	88	79	No problem	CTD	DB
3a	17	408	2010-10-06	22:32	71°18.707	127°34.813	175	165	CA05-10	Nuts+PP+div	DB
3a	18	407	2010-10-07	04:09	71°01.045	126°02.246	395	386	CA08-10	Nuts+pp	DB
3a	19	407	2010-10-07	06:56	71°00.476	125°59.947	395	385	CA08-10	Diversity	DB
eg 3b									•	• • •	
3b	20	405	2010-10-08	14:12	70°38.140	123°02.316	607	604	No problem	Diversity	MG
3b	21	405	2010-10-08	16:43	70°38.777	123°01.945	606	600	No problem	PP	DB
3b	22	405	2010-10-08	20:15	70°39.036	123°02.897	601	599	No problem	Nuts	DB
3b	23	450	2010-10-09	06:53	72°03.100	119°46.590	102	90	No problem	Nuts+PP+Div	DB
3b	24	308	2010-10-11	02:16	74°06.193	108°24.779	541	538	No problem	Diversity	MG
3b	25	308	2010-10-11	04:22	74°06.889	108°25.979	554	549	No problem	PP+Nuts	MG
3b	26	304	2010-10-12	20:22	74°15.121	091°31.057	314	307	No problem	PP+Nuts	DB
3b	27	304	2010-10-12	22:35	74°12.961	091°30.200	308	297	No problem	Micro+DO	DB
3b	28	324	2010-10-14	16:33	73°52.645	080°10.304	810	803	No problem	Nuts+PP+Chem	DB
3b	29	323	2010-10-14	20:01	74°11.218	079°46.559	779	776	No problem	Nuts+pp	DB
3b	30	323	2010-10-14	23:28	74°11.880	079°44.651	782	779	No problem	Micro	MG
3b	31	115	2010-10-15	23:29	76°20.048	071°11.112	655	654	No problem	Nuts+PP+DO	MG
3b	32	115	2010-10-16	02:00	76°20.710	071°10.924	651	647	No problem	Diversity	MG
3b	33	114	2010-10-16	06:33	76°19.469	071°46.628	618	608	No problem	CTD	MG
3b	34	113	2010-10-16	08:00	76°19.595	072°13.000	561	553	No problem	Nuts	MG
3b	35	112	2010-10-16	09:19	76°19.073	072°42.077	565	560	No problem	CTD	MG
3b	36	111	2010-10-16	11:16	76°18.515	073°15.440	603	594	No problem	Micro	DB
3b	37	111	2010-10-16	13:43	76°17.574	073°16.561	567	559	No problem	Nuts+PP	DB
3b	38	110	2010-10-16	17:17	76°18.140	073°36.875	533	530	No problem	Nuts	DB
3b	39	109	2010-10-16	19:34	76°15.955	074°07.100	448	434	No problem	CTD+PP	DB
3b	40	105	2010-10-16	21:34	76°16.205	074°43.556	458	450	No problem	Nuts+pp	DB
3b	41	108	2010-10-17	00:40	76°15.414	076°46.859	466	457	No problem	Diversity	MG
3b	42	107	2010-10-17	04:26	76°16.421	075°04.151	426	413	No problem	Nuts	MG
3b	43	107	2010-10-17	04:20	76°18.281	075°22.723	378	367	No problem	CTD	MG

Leg	Cast#	Station	Date UTC	Time Start UTC	Latitude N	Longitude W	Bottom depth (m)	Cast depth (m)	Comments	Rosette Type	Init
3b	44	105	2010-10-17	14:39	76°20.260	075°48.948	336	326	No problem	PP + Nuts	MG
3b	45	105	2010-10-17	17:09	76°18.863	075°50.959	322	313	No problem	Diversity	MG

Leg	Cast#	Station	Date UTC	Time Start UTC	Latitude N	Longitude W	Bottom depth (m)	Cast depth (m)	Comments	Rosette Type	Init
3b	46	104	2010-10-17	21:57	76°18.982	076°13.707	169	162	No problem	PP	MG
.eg 3c											
3c	47	600	2010-10-24	07:08	59°05.293	063°26.131	207	193	bottle 21 not completely full	PP + Nuts	MG
3c	48	601	2010-10-24	13:04	59°03.106	063°36.133	170	156	No problem	CTD	MG
3c	49	602	2010-10-24	14:43	59°03.239	063°51.959	154	141	No problem	PP + Nuts	MG
3c	50	604	2010-10-24	21:25	58°59.872	063°53.610	60	53	No problem	Nuts	MG
3c	51	617	2010-10-25	07:28	58°30.019	062°41.365	135	126	No problem	PP + Nuts	MG
3c	52	610	2010-10-25	10:38	58°31.189	062°50.308	121	117	No problem	Nuts	MG
3c	53	612	2010-10-25	13:25	58°28.118	062°59.204	48	38	No problem	CTD	MG
3c	54	613	2010-10-25	14:27	58°29.028	063°13.090	255	229	No problem	Nuts	MG
3c	55	614	2010-10-25	17:48	58°24.089	063°23.350	93	89	No problem	CTD	MG
3c	56	615	2010-10-25	19:01	58°19.166	063°32.412	128	121	No problem	PP + Nuts	MG
3c	57	633	2010-10-26	13:13	57°36.292	061°54.251	178	167	No problem	PP + Nuts	MG
3c	58	632	2010-10-26	18:18	57°34.102	062°03.126	83	79	No problem	Nuts	MG
3c	59	631	2010-10-26	20:38	57°29.654	062°11.381	85	80	No problem	Nuts	MG
3c	60	630	2010-10-26	22:10	57°28.333	062°26.783	42	38	No problem	PP + Nuts	MG
3c	61	624	2010-10-27	17:19	56°25.217	062°04.254	60	53	No problem	PP + Nuts	MG
3c	62	623	2010-10-27	20:22	56°26.803	061°56.509	110	104	No problem	Nuts	MG
3c	63	622	2010-10-27	21:45	56°25.031	061°44.056	79	73	No problem	Nuts	MG
3c	64	621	2010-10-27	23:54	56°25.014	061°31.144	107	98	No problem	CTD	MG
3c	65	620	2010-10-27	01:16	56°24.029	061°12.712	79	67	No problem	PP + Nuts	MG

Appendix	4: List	of Par	ticipants
----------	---------	--------	-----------

Leg	Name	Position	Affiliation	Network Investigator/supervisor	Embark place	Embark date	Disembark place	Disembark date
Leg 1a	Armstrong, Debbie	Research associate	University of Manitoba	Stern, Gary/Wang, Feiyue	Quebec City	2-Jul-10	Iqaluit	2-Aug-10
Leg 1a	Bailey, Joscelyn	Msc Student	University of Manitoba	Stern, Gary	Quebec City	2-Jul-10	Iqaluit	2-Aug-10
Leg 1a	Barber, Jeremy	Undergraduate Student	University of Manitoba	Barber, Dave	Quebec City	2-Jul-10	Churchill	20-Jul-10
Leg 1a	Brucker, Steve	Technician	UNB	Hughes-Clark, John	Quebec City	2-Jul-10	Iqaluit	2-Aug-10
Leg 1a	Capelle, David	Undergraduate Student	University of Manitoba	Barber, Dave	Quebec City	2-Jul-10	Iqaluit	2-Aug-10
Leg 1a	Courtemanche, Bruno	MSc Student	Université Laval	Lovejoy, Connie	Quebec City	2-Jul-10	Iqaluit	2-Aug-10
Leg 1a	Curry, Michelle	Undergraduate Student	University of Manitoba	Barber, Dave	Quebec City	2-Jul-10	Iqaluit	2-Aug-10
Leg 1a	Delaronde, Joanne	Technician	University of Manitoba	Stern, Gary	Quebec City	2-Jul-10	Iqaluit	2-Aug-10
Leg 1a	Denommee, Kathryn	Msc Student	MUN	Bentley, Sam	Quebec City	2-Jul-10	Iqaluit	2-Aug-10
Leg 1a	Gagnon, Jonathan	Research assistant	Université Laval	Tremblay, Jean-Éric	Quebec City	2-Jul-10	Iqaluit	2-Aug-10
Leg 1a	Godin, Pam	Technician	University of Manitoba	Stern, Gary	Quebec City	2-Jul-10	Iqaluit	2-Aug-10
Leg 1a	Gunn, Geoffrey	Msc Student	University of Manitoba	Barber, Dave	Quebec City	2-Jul-10	Iqaluit	2-Aug-10
Leg 1a	Johnson, Bruce	Technician	University of Manitoba	Papakyriakou, Tim	Quebec City	2-Jul-10	Iqaluit	2-Aug-10
Leg 1a	Koziol, Conrad	PhD student	IOS	Miller, Lisa	Quebec City	2-Jul-10	Churchill	20-Jul-10
Leg 1a	Lapoussière, Amandine	PDF	Université Laval	Tremblay, Jean-Éric	Quebec City	2-Jul-10	Iqaluit	2-Aug-10
Leg 1a	Larouche, Pierre	Research Scientist	MLI-DFO	Larouche, Pierre	Quebec City	2-Jul-10	Iqaluit	2-Aug-10
Leg 1a	Latonas, Jeffrey	Msc Student	University of Manitoba	Stern, Gary/Wang, Feiyue	Quebec City	2-Jul-10	Iqaluit	2-Aug-10
Leg 1a	Lorrain, Stéphane	Consultant	Environment Illimitée (for Manitoba Hydro)	Barber, Dave	Churchill	20-Jul-10	Iqaluit	2-Aug-10
Leg 1a	McCullough, Greg	Research associate	University of Manitoba	Barber, Dave	Quebec City	2-Jul-10	Iqaluit	2-Aug-10
Leg 1a	Miller, Lisa	Research scientist	IOS	Miller, Lisa	Churchill	21-Jul-10	Iqaluit	2-Aug-10
Leg 1a	Osipa, Andrew	Undergraduate Student	University of Manitoba	Barber, Dave	Quebec City	2-Jul-10	Iqaluit	2-Aug-10
Leg 1a	Pedneault, Estelle	Research associate	Université Laval	Lovejoy, Connie	Quebec City	2-Jul-10	Iqaluit	2-Aug-10
Leg 1a	Stern, Gary	Chief scientist	DFO	Stern, Gary	Quebec City	2-Jul-10	Iqaluit	2-Aug-10
Leg 1a	Tang, Shilin	PDF	FWI-DFO	Larouche, Pierre	Quebec City	2-Jul-10	Iqaluit	2-Aug-10
Leg 1a Leg 1b	Ardyna, Mathieu	MSc student	UQAR	Gosselin, Michel	Quebec City	2-Jul-10	Kugluktuk	12-Aug-10
Leg 1a Leg 1b	Aubry, Cyril	Technician	Université Laval	Fortier, Louis	Quebec City	2-Jul-10	Kugluktuk	12-Aug-10
Leg 1a Leg 1b	Baya, Anabelle	PhD student	Trent University	Hintelmann, Holger	Quebec City	2-Jul-10	Kugluktuk	12-Aug-10
Leg 1a Leg 1b	Boisvert, Dominique	Technician	INRS	Gratton, Yves	Quebec City	2-Jul-10	Kugluktuk	12-Aug-10
Leg 1a Leg 1b	Dupuis, Vincent	Technician	Université Laval	Michaud, Luc	Quebec City	2-Jul-10	Kugluktuk	12-Aug-10
Leg 1a Leg 1b	Elhegazy, Hesham	Msc Student	UNB	Hughes-Clark, John	Quebec City	2-Jul-10	Kugluktuk	12-Aug-10
Leg 1a Leg 1b	Falardeau, Marianne	Technician	Université Laval	Fortier, Louis	Quebec City	2-Jul-10	Kugluktuk	12-Aug-10
Leg 1a Leg 1b	Ferland, Joannie	Research assistant	UQAR	Gosselin, Michel	Quebec City	2-Jul-10	Kugluktuk	12-Aug-10
Leg 1a Leg 1b	Fontaine, Anne	PhD student	UQAR	Archambault, Philippe	Quebec City	2-Jul-10	Kugluktuk	12-Aug-10
Leg 1a Leg 1b	Gagné, Steeve	Technician	Université Laval	Michaud, Luc	Quebec City	2-Jul-10	Kugluktuk	12-Aug-10
Leg 1a Leg 1b	Gagnon, Sylvain	Technician	Université Laval	Michaud, Luc	Quebec City	2-Jul-10	Kugluktuk	12-Aug-10
Leg 1a Leg 1b	Hamel, Camil	Technician	INRS	Gratton, Yves	Quebec City	2-Jul-10	Kugluktuk	12-Aug-10
Leg 1a Leg 1b	Muggah, James	Msc Student	UNB	Hughes-Clark, John	Quebec City	2-Jul-10	Kugluktuk	12-Aug-10

Leg	Name	Position	Affiliation	Network Investigator/supervisor	Embark place	Embark date	Disembark place	Disembark date
Leg 1a Leg 1b	Perreault, Marie-Claude	Technician	Université Laval	Fortier, Louis	Quebec City	2-Jul-10	Kugluktuk	12-Aug-10
Leg 1a Leg 1b	Pind, Meredith	Technician	University of Manitoba	Papakyriakou, Tim	Quebec City	2-Jul-10	Kugluktuk	12-Aug-10
Leg 1a Leg 1b	Roger, Jonathan	MSc Student	Université Laval	Lajeunesse, Patrick	Quebec City	2-Jul-10	Kugluktuk	12-Aug-10
Leg 1a Leg 1b	Rousseau, Claudia	MSc Student	Université Laval	Lajeunesse, Patrick	Quebec City	2-Jul-10	Kugluktuk	12-Aug-10
Leg 1a Leg 1b	Roy, Virginie	PhD student	UQAR	Archambault, Philippe	Quebec City	2-Jul-10	Kugluktuk	12-Aug-10
Leg 1b	Adamson, Sheena	Program Leader	SonB	Barber, Lucette	Iqaluit	2-Aug-10	Kugluktuk	12-Aug-10
Leg 1b	Akana, Suzannah	Student	SonB	Barber, Lucette	Iqaluit	2-Aug-10	Kugluktuk	12-Aug-10
Leg 1b	Barber, Lucette	Program Leader	SonB	Barber, Lucette	Iqaluit	2-Aug-10	Kugluktuk	12-Aug-10
Leg 1b	Bergeron, Myriam	MSc student	Université Laval	Tremblay, Jean-Éric	Iqaluit	2-Aug-10	Sachs Habour	12-Aug-10
Leg 1b	Bruce, Kayla	Student	SonB	Barber, Lucette	Iqaluit	2-Aug-10	Kugluktuk	12-Aug-10
Leg 1b	Cormier, Marc-André	MSc student	UQAR	Rochon, André	Iqaluit	2-Aug-10	Kugluktuk	12-Aug-10
Leg 1b	De Angelis, Vince	MCP engineer	Govt. Canada	Julien, Stéphane	Iqaluit	2-Aug-10	Kugluktuk	12-Aug-10
Leg 1b	Gawor, Anna	Msc Student	University of Toronto	Jantunen, Liisa	Iqaluit	2-Aug-10	Kugluktuk	12-Aug-10
Leg 1b	George, Jane	Journalist	Iqaluit media	Fortier, Martin	Iqaluit	2-Aug-10	Kugluktuk	12-Aug-10
Leg 1b	Hill, Ken	MCP engineer	Govt. Canada	Julien, Stéphane	Iqaluit	2-Aug-10	Kugluktuk	12-Aug-10
Leg 1b	Kazlowski, Steven	Photographer	ArcticNet	Levesque, Keith	Iqaluit	2-Aug-10	Kugluktuk	12-août-10
Leg 1b	Le Blanc, Catherine	MCP engineer	Govt. Canada	Julien, Stéphane	Iqaluit	2-Aug-10	Kugluktuk	12-Aug-10
Leg 1b	Lehnherr, Igor	Post-Doctoral Fellow	University of Alberta	St. Louis, Vincent	Iqaluit	2-Aug-10	Kugluktuk	12-Aug-10
Leg 1b	Martel, Karine	Student	SonB	Barber, Lucette	Iqaluit	2-Aug-10	Kugluktuk	12-Aug-10
Leg 1b	Miller-Anderson, Kelcie	Student	SonB	Barber, Lucette	Iqaluit	2-Aug-10	Kugluktuk	12-Aug-10
Leg 1b	Moreau, Jeremy	Student	SonB	Barber, Lucette	Iqaluit	2-Aug-10	Kugluktuk	12-Aug-10
Leg 1b	O'Connell, Katharine	Teacher	SonB	Barber, Lucette	Iqaluit	2-Aug-10	Kugluktuk	12-Aug-10
Leg 1b	O'Neil, Daniel	Student	SonB	Barber, Lucette	Iqaluit	2-Aug-10	Kugluktuk	12-Aug-10
Leg 1b	Pineault, Simon	MSc student	Université Laval	Tremblay, Jean-Éric	Iqaluit	2-Aug-10	Sachs Habour	12-Aug-10
Leg 1b	Rochon, André	Chief scientist	UQAR	Rochon, André	Iqaluit	2-Aug-10	Kugluktuk	12-Aug-10
Leg 1b	Vlanich, John	Student	SonB	Barber, Lucette	Iqaluit	2-Aug-10	Kugluktuk	12-Aug-10
Leg 1b	Watters, Baruch	Student	SonB	Barber, Lucette	Iqaluit	2-Aug-10	Kugluktuk	12-Aug-10
Leg 1b	Wong, Fiona	PhD student	University of Toronto	Jantunen, Liisa	Iqaluit	2-Aug-10	Kugluktuk	12-Aug-10
Leg 1b	Zhou, Linghong (Linda)	Student	SonB	Barber, Lucette	Iqaluit	2-Aug-10	Kugluktuk	12-Aug-10
Leg 2a	Archambault, Philippe	Professor	UQAR	Archambault, Philippe	Kugluktuk	12-Aug-10	Sachs Harbour	26-Aug-10
Leg 2a	Bergeron, Myriam	MSc student	Université Laval	Tremblay, Jean-Éric	Iqaluit	13-Aug-10	Sachs Habour	26-Aug-10
Leg 2a	Blaseckie, Mark	Contaminant Sampling	Axys Analytical	Lowings, Malcolm	Kugluktuk	12-Aug-10	Sachs Harbour	26-Aug-10
Leg 2a	Bouchard, Caroline	PhD student	Université Laval	Fortier, Louis	Kugluktuk	12-Aug-10	Sachs Harbour	26-Aug-10
Leg 2a	Cadieux, Marc	PhD student	University of Manitoba	Stern, Gary	Kugluktuk	12-Aug-10	Sachs Harbour	26-Aug-10
Leg 2a	Carpenter, Robin	Marine wildlife monitor	IMG- Golder	Lowings, Malcolm	Kugluktuk	12-Aug-10	Sachs Harbour	26-Aug-10
Leg 2a	Chaulk, Amanda	MSc Student	University of Manitoba	Stern, Gary/Wang, Feiyue	Kugluktuk	12-Aug-10	Sachs Harbour	26-Aug-10
Leg 2a	Cote, Jessica	Moorings	IMG- Golder	Lowings, Malcolm	Kugluktuk	12-Aug-10	Sachs Harbour	26-Aug-10
Leg 2a	Coughlin, Tom	Contaminant Sampling	IMG- Golder	Lowings, Malcolm	Kugluktuk	12-Aug-10	Sachs Harbour	26-Aug-10
Leg 2a	Cusson, Mathieu	Professor	UQAC	Archambault, Philippe	Kugluktuk	12-Aug-10	Sachs Harbour	26-Aug-10

Leg	Name	Position	Affiliation	Network Investigator/supervisor	Embark place	Embark date	Disembark place	Disembark date
Leg 2a	Doxey, David	MARU Deployment	Cornell University	Pyć, Cynthia	Kugluktuk	12-Aug-10	Sachs Harbour	26-Aug-10
Leg 2a	Fortier, Martin	Chief scientist	ArcticNet	Fortier, Martin	Kugluktuk	12-Aug-10	Sachs Harbour	26-Aug-10
Leg 2a	Galley, Ryan	Research Associate	University of Manitoba	Barber, Dave	Kugluktuk	12-Aug-10	Sachs Harbour	26-Aug-10
Leg 2a	Grant, Cindy	Technician	UQAR	Archambault, Philippe	Kugluktuk	12-Aug-10	Sachs Harbour	26-Aug-10
Leg 2a	Gratton, Yves	Research scientist	INRS	Gratton, Yves	Kugluktuk	12-Aug-10	Sachs Harbour	26-Aug-10
Leg 2a	Lemes, Marcos	PhD student	University of Manitoba	Stern, Gary/Wang, Feiyue	Kugluktuk	12-Aug-10	Sachs Harbour	26-Aug-10
Leg 2a	Lévesque, Mélanie	Technician	UQAR	Archambault, Philippe	Kugluktuk	12-Aug-10	Sachs Harbour	26-Aug-10
Leg 2a	MacHutchon, Allison	Technician	University of Manitoba	Stern, Gary	Kugluktuk	12-Aug-10	Sachs Harbour	26-Aug-10
Leg 2a	Mortimer, James	Contaminant / Mooring	IMG- Golder	Lowings, Malcolm	Kugluktuk	12-Aug-10	Sachs Harbour	26-Aug-10
Leg 2a	Pineault, Simon	MSc student	Université Laval	Tremblay, Jean-Éric	Iqaluit	13-Aug-10	Sachs Habour	26-Aug-10
Leg 2a	Pyć, Cynthia	Project Manager	BP	Pyć, Cynthia	Kugluktuk	12-Aug-10	Sachs Harbour	26-Aug-10
Leg 2a	Robert, Dominique	Research fellow	Université Laval	Fortier, Louis	Kugluktuk	12-Aug-10	Sachs Harbour	26-Aug-10
Leg 2a	Sampei, Makoto	Research associate	Université Laval	Fortier, Louis	Kugluktuk	12-Aug-10	Sachs Harbour	26-Aug-10
Leg 2a	Stainton, Emmelia	Research Associate	University of Manitoba	Papakyriakou, Tim	Kugluktuk	12-Aug-10	Sachs Harbour	26-Aug-10
Leg 2a	Suzuki, Keita	Postdoctoral fellow	Université Laval	Fortier, Louis	Kugluktuk	12-Aug-10	Sachs Harbour	26-Aug-10
Leg 2a	Warner, Kerri	MSc student	University of Manitoba	Barber, Dave	Kugluktuk	12-Aug-10	Sachs Harbour	26-Aug-10
Leg 2a Leg 2b	Babb, David	MSc student	University of Manitoba	Barber, Dave	Kugluktuk	12-Aug-10	Paulatuk	23-Sep-10
Leg 2a Leg 2b	Barette, Jessy	Technician	INRS	Gratton, Yves	Kugluktuk	12-Aug-10	Sachs Harbour	23-Sep-10
Leg 2a Leg 2b	Cartwright, Doug	EM-302 Operator	UNB	Hughes-Clark, John	Kugluktuk	12-Aug-10	Sachs Harbour	23-Sep-10
Leg 2a Leg 2b	Church, Ian	EM-302 Operator	UNB	Hughes-Clark, John	Kugluktuk	12-Aug-10	Sachs Harbour	23-Sep-10
Leg 2a Leg 2b	Elias, James	Marine wildlife monitor	IMG- Golder	Lowings, Malcolm	Kugluktuk	12-Aug-10	Sachs Harbour	22-Sep-10
Leg 2a Leg 2b	Forest, Alexandre	Postdoctoral fellow	INRS	Gratton, Yves	Kugluktuk	12-Aug-10	Sachs Harbour	23-Sep-10
Leg 2a Leg 2b	Jardine, Scott	HSSE	RPS	BP	Kugluktuk	12-Aug-10	Paulatuk	23-Sep-10
Leg 2a Leg 2b	Johnson, Bruce	Technician	University of Manitoba	Papakyriakou, Tim	Kugluktuk	12-Aug-10	Sachs Harbour	23-Sep-10
Leg 2a Leg 2b	Levesque, Keith	Research coordinator	ArcticNet	Fortier, Martin	Kugluktuk	12-Aug-10	Sachs Harbour	22-Sep-10
Leg 2a Leg 2b	Lowings, Malcolm	Technical Team Leader	IMG- Golder	Pyć, Cynthia	Kugluktuk	12-Aug-10	Sachs Harbour	22-Sep-10
Leg 2a Leg 2b	Massot, Pascal	Technician	Université Laval	Michaud, Luc	Kugluktuk	12-Aug-10	Paulatuk	23-Sep-10
Leg 2a Leg 2b	Memorana, Roger	Marine wildlife monitor	IMG- Golder	Lowings, Malcolm	Kugluktuk	12-Aug-10	Sachs Harbour	22-Sep-10
Leg 2a Leg 2b	Michaud, Luc	Equipment manager	Université Laval	Michaud, Luc	Kugluktuk	12-Aug-10	Sachs Harbour	23-Sep-10
Leg 2a Leg 2b	Simard, Pierre-Yves	Technician	Université Laval	Michaud, Luc	Kugluktuk	12-Aug-10	Sachs Harbour	23-Sep-10
Leg 2a Leg 2b	Stacey, Michele	Marine wildlife monitor	IMG- Golder	Lowings, Malcolm	Kugluktuk	12-Aug-10	Sachs Harbour	22-Sep-10
Leg 2b	Baker, Dee	Geotechnical Engineer	Fugro	Lowings, Malcolm	Sachs Harbour	26-Aug-10	Sachs Harbour	22-Sep-10
Leg 2b	Bennett, Robbie	Technician	GSC	Blasco, Steve	Sachs Harbour	26-Aug-10	Sachs Harbour	23-Sep-10
Leg 2b	Blasco, Katie	Research assistant	GSC	Blasco, Steve	Sachs Harbour	26-Aug-10	Sachs Harbour	23-Sep-10
Leg 2b	Blasco, Steve	Chief scientist	NRCan	Blasco, Steve	Sachs Harbour	26-Aug-10	Sachs Harbour	23-Sep-10
Leg 2b	Borghouts, Dennis	T-Bar Operator	Fugro	Lowings, Malcolm	Sachs Harbour	26-Aug-10	Sachs Harbour	22-Sep-10
Leg 2b	Breton, Kerry	Research assistant	GSC	Blasco, Steve	Sachs Harbour	26-Aug-10	Sachs Harbour	23-Sep-10
Leg 2b	Buis, Justin	Technician	GSC	Blasco, Steve	Sachs Harbour	26-Aug-10	Sachs Harbour	23-Sep-10
Leg 2b	Commandeur, Sven	Msc student	UNB	Hughes-Clark, John	Sachs Harbour	26-Aug-10	Sachs Harbour	23-Sep-10

Leg	Name	Position	Affiliation	Network Investigator/supervisor	Embark place	Embark date	Disembark place	Disembark date
Leg 2b	Curtiss, Greg	Met-Ocean & Moorings	IMG-Golder	Lowings, Malcolm	Sachs Harbour	26-Aug-10	Sachs Harbour	22-Sep-10
Leg 2b	Day, Justin	Lead Surveyor	Fugro	Lowings, Malcolm	Sachs Harbour	26-Aug-10	Sachs Harbour	22-Sep-10
Leg 2b	De Pascale, Greg	Marine Geoscientist	SBP Fugro	Lowings, Malcolm	Sachs Harbour	26-Aug-10	Sachs Harbour	22-Sep-10
Leg 2b	Dingler, Jeff	Project Manager	ВР	BP	Sachs Harbour	26-Aug-10	Sachs Harbour	22-Sep-10
Leg 2b	Fougere, Lee	Geotechnical Engineer	Fugro	Lowings, Malcolm	Sachs Harbour	26-Aug-10	Sachs Harbour	22-Sep-10
Leg 2b	Garven, Elizabeth	Geotechnical Engineer	Fugro	Lowings, Malcolm	Sachs Harbour	26-Aug-10	Sachs Harbour	22-Sep-10
Leg 2b	Jarrett, Kate	Technician	GSC	Blasco, Steve	Sachs Harbour	26-Aug-10	Sachs Harbour	23-Sep-10
Leg 2b	McKillop, Kevin	Technician	GSC	Blasco, Steve	Sachs Harbour	26-Aug-10	Sachs Harbour	23-Sep-10
Leg 2b	Middleton, Greg	Technician	GSC	Blasco, Steve	Sachs Harbour	26-Aug-10	Sachs Harbour	23-Sep-10
Leg 2b	Murdock, Ian	ROV Pilot	CSSF	Juniper, Kim	Sachs Harbour	26-Aug-10	Sachs Harbour	23-Sep-10
Leg 2b	Osborne, Phil	Met-Ocean & Moorings	IMG-Golder	Lowings, Malcolm	Sachs Harbour	26-Aug-10	Sachs Harbour	22-Sep-10
Leg 2b	Park, Tim	Geotechnical Engineer	Fugro	Lowings, Malcolm	Sachs Harbour	26-Aug-10	Sachs Harbour	22-Sep-10
Leg 2b	Powell, Robert	Lead Geotechnical Engineer	Fugro	Lowings, Malcolm	Sachs Harbour	26-Aug-10	Sachs Harbour	22-Sep-10
Leg 2b	Sanchez, Jose	Msc student	UNB	Hughes-Clark, John	Sachs Harbour	26-Aug-10	Sachs Harbour	23-Sep-10
Leg 2b	Sanford, Nathan	Surveyor	Fugro	Lowings, Malcolm	Sachs Harbour	26-Aug-10	Sachs Harbour	22-Sep-10
Leg 2b	Zottenberg, Katelyn	Marine wildlife monitor	IMG-Golder	Lowings, Malcolm	Sachs Harbour	26-Aug-10	Sachs Harbour	22-Sep-10
Leg 2b Leg 3a	Morgan, Sally	MSCL Operator	ArcticNet	Fortier, Martin	Sachs Harbour	26-Aug-10	Paulatuk	7-Oct-10
Leg 3a	Babb, David	MSc student	University of Manitoba	Barber, Dave	Kugluktuk	24-Sep-10	Paulatuk	7-Oct-10
Leg 3a	Blasco, Katie	GIS tech	ArcticNet	Fortier, Louis	Sachs Harbour	24-Sep-10	Paulatuk	7-Oct-10
Leg 3a	Channel, Fred	MARU Deployment	Cornell University	Pyć, Cynthia	Kugluktuk	22-Sep-10	Paulatuk	7-Oct-10
Leg 3a	Galley, Ryan	Research Associate	University of Manitoba	Barber, Dave	Sachs Harbour	23-Sep-10	Paulatuk	7-Oct-10
Leg 3a	Holub, Curtis	Research associate	Exxon Upstream Research	Jardine, Scott	Sachs Harbour	22-Sep-10	Paulatuk	7-Oct-10
Leg 3a	Illasiak, Joseph	Wildlife monitor	ArcticNet	Fortier, Martin	Sachs Harbour	23-Sep-10	Paulatuk	7-Oct-10
Leg 3a	Jardine, Scott	HSSE	RPS	IORVL	Kugluktuk	24-Sep-10	Paulatuk	7-Oct-10
Leg 3a	Komarov, Alexander	PhD student	University of Manitoba	Barber, Dave	Sachs Harbour	23-Sep-10	Paulatuk	7-Oct-10
Leg 3a	Levesque, Keith	Chief scientist	ArcticNet	Fortier, Martin	Sachs Harbour	23-Sep-10	Paulatuk	7-Oct-10
Leg 3a	Massot, Pascal	Technician	Université Laval	Michaud, Luc	Kugluktuk	24-Sep-10	Paulatuk	7-Oct-10
Leg 3a	Matskevich, Dmitri	Research Team leader	Exxon Upstream Research	Jardine, Scott	Sachs Harbour	22-Sep-10	Paulatuk	7-Oct-10
Leg 3a	Ouellet, Jean	Technician	Université Laval	Michaud, Luc	Sachs Harbour	23-Sep-10	Paulatuk	7-Oct-10
Leg 3a	Warner, Kerri	MSc student	University of Manitoba	Barber, Dave	Sachs Harbour	23-Sep-10	Paulatuk	7-Oct-10
Leg 3a Leg 3b	Asplin, Matthew	PhD student	University of Manitoba	Barber, Dave	Sachs Harbour	23-Sep-10	Iqaluit	22-Oct-10
Leg 3a Leg 3b	Davidson, Michael	Media	Discovery Channel	Fortier, Martin	Sachs Harbour	23-Sep-10	Iqaluit	22-Oct-10
Leg 3a Leg 3b	Gagné, Steeve	Technician	Université Laval	Michaud, Luc	Sachs Harbour	23-Sep-10	Iqaluit	22-Oct-10
Leg 3a Leg 3b	Gagnon, Jonathan	Research assistant	Université Laval	Tremblay, Jean-Éric	Sachs Harbour	23-Sep-10	Iqaluit	22-Oct-10
Leg 3a Leg 3b	Hall, Colin	Media - Camera Assist	Discovery Channel	Fortier, Martin	Sachs Harbour	23-Sep-10	Iqaluit	22-Oct-10
Leg 3a Leg 3b	Loo, Ao	Media - Sound Man	Discovery Channel	Fortier, Martin	Sachs Harbour	23-Sep-10	Iqaluit	22-Oct-10
Leg 3a Leg 3b	Medrinal, Emmanuelle	PhD student	Université Laval	Lovejoy, Connie	Sachs Harbour	23-Sep-10	Iqaluit	22-Oct-10
Leg 3a Leg 3b	Patton, Eric	Technician	GSC	Blasco, Steve	Sachs Harbour	23-Sep-10	Iqaluit	22-Oct-10

Leg	Name	Position	Affiliation	Network Investigator/supervisor	Embark place	Embark date	Disembark place	Disembark date
Leg 3a Leg 3b	Swystun, Kyle	Msc student	University of Manitoba	Papakyriakou, Tim	Sachs Harbour	23-Sep-10	Iqaluit	22-Oct-10
	Thaler, Mary	PhD student	Université Laval	Lovejoy, Connie	Sachs Harbour	23-Sep-10	Iqaluit	22-Oct-10
Leg 3a Leg 3b Leg 3c	Blais, Marjolaine	Technician	UQAR	Gosselin, Michel	Sachs Harbour	23-Sep-10	Quebec City	2-Nov-10
Leg 3a Leg 3b Leg 3c	Boisvert, Dominique	Technician	INRS	Gratton, Yves	Sachs Harbour	23-Sep-10	Quebec City	2-Nov-10
Leg 3a Leg 3b Leg 3c		Technician	Université Laval	Fortier, Louis	Sachs Harbour	23-Sep-10	Québec	2-Nov-10
Leg 3a Leg 3b Leg 3c	Ferland, Joannie	Research assistant	UQAR	Gosselin, Michel	Sachs Harbour	23-Sep-10	Quebec City	2-Nov-10
Leg 3a Leg 3b Leg 3c	Geoffroy, Maxime	Msc student	Université Laval	Fortier, Louis	Sachs Harbour	23-Sep-10	Quebec City	2-Nov-10
Leg 3a Leg 3b Leg 3c	Gervais, Mélissa	Technician	INRS	Gratton, Yves	Sachs Harbour	23-Sep-10	Quebec City	2-Nov-10
Leg 3a Leg 3b Leg 3c	Hamilton, Travis	EM-302 Operator	UNB	Hughes-Clark, John	Sachs Harbour	23-Sep-10	Quebec City	2-Nov-10
Leg 3a Leg 3b Leg 3c	Kuus, Pim	EM-302 Operator	UNB	Hughes-Clark, John	Sachs Harbour	23-Sep-10	Quebec City	2-Nov-10
Leg 3b	Chytil, Damir	Media	Polar Cap Productions	Fortier, Martin	Paulatuk	7-Oct-10	Iqaluit	22-Oct-10
Leg 3b	Huard, David	PDF	University McGill	Tremblay, Bruno	Paulatuk	7-Oct-10	Iqaluit	22-Oct-10
Leg 3b	McNamee, Steven	Media	Polar Cap Productions	Fortier, Martin	Paulatuk	7-Oct-10	Iqaluit	22-Oct-10
Leg 3b	Olivier, Frédéric	Professor	UQAR	Archambault, Philippe	Paulatuk	7-Oct-10	Iqaluit	22-Oct-10
Leg 3b	Regan, Christopher	DFO engineer	DFO	Julien, Stéphane	Paulatuk	7-Oct-10	Iqaluit	22-Oct-10
Leg 3b	Routhier, Michel	DFO engineer	DFO	Julien, Stéphane	Paulatuk	7-Oct-10	Iqaluit	22-Oct-10
Leg 3b	Terry, Marc	Media	Polar Cap Productions	Fortier, Martin	Paulatuk	7-Oct-10	Iqaluit	22-Oct-10
Leg 3b	Tremblay, Bruno	Professor	University McGill	Tremblay, Bruno	Paulatuk	7-Oct-10	Iqaluit	22-Oct-10
Leg 3b	Tremblay, Jean-Éric	Chief scientist	Université Laval	Tremblay, Jean-Éric	Paulatuk	7-Oct-10	Iqaluit	22-Oct-10
Leg 3b Leg 3c	Dupuis, Vincent	Technician	Université Laval	Michaud, Luc	Paulatuk	7-Oct-10	Quebec City	2-Nov-10
Leg 3b Leg 3c	Fontaine, Anne	PhD student	UQAR	Archambault, Philippe	Paulatuk	7-Oct-10	Quebec City	2-Nov-10
Leg 3b Leg 3c	Roy, Virginie	PhD student	UQAR	Archambault, Philippe	Paulatuk	7-Oct-10	Quebec City	2-Nov-10
Leg 3c	Bell, Trevor	Professor	Memorial University	Bell, Trevor	Iqaluit	22-Oct-10	Quebec City	2-Nov-10
Leg 3c	Brown, Tanya	PhD Student	University of Victoria / RMC	Reimer, Ken/Ross, Peter	Iqaluit	22-Oct-10	Quebec City	2-Nov-10
Leg 3c	Carpenter, Mallory	Msc student	Memorial University	Bell, Trevor	Iqaluit	22-Oct-10	Quebec City	2-Nov-10
Leg 3c	Estrada, Esteban	Research Associate	RMC	Reimer, Ken	Iqaluit	22-Oct-10	Quebec City	2-Nov-10
Leg 3c	Gara, James	PhD student	UQAR	Gosselin, Michel	Iqaluit	22-Oct-10	Quebec City	2-Nov-10
Leg 3c	Gosselin, Michel	Chief scientist	UQAR	Gosselin, Michel	Iqaluit	22-Oct-10	Quebec City	2-Nov-10
Leg 3c	Ouellet, Jean	Technician	Université Laval	Michaud, Luc	Iqualuit	22-Oct-10	Quebec City	2-Nov-10